
In: C. L. Giles, S. J. Hanson, and J. D. Cowan, eds., Ad-
vances in Neural Information Processing Systems 5, San Ma-
teo, CA, Morgan Kaufman, 1993.

Network Structuring And Training Using
Rule-based Knowledge

Volker Tresp
Siemens AG

Central Research
Otto-Hahn-Ring 6

8000 München 83, Germany
tresp@marmor.zfe.siemens.de

Jürgen Hollatz∗
Institut für Informatik

TU München
Arcisstraße 21

8000 München 2, Germany
jh@morla.zfe.siemens.de

Subutai Ahmad
Siemens AG

Central Research
Otto-Hahn-Ring 6

8000 München 83, Germany
ahmad@icsi.berkeley.edu

Abstract

We demonstrate in this paper how certain forms of rule-based knowl-
edge can be used to prestructure a neural network of normalized basis
functions and give a probabilistic interpretation of the network architec-
ture. We describe several ways to assure that rule-based knowledge is
preserved during training and present a method for complexity reduction
that tries to minimize the number of rules and the number of conjuncts.
After training, the re£ned rules are extracted and analyzed.

1 INTRODUCTION

Training a network to model a high dimensional input/output mapping with only a small
amount of training data is only possible if the underlying map is of low complexity: a
more complex mapping requires a more complex network which results in high parame-
ter variances and, as a consequence, in a high prediction error. This predicament can be
solved if we manage to incorporate prior knowledge to bias the network as it was done by
Röscheisen, Hofmann and Tresp (1992). There, prior knowledge was available in the form
of an algorithm which summarized the engineering knowledge accumulated over many
years. Here, we consider the case that prior knowledge is available in the form of a set
of rules which specify knowledge about the input/output mapping that the network has to
learn. This is a very common occurrence in industrial and medical applications where rules

∗Mail address: Siemens AG, Central Research, Otto-Hahn-Ring 6, 8000 München 83.

can be either given by experts or where rules can be extracted from the existing solution to
the problem.

The inclusion of prior knowledge has the additional advantage that if the network is re-
quired to extrapolate into regions of the input space where it has not seen any training data,
it can rely on this prior knowledge. Furthermore, in many on-line control applications, the
network is required to make reasonable predictions right from the beginning. Before it has
seen suf£cient training data, it has to rely primarily on prior knowledge.

This situation is also typical for human learning. If we learn a new skill such as driving
a car or riding a bicycle, it would be disastrous to start without prior knowledge about the
problem. Typically, we are told some basic rules, which we try to follow in the beginning,
but which are then re£ned and altered through experience. The better our initial knowl-
edge about a problem, the faster we can achieve good performance and the less training is
required (Towel, Shavlik and Noordewier, 1990).

2 FROM KNOWLEDGE TO NETWORKS

We consider a neural networky = NN (x) which makes a prediction about the state of
y ∈ < given the state of its inputx ∈ <n. We assume that an expert provides information
about the same mapping in terms of a set of rules. The premise of a rule speci£es the
conditions onx under which the conclusion can be applied. This region of the input space
is formally described by a basis functionbi(x). Instead of allowing only binary values for
a basis function (1: premise is valid, 0: premise is not valid), we permit continuous positive
values which represent the certainty or weight of a rule given the input.

We assume that the conclusion of the rule can be described in the form of a mathematical
expression, such asconclusioni: the output is equal towi(x) wherewi(x) is a function
of the input (or a subset of the input) and can be a constant, a polynomial or even another
neural network.

Since several rules can be active for a given state of the input, we de£ne the output of the
network to be a weighted average of the conclusions of the active rules where the weighting
factor is proportional to the activity of the basis function given the input

y(x) = NN (x) =
∑

i wi(x) bi(x)∑
j bj(x)

. (1)

This is a very general concept since we still have complete freedom to specify the form
of the basis functionbi(x) and the conclusionwi(x). If bi(x) andwi(x) are described by
neural networks themselves, there is a close relationship with the adaptive mixtures of local
experts (Jacobs, Jordan, Nowlan and Hinton, 1991). On the other hand, if we assume that
the basis function can be approximated by a multivariate Gaussian

bi(x) = κi exp[−1
2

∑
j

(xj − µij)2

σ2
ij

], (2)

and if thewi are constants, we obtain the network of normalized basis functions which
were previously described by Moody and Darken (1989) and Specht (1990).

In some cases the expert might want to formulate the rules as simple logical expressions.
As an example, the rule

IF [((x1 ≈ a) AND (x4 ≈ b)] OR (x2 ≈ c) THEN y = d × x2

is encoded as

premisei : bi(x) = exp[−1
2

(x1 − a)2 + (x4 − b)2

σ2
] + exp[−1

2
(x2 − c)2

σ2
]

conclusioni : wi(x) = d × x2.

This formulation is related to the fuzzy logic approach of Tagaki and Sugeno (1985). The
connection between fuzzy membership functions and Gaussian basis functions is examined
by Wang and Mendel (1992).

3 PRESERVING THE RULE-BASED KNOWLEDGE

Equation 1 can be implemented as a network of normalized basis functionsNN init which
describes the rule-based knowledge and which can be used for prediction. Actual training
data can be used to improve network performance. We consider four different ways to
ensure that the expert knowledge is preserved during training.

Forget. We use the data to adaptNN init with gradient descent (we typically adapt all
parameters in the network). The sooner we stop training, the more of the initial expert
knowledge is preserved.

Freeze.We freeze the parameters in the initial network and introduce a new basis function
whenever prediction and data show a large deviation. In this way, the network learns an
additive correction to the initial network.

Correct. Whereas normal weight decay penalizes the deviation of a parameter from zero,
we penalize a parameter if it deviates from its initial valueqinit

j

EP =
1
2

∑
j

αj(qj − qinit
j)2 (3)

where theqj is a generic network parameter.

Internal teacher. We formulate a penalty in terms of the mapping rather than in terms of
the parameters

EP =
1
2
α

∫
(NN init(x) −NN (x))2dx.

This has the advantage that we do not have to specify priors on relatively unintuitive net-
work parameters. Instead, the prior directly re¤ects the certainty that we associate with the
mapping of the initialized network which can often be estimated. Röscheisen, Hofmann
and Tresp (1992) estimated this certainty from problem-speci£c knowledge. We can ap-
proximate the integral in Equation 3 numerically by Monte-Carlo integration which leads
to a training procedure where we adapt the network with a mixture of measured training
data and training data arti£cially generated byNN init(x) at randomly chosen inputs. The
mixing proportion directly relates to the weight of the penalty,α (Röscheisen, Hofmann
and Tresp, 1992).

4 COMPLEXITY REDUCTION

After training the rules can be extracted again from the network but we have to ensure that
the set of rules is as concise as possible; otherwise the value of the extracted rules is limited.
We would like to £nd the smallest number of rules that can still describe the knowledge
suf£ciently. Also, the network should be encouraged to £nd rules with the smallest number
of conjuncts, which in this case means that a basis function is only dependent on a small
number of input dimensions.

We suggest the following pruning strategy for Gaussian basis functions.

1. Prune basis functions.Evaluate the relative weight of each basis function at its center
ωi = bi(µi)/

∑
j bj(µi) which is a measure of its importance in the network. Remove the

unit with the smallestωi. Figure 1 illustrates the pruning of basis functions.

2. Prune conjuncts.Successively, set the largestσij equal to in£nity, effectively removing
input j from basis functioni.

Sequentially remove basis functions and conjuncts until the error increases above a thresh-
old. Retrain after a unit or a conjunct is removed.

5 A PROBABILISTIC INTERPRETATION

One of the advantages of our approach is that there is a probabilistic interpretation of the
system. In addition, if the expert formulates his or her knowledge in terms of probability
distributions then a number of useful properties can be derived. (It is natural here to inter-
pret probability as a subjective degree of belief in an event.) We assume that the system can
be in a number of statessi which are unobservable. Formally, each of those hidden states
corresponds to a rule. The prior probability that the system is in statesi is equal toP (si).
Assuming that the system is in statesi there is a probability distributionP (x, y|si) that we
measure an input vectorx and an outputy and

P (x, y) =
∑

i

P (x, y|si) P (si) =
∑

i

P (y|x, si) P (x|si) P (si). (4)

For every rule the expert speci£es the probability distributions in the last sum. Let’s con-
sider the case thatP (x, y|si) = P (x|si) P (y|si) and thatP (x|si) andP (y|si) can be
approximated by Gaussians. In this case Equation 4 describes a Gaussian mixture model.
For every rule, the expert has to specify

• P (si), the probability of the occurrence of statesi (the overall weight of the rule),

• P (x|si) = Ni(x;µi,Σi), the probability that an input vectorx occurs, given that
the system is in statesi, and

• P (y|si) = Ny
i (y;wi, σ

y
i), the probability of outputy given statesi.

The evidence for a state given an inputx becomes

P (si|x) =
P (x|si)P (si)∑
j P (x|sj)P (sj)

and the expected value of the output

E(y|x) =
∑

i

∫
y P (y|x, si) dy P (x|si)P (si)∑

j P (x|sj)P (sj)
, (5)

where,P (x|si) =
∫

P (x, y|si) dy. If we substitutebi(x) = P (x|si)P (si) andwi(x) =∫
y P (y|x, bi) dy we can calculate the expected value ofy using the same architecture as

described in Equation 1.

Subsequent training data can be employed to improve the model. The likelihood of the data
{xk, yk} becomes

L =
∏
k

∑
i

P (xk, yk|si) P (si)

which can be maximized using gradient descent or EM. These adaptation rules are more
complicated than supervised learning since according to our model the data generating
process also makes assumptions about the distributions of the data in the input space.

Equation 4 gives an approximation of the joint probability density of input and output.
Input and output are formally equivalent (Figure 2) and, in the case of Gaussian mixtures,

A

B C

D E

F G

Figure 1: 80 values of a noisy sinusoid (A) are presented as training data to a network of
20 (Cauchy) basis functions, (bi(x) = κi [1 +

∑
j (xj − µij)2/σ2

ij]
−2). (B) shows how

this network also tries to approximate the noise in the data. (D) shows the basis functions
bi(x) and (F) the normalized basis functionsbi(x)/

∑
j bj(x). Pruning reduces the network

architecture to 5 units placed at the extrema of the sinusoid (basis functions: E, normalized
basis functions: G). The network output is shown in (C).

Y

X

Y

X

Figure 2: Top: The two rectangles indicate centers and standard deviations of two Gaus-
sians that approximate a density. Bottom: the £gure shows the expected valuesE(y|x)
(continuous line) andE(x|y) (dashed line).

we can easily calculate the optimal output given just a subset of inputs (Ahmad and Tresp,
1993).

A number of authors used clustering and Gaussian approximation on the input space alone
and resources were distributed according to the complexity of the input space. In this
method, resources are distributed according to the complexity of both input and output
space.1

6 CLASSIFICATION

A conclusion now speci£es the correct class. Let{bik|i = 1...Nk} denote the set of basis
functions whose conclusion speci£esclassk. We setwk

ij = δkj , wherewk
ij is the weight

from basis functionbij to thekth output andδkj is the Kronecker symbol. Thekth output
of the network

yk(x) = NN k(x) =

∑
ij wk

ijbij(x)∑
lm blm(x)

=
∑

i bik(x)∑
lm blm(x)

. (6)

speci£es the certainty ofclassk, given the input. During training, we donot adapt the
output weightswk

ij . Therefore, the outputs of the network are always positive and sum to
one.

A probabilistic interpretation can be found if we assume thatP (x|classk)P (classk) ≈∑
i bik(x). We obtain,

P (classk|x) =
P (x|classk)P (classk)∑

l P (x|classl)P (classl)

and recover Equation 6. If the basis functions are Gausssians, again we obtain a Gaussian
mixture learning problem and, as a special case (one unit per class), a Gaussian classi£er.

7 APPLICATIONS

We have validated our approach on a number of applications including a network that
learned how to control a bicycle and an application in the legal sciences (Hollatz and Tresp,
1992). Here we present results for a well known data set, the Boston housing data (Breiman
et al., 1981), and demonstrate pruning and rule extraction. The task is to predict the hous-
ing price in a Boston neighborhood as a function of 13 potentially relevant input features.
We started with 20 Gaussian basis functions which were adapted using gradient descent.
We achieved a generalization error of 0.074. We then pruned units and conjuncts accord-
ing to the procedure described in Section 4. We achieved the best generalization error
(0.058) using 4 units (this is approximately 10% better than the result reported for CART
in Breimanet al., 1981). With only two basis functions and 3 conjuncts, we still achieved
reasonable prediction accuracy (generalization error of 0.12; simply predicting the mean
results in a generalization error of 0.28). Table 1 describes the £nal network. Interestingly,
our network was left with the input features which CART also considered the most relevant.

The network was trained with normalized inputs. If we translate them back into real world
values, we obtain the rules:

Rule14: IF the number of rooms (RM) is approximately 5.4 (0.62 corresponds to 5.4 rooms
which is smaller than the average of 6.3) AND the pupil/teacher value is approximately 20.2
(0.85 corresponds to 20.2 pupils/teacher which is higher than the average of 18.4) THEN

1Note, that a probabilistic interpretation is only possible if the integral over a basis function is
£nite, i.e. all variances are £nite.

Table 1: Network structure after pruning.

conclusion featurej CART rating center:µij width: σij

Unit#: i = 14 wi = 0.528 RM second 0.62 0.21
κi = 0.17 P/T third 0.85 0.35
Unit#: i = 20 wi = 1.6 LSTAT most important 0.06 0.24
κi = 0.83

the value of the home is approximately $14000 (0.528 corresponds to $14000 which is
lower than the average of $22500).

Rule20: IF the percentage of lower-status population (LSTAT) is approximately 2.5% (0.06
corresponds to 2.5% which is lower than the average of 12.65%), THEN the value of the
home is approximately $34000 (1.6 corresponds to $34000 which is higher than the average
of $22500).

8 CONCLUSION

We demonstrated how rule-based knowledge can be incorporated into the structuring and
training of a neural network. Training with experimental data allows for rule re£nement.
Rule extraction provides a quantitative interpretation of what is “going on” in the network,
although, in general, it is dif£cult to de£ne the domain where a given rule “dominates” the
network response and along which boundaries the rules partition the input space.

Acknowledgements

We acknowledge valuable discussions with Ralph Neuneier and his support in the Boston
housing data application. V.T. was supported in part by a grant from the Bundesminister
für Forschung und Technologie and J. H. by a fellowship from Siemens AG.

References

S. Ahmad and V. Tresp. Some solutions to the missing feature problem in vision. This
volume, 1993.

L. Breimanet al.. Classi£cation and regression trees.Wadsworth and Brooks, 1981.

R. A. Jacobs, M. I. Jordan, S. J. Nowlan and G. E. Hinton. Adaptive mixtures of local
experts.Neural Computation,Vol. 3, pp. 79-87, 1991.

J. Hollatz and V. Tresp. A Rule-based network architecture.Arti£cial Neural Networks II,
I. Aleksander, J. Taylor, eds., Elsevier, Amsterdam, pp. 757 - 761, 1992.

J. Moody and C. Darken. Fast learning in networks of locally-tuned processing units.
Neural Computation, Vol. 1, pp. 281-294, 1989.

M. Röscheisen, R. Hofmann and V. Tresp. Neural control for rolling mills: incorporating
domain theories to overcome data de£ciency. In:Advances in Neural Information Process-
ing Systems 4,pp. 659 - 666 , 1992.

D. F. Specht. Probabilistic neural networks.Neural Networks,Vol. 3, pp. 109-117, 1990.

T. Takagi and M. Sugeno. Fuzzy identi£cation of systems and its applications to modeling
and control. IEEE Transactions on Systems, Man and Cybernetics,Vol. 15, No. 1, pp.
116-132, 1985.

G. G. Towell, J. W. Shavlik and M. O. Noordewier. Re£nement of approximately cor-
rect domain theories by knowledge-based neural networks. InProceedings of the Eights
National Conference on Arti£cial Intelligence,pp. 861-866, MA, 1990.

L.-X. Wang and J. M. Mendel. Fuzzy basis functions, universal approximation, and or-
thogonal least-squares learning.IEEE Transactions on Neural Networks, Vol. 3, No. 5,
1992.

