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ABSTRACT
Social networks usually involve rich collections of objects,
which are jointly linked into complex relational networks.
Social network analysis has gained in importance due to the
growing availability of data on novel social networks, e.g. ci-
tation networks, Web 2.0 social networks like facebook, and
the hyperlinked internet. Recently, the infinite hidden rela-
tional model (IHRM) has been developed for the analysis of
complex relational domains. The IHRM extends the expres-
siveness of a relational model by introducing for each object
an infinite-dimensional hidden variable as part of a Dirich-
let process mixture model. In this paper we discuss how the
IHRM can be used to model and analyze social networks. In
such an IHRM-based social network model, each edge is as-
sociated with a random variable (RV) and the probabilistic
dependencies between these RVs are specified by the model
based on the relational structure. The hidden variables, one
for each object, are able to transport information such that
non-local probabilistic dependencies can be obtained. The
IHRM provides effective relationship prediction and cluster
analysis for social networks. The experimental analysis is
performed on two social network applications. The first ap-
plication is an analysis of the cooperative effect in a recom-
mendation framework where both user properties and item
properties are taken into account. The experimental results
demonstrate that the IHRM provides good prediction ac-
curacy for user preference on movies and gives interpretable
clusters of users and items. In the second experiment we ap-
ply the IHRM to Sampson’s monastery data, and obtain a
grouping of the actors that agrees with results from previous
publications. As an additional contribution of this paper, we
present a new mean field approximation to inference in the
IHRM.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
The 2nd SNA-KDD Workshop ’08 (SNA-KDD’08), August 24, 2008, Las
Vegas, Nevada, USA
Copyright 2008 ACM 978-1-59593-848-0 ...$5.00.

Keywords
Statistical Relational Learning, Social Network Analysis, Non-
parametric Mixture Models, Dirichlet Process, Variational
Approximation

1. INTRODUCTION
Social networks usually consist of rich collections of ob-

jects, which are linked into complex relational networks.
Statistical relational learning (SRL) [10, 19, 7] is an emerg-
ing area of machine learning research, which attempts to
combine expressive knowledge representation formalisms with
statistical approaches to perform probabilistic inference and
learning on relational networks. SRL provides effective tools
for social network modeling and analysis, such as community
discovery and product recommendation. Social networks are
graphically represented as a sociogram as illustrated in Fig-
ure 1 (top). In this simple relational network, a common
task is to make predictions on unknown relationships (friend-
ship) based on known relationships and person profiles (e.g.,
gender). We can use probabilistic approaches to model the
relational network such that the quantities of interest can be
inferred with statistical techniques. Figure 1 (bottom) shows
a probabilistic model for the sociogram. For each potential
edge, a random variable (RV) is introduced that describes
the state of the edge. For example, there is a RV associated
with the edge between the person 1 and the person 2. The
binary variable is YES if the two persons are friends and No
otherwise. The edge between the person 1 and Male is also
associated with a RV, whose value describes the person’s
profile. In this example, all variables are binary. To infer
the quantities of interest, e.g., whether the person 1 and the
person 2 are friends, we need to learn the probabilistic de-
pendencies between the random variables. Here we assume
that friendship is conditioned on the profiles (gender) of the
involved persons. Thus the probabilistic dependencies can
be as shown in Figure 1 (bottom). The directed arcs, for ex-
ample, the ones between G1 and R1,2 and between G2 and
R1,2 specify that the probability that person 1 and the per-
son 2 are friends depends on their respective profiles. Given
the probabilistic model, we can learn the parameters and
predict the relationships of interest.

In this relational model, the friendship is locally predicted
by the profiles of the involved objects: whether a person is a
friend of another person is only dependent on the profiles of
the two persons. Given that the parameters are fixed, and



Figure 1: Top: A simple sociogram. Bottom: A
probabilistic model for the sociogram. Each edge is
associated with a random variable that determines
the state of the edge. The directed arcs indicate
direct probabilistic dependencies.

given the parent attributes, all friendships are independent
of each other such that correlations between friendships, i.e.,
the collaborative effect, cannot be taken into account. To
solve this limitation, structural learning might be involved
to obtain non-local dependencies but structural learning in
complex relational networks is considered a hard problem
[8].

Non-local dependencies can be achieved by introducing for
each person a hidden variable as it was proposed in [26]. The
state of the hidden variable represents unknown attributes of
the person, e.g. the particular habit of making friends with
certain persons. The hidden variable of a person is now
the only parent of its profiles and is one of the parents of
the friendships in which the person potentially participates.
Since the hidden variables are of central importance, this
model is referred to as the hidden relational model (HRM).
A ground Bayesian network of an HRM forms a network of
hidden variables over the relational structure. The HRM
can be considered a direct generalization of hidden Markov
model used in speech recognition or hidden Markov random
field used in computer vision [27]. As in those models, in-
formation can propagate across the network of hidden vari-
ables. The HRM can also be interpreted as a relational mix-
ture model, which clusters all objects in a relational domain.
The state of the hidden variable of an object corresponds to
its cluster assignment. The HRM clustering can be regarded
as a generalization of co-clustering [12].

In relational domains, different classes of objects generally
require a class-specific complexity in the hidden representa-
tion. Thus it is sensible to work with a Dirichlet process
(DP) mixture model in which each object class can optimize

Figure 2: A hidden relational model (HRM) for a
simple sociogram.

its own representational complexity in a self-organized way.
Conceptionally, the number of states in the hidden variables
in the HRM becomes infinite. In practice, the DP mixture
sampling process only occupies a finite number of compo-
nents. The combination of the hidden relational model and
the DP mixture model is the infinite hidden relational model
(IHRM) [26]. The IHRM is closely related to the model in-
troduced in [16]. Section 6 discusses similarities and differ-
ences between the two models.

The IHRM has been presented first in [26]. In this paper,
we explore social network analysis with IHRM for modeling,
clustering and prediction. We also develop two inference
methods for efficient inference: one is the blocked Gibbs
sampling with truncated stick-breaking (TSB) construction,
the other is the mean-field approximation with TSB. We per-
form empirical analysis on the MovieLens data and Samp-
son’s monastery data for community discovery and product
recommendation. The paper is organized as follows. In the
next section, we analyze the infinite hidden relational model
for social networks. In Section 3 and Section 4 we describe
a Gibbs sampling method and a mean-field approximation
for inference in the IHRM. Section 5 provides experimental
analysis. In Section 6 we review and discuss some related
work. Finally Section 7 concludes the paper.

2. MODEL DESCRIPTION
Based on the analysis in Section 1, we will give a detailed

description of the IHRM. In this section, we first introduce
the finite hidden relational model (HRM), and then extend
it to an infinite version (IHRM). In addition, we provide a
generative model describing how to generate data from an
IHRM.

2.1 Hidden Relational Model
A hidden relational model (HRM) for a simple sociogram

is shown in Figure 2. The basic innovation of the HRM is to
introduce for each object (here: person) a hidden variable,
in the example denoted as Z. They can be thought of as
unknown attributes of the persons. We then assume that
attributes of a person only depend on the hidden variable of
the person, and a relationship only depends on the hidden
variables of the persons involved in the relationship. It im-
plies that if the hidden variables were known, both person
attributes and relationships can be well predicted.

Given the HRM model shown in Figure 2, information
can propagate via interconnected hidden variables. Let us



predict whether the person 2 will be a friend of the person
3, i.e. the relationship R2,3. The probability is computed on
the evidence about: (1) the attributes of the immediately
related persons, i.e. G2 and G3, (2) the known relationships
associated with the persons of interest, i.e. the friendships
R2,1 and R2,4 about the person 2, and the friendships R1,3

and R3,4 about the person 3, (3) high-order information
transferred via hidden variables, e.g. the information about
G1 and G4 propagated via Z1 and Z4. If the attributes
of persons are informative, those will determine the hidden
states of the persons, therefore dominate the computation
of predictive probability of relationship R. Conversely, if
the attributes of persons are weak, then the hidden state of
a person might be determined by his relationships to other
persons and the hidden states of those persons. In summary,
by introducing hidden variables, information can globally
distribute in the ground network defined by the relational
structure. This reduces the need for extensive structural
learning, which is particularly difficult in relational models
due to the huge number of potential parents. Note that a
similar propagation of information can be observed in hidden
Markov models used in speech recognition or in the hidden
Markov random fields used in image analysis [27]. In fact,
the HRM can be viewed as a direct generalization of both
for relational data. Additionally, the HRM provides a clus-
ter analysis of relational data. The assignments of hidden
variables specify the clusters of the persons. The HRM can
be applied to domains with multiple classes of objects and
multiple classes of relationships. Furthermore, relationships
can be of arbitrary order, i.e. the HRM is not constraint
to only binary and unary relationships[26]. Also note that
the sociogram is quite related to the resource description
framework (RDF) graph used as the basic data model in
the semantic web [3] and the entity relationship graph from
database design.

We now complete the model by introducing the variables
and parameters in Figure 2. There is a hidden variable
Zi for each person. The state of Zi specifies the cluster
of the person i. Let K denote the number of clusters.
In the HRM, K is a hyperparameter, whose value is ei-
ther given or can be computed with an empirical Bayesian
method. Z follows multinomial distribution with parame-
ter vector π = (π1, . . . , πK) (πk > 0,

P
k πk = 1), which

specify the probability of a person belonging to a cluster,
i.e. P (Zi = k) = πk. π is sometimes referred to as mix-
ing weights, and is drawn from a conjugated Dirichlet prior
with hyperparameters α0. Note that α0 is a K-dimensional
vector in the HRM.

All person attributes are assumed to be discrete and multi-
nomial variables (resp., binary and Bernoulli). Thus a par-
ticular person attribute Gi is a sample drawn from a multi-
nomial (resp., Bernoulli) distribution with parameters θk,
where k denotes the cluster assignment of the person. θk is
sometimes referred to as mixture component, which is asso-
ciated with the cluster k. For all persons, there are totally
K mixture components Θ = (θ1, . . . , θK). Each person in
the cluster k inherits the mixture component, thus we have:
P (Gi = s|Zi = k, Θ) = θk,s (θk,s > 0,

P
s θk,s = 1). These

mixture components are independently drawn from a prior
G0. For computational efficiency, we assume that G0 is a
conjugated Dirichlet prior with hyperparameters β.

We now consider the variables and parameters concerning
the relationships (FriendOf). The relationship R is assumed

to be discrete with two states. A particular relationship
Ri,j between two persons (i and j) is a sample drawn from
a binomial distribution with a parameter φk,`, where k and
` denote cluster assignments of the person i and the person
j, respectively. There are totally K × K parameters φk,`,
and each φk,` is independently drawn from the prior Gr

0. For
computational efficiency, we assume that Gr

0 is a conjugated
Beta distribution with hyperparameters βr.

From a mixture model point of view, the most interesting
term in the HRM is φk,`, which can be interpreted as a
correlation mixture component. If a person i is assigned to
a cluster k, i.e. Zi = k, then the person inherits not only θk,
but also φk,`, ` = {1, . . . , K}.

2.2 Infinite Hidden Relational Model
Since the hidden variables play a key role in the HRM, we

would expect that the HRM might require a flexible number
of states for the hidden variables. Consider again the sim-
ple sociogram example. With little information about past
friendships, all persons might look the same; with more in-
formation available, one might discover certain clusters in
the persons (different habits of making friends); but with
an increasing number of past friendships, the clusters might
show increasingly detailed structure ultimately indicating
that everyone is an individual. It thus makes sense to per-
mit an arbitrary number of clusters by using a Dirichlet
process mixture model. This permits the model to decide
itself about the optimal number of clusters and to adopt the
optimal number with increasing data. For our discussion it
suffices to say that we obtain an infinite HRM by simply let-
ting the number of clusters approach infinity, K → ∞. Al-
though from a theoretical point of view there are indeed an
infinite number of components, a sampling procedure would
only occupy a finite number of components.

The graphical representations of the IHRM and the HRM
are identical, shown as Figure 2. However, the definitions
of variables and parameters are different. For example, the
hidden variables Z of persons have infinite states, and thus
the parameter vector π is infinite-dimensional. The param-
eter is not generated from a Dirichlet prior, but from a stick
breaking construction Stick(·|α0) with a hyperparameter α0

(more details in the next section). Note that α0 is a positive
real-valued scalar and is referred to as concentration param-
eter in DP mixture modeling. It determines the tendency
of the model to either use a large number or a small number
of states in the hidden variables [2]. If α0 is chosen to be
small, only few clusters are generated. If α0 is chosen to be
large, the coupling is loose and more clusters are formed.
Since there are an infinite number of clusters, there are an
infinite number of mixture components θk, each of which is
still independently drawn from G0. G0 is referred to as base
distribution in DP mixture modeling.

2.3 Generative Model
Now we describe the generative model for the IHRM.

There are mainly two methods to generate samples from
a Dirichlet Process (DP) mixture model, i.e. the Chinese
restaurant process (CRP) [2] and the stick breaking con-
struction (SBC) [24]. We will discuss how SBC can be ap-
plied to the IHRM (for CRP-based generative model, please
refer to [26]).

To describe the generative model, we need some notation.
(summarized in Table 1). Assume that there are C classes



Table 1: Notation used in this paper.

Symbol Description
C number of object classes
B number of relationship classes
Nc number of objects in the class c
αc

0 concentration parameter of an object class c
ec

i an object indexed by i in a class c
Ac

i an attribute of an object ec
i

θc
k mixture component indexed by the hidden

state k in the object class c
Gc

0 base distribution of an object class c
βc parameters of the base distribution Gc

0

Rb
i,j relationship of class b between objects i, j

φb
k,` correlation mixture component indexed by

hidden states k for ci and ` for cj , where ci

and cj are indexes of object classes involved
in the relationship class b

Gb
0 base distribution of a relationship class b

βb parameters of the base distribution Gb
0

of objects and B classes of relationships. For an object class
c, there are Nc objects ec

i indexed by i, a base distribution
Gc

0, and a concentration parameter αc
0. θc

k denotes a mixture
component, which is the parameter vector of the distribu-
tion of an object attribute. For a relationship class b between
two object classes ci and cj , there is a base distribution Gb

0

associated. φb
k,` denotes a correlation mixture component

indexed by hidden states k for ci and ` for cj , which is the
parameter vector of the distribution of a relationship. Here
we consider the case that the object attributes and relation-
ships are drawn from exponential family distributions with
parameters θc

k and φb
k,`, respectively. The base distributions

Gc
0 and Gb

0 are conjugated priors with hyperparameters βc

and βb.
The stick breaking construction (SBC) [24] is a representa-

tion of a DP, by which we can explicitly sample the random
distributions of attribute parameters and relationship pa-
rameters. In the following we describe the generative model
of the IHRM in terms of the SBC.

1. For each object class c,

(a) Draw mixing weights πc ∼ Stick(·|αc
0), defined as

breaking construction defined as

V c
k

iid∼Beta(1, αc
0);

πc
1 = V c

1 , πc
k =V c

k

k−1Y
k′=1

(1− V c
k′), k > 1. (1)

(b) Draw i.i.d. mixture components θc
k ∼ Gc

0, k =
1, 2, . . .

2. For each relationship class b between two object classes
ci and cj , draw φb

k,` ∼ Gb
0 i.i.d. with component indices

k for ci and ` for cj .

3. For each object ec
i in a class c,

(a) Draw cluster assignment Zc
i ∼ Mult(·|πc);

(b) Draw object attributes Ac
i ∼ P (·|θc, Zc

i ).

4. For objects eci
i and e

cj

j with a relationship of class b,

draw Rb
i,j ∼ P (·|φb, Zci

i , Z
cj

j ).

The basic property of the SBC is that: the distributions of
the parameters (θc

k and φb
k,`) are sampled, e.g., the distri-

bution of θc
k can be represented as Gc =

P∞
k=1 πc

kδθc
k
, where

δθc
k

is a distribution with a point mass on θc
k. In terms of this

property, the SBC can sample objects independently; thus
the SBC might be efficient when a large domain is involved.

3. INFERENCE WITH GIBBS SAMPLING
The key inferential problem in the IHRM is to compute

the joint posterior distribution of unobservable variables given
the data D, i.e. P ({πc, Θc, Zc}c, {Φb}b|D, {αc

0, G
c
0}c, {Gb

0}b).
Unfortunately, the computation of the joint posterior is ana-
lytically intractable, thus we consider approximate inference
methods to solve the problem.

Markov chain Monte Carlo (MCMC) sampling has been
used to approximate posterior distribution with a DP mix-
ture prior. In this section, we extend these MCMC methods
to the IHRM. [26] explored a Gibbs sampler with the Chi-
nese restaurant process, which is a collapsed version of Pólya
urn sampling [17]. Blocked sampling typically exhibits more
rapid mixing of the Markov chain than collapsed sampling
[14]. Thus we extend the efficient blocked Gibbs sampling
(GS) with truncated stick breaking representation [13] to
the IHRM.

In the blocked GS, the posterior distributions of param-
eters (πc, Θc and Φb) are explicitly sampled in the form of
truncated stick breaking construction [13]. The advantage is
that given the posterior distributions, we can independently
sample the hidden variables in a block, which highly acceler-
ates the computation. The Markov chain is thus defined not
only on the hidden variables, but also on the parameters.

At the iteration t, the sampled variables include Z
c(t)
i , πc(t),

Θc(t) and Φb(t).
Truncated stick breaking construction (TSB) fixes a value

Kc for each class of objects and lets V c
Kc = 1. That means

the mixing weights πc
k are equal to 0 for k > Kc (refer to

Equation 1). The number of the clusters is thus reduced
to Kc. When Kc is large enough, the truncated Dirichlet
process provides a close approximation to the true Dirichlet
process [13]. Note, that Kc is an additional parameter in
the inference method.

At each iteration, we first update the hidden variables
conditioned on the parameters sampled in the last iteration,
and then update the parameters conditioned on the hidden
variables. In detail:

1. For each class of objects,

(a) Update each hidden variable Z
c(t+1)
i with proba-

bility proportional to:

π
c(t)
k P (Ac

i |Zc(t+1)
i = k, Θc(t))×Y

b′

Y
j′

P (Rb′
i,j′ |Zc(t+1)

i = k, Z
cj′ (t)
j′ , Φb′(t)), (2)

where Ac
i and Rb′

i,j′ denotes the known attributes
and relationships about the object i. cj′ denotes

the class of the object j′, Z
cj′ (t)
j′ denotes the hid-

den variable of j′ at the last iteration t. Intu-



itively, the equation represents to what extent the
cluster k agrees with the data Dc

i of the object.

(b) Update πc(t+1) as follows:

i. Sample v
c(t+1)
k from

Beta(λ
c(t+1)
k,1 , λ

c(t+1)
k,2 ) for k = {1, . . . , Kc − 1}

with

λ
c(t+1)
k,1 = 1 +

NcX
i=1

δk(Z
c(t+1)
i ),

λ
c(t+1)
k,2 = αc

0 +

KcX
k′=k+1

NcX
i=1

δk′(Z
c(t+1)
i ), (3)

and set v
c(t+1)
Kc = 1. δk(Z

c(t+1)
i ) equals to 1 if

Z
c(t+1)
i = k and 0 otherwise.

ii. Compute πc(t+1) as: π
c(t+1)
1 = v

c(t+1)
1 and

π
c(t+1)
k = v

c(t+1)
k

k−1Y
k′=1

(1− v
c(t+1)

k′ ), k > 1.

(4)

2. Update parameters:

θ
c(t+1)
k ∼ P (·|Ac, Zc(t+1), Gc

0),

φ
b(t+1)
k,` ∼ P (·|Rb, Z(t+1), Gb

0). (5)

The parameters are drawn from their posterior dis-
tributions conditioned on the sampled hidden states.
Again, since we assume conjugated priors as the base
distributions (Gc

0 and Gb
0), the simulation is tractable.

After convergence, we collect the last W samples to make
predictions for the relationships of interest. Note that in
blocked Gibbs sampling, the MCMC sequence is defined
by hidden variables and parameters, including Zc(t), πc(t),
Θc(t), and Φb(t). The predictive distribution of a relation-
ship Rb

new,j between a new object ec
new and a known object

e
cj

j is approximated as

P (Rb
new,j |D, {αc

0, Gc
0}C

c=1, {Gb
0}B

b=1)

≈ 1

W

W+wX
t=w+1

P (Rb
new,j |D, {Zc(t), πc(t), Θc(t)}C

c=1, {Φb(t)}B
b=1)

∝ 1

W

W+wX
t=w+1

KcX
k=1

P (Rb
new,j |φb(t)

k,` ) π
c(t)
k P (Ac

new|θc(t)
k )

×
Y
b′

Y
j′

P (Rb′
new,j′ |φ

b′(t)
k,`′ ),

where ` and `′ denote the cluster assignments of the objects
j and j′, respectively. The equation is quite intuitive. The

prediction is a weighted sum of predictions P (Rb
new,j |φb(t)

k,` )
over all clusters. The weight of each cluster is the product
of the last three terms, which represents to what extent this
cluster agrees with the known data (attributes and relation-
ships) about the new object. Since the blocked method also
samples parameters, the computation is straightforward.

4. INFERENCE WITH VARIATIONAL AP-
PROXIMATION

The IHRM has multiple DPs which interact through re-
lationships, thus blocked Gibbs sampling is still slow due to

the slow exchange of information between DPs. To solve the
problem, we explore an alternative solution by variational
inference method. The main strategy of these methods is to
convert a probabilistic inference problem into an optimiza-
tion problem, and then to solve the problem with the known
optimization techniques. In particular, the methods assume
a distribution q, referred to as a variational distribution, to
approximate the true posterior P as close as possible. The
difference between the variational distribution q and the true
posterior P can be measured via Kullback-Leibler (KL) di-
vergence. Let ξ denote a set of unknown quantities, let D
denote the known data. The KL divergence between q(ξ)
and P (ξ|D) is defined as:

KL(q(ξ)||P (ξ|D)) =
X

ξ

q(ξ) log q(ξ)−
X

ξ

q(ξ) log P (ξ|D). (6)

The smaller the divergence, the better is the fit between the
true and the approximate distributions.

Thus the probabilistic inference problem (i.e. computing
the posterior) is converted into an optimization problem: to
minimize the KL divergence with respect to the variational
distribution. In practice, the minimization of the KL diver-
gence is formulated as the maximization of the lower bound
of the log-likelihood of the data.

log P (D) =
X

ξ

q(ξ) log P (D, ξ)−
X

ξ

q(ξ) log q(ξ)

+ KL(q(ξ)||P (ξ|D))

≥
X

ξ

q(ξ) log P (D, ξ)−
X

ξ

q(ξ) log q(ξ). (7)

The challenge is now to find suitable forms of variational
distributions to make the optimization problem computa-
tionally tractable. For the IHRM, we assume variational
distribution as mean field with TSB, motivated by [5]. In
this context mean field means that the variational distribu-
tions are assumed in the family of fully-factorized distribu-
tions. For more details about variational inference, please
refer to [15].

A mean-field method was explored in [5] to approximate
the posterior of unobservable quantities in a DP mixture
model. We extend it to the IHRM. The main difference is
that in the IHRM, there are multiple DP mixture models
coupled together with relationships and correlation mixture
components. In the IHRM, unobservable quantities include
Zc, πc, Θc and Φb. Since the mixing weights πc are com-
puted on V c (see Equation 1), we can replace πc with V c in
the set of unobservable quantities. To approximate the pos-
terior P ({V c, Θc, Zc}c, {Φb}b|D, {αc

0, G
c
0}c, {Gb

0}b), we de-

fine a variational distribution q({Zc, V c, Θc}C
c=1, {Φb}B

b=1)
as:24 CY

c

NcY
i

q(Zc
i |ηc

i )
KcY
k

q(V c
k |λc

k)q(θc
k|τc

k)

3524 BY
b

KciY
k

K
cjỲ

q(φb
k,`|ρb

k,`)

35 ,

(8)

where ci and cj denote the object classes involved in the
relationship class b. k and ` denote the cluster indexes for
ci and cj . Variational parameters include {ηc

i , λ
c
k, τ c

k , ρb
k,`}.

q(Zc
i |ηc

i ) is a multinomial distribution with parameters ηc
i .

Note, that there is one ηc
i for each object ec

i . q(V c
k |λc

k) is a
Beta distribution. q(θc

k|τ c
k) is a distribution with the same

form as Gc
0. q(φb

k,`|ρb
k,`) is a distribution with the same form

as Gb
0.

We substitute Equation 8 into Equation 7 and optimize
the lower bound with a coordinate ascent algorithm, which



generates the following equations to iteratively update the
variational parameters until convergence:

λc
k,1 = 1 +

NcX
i=1

ηc
i,k, λc

k,2 = αc
0 +

NcX
i=1

KcX
k′=k+1

ηc
i,k′ , (9)

τc
k,1 = βc

1 +
NcX
i=1

ηc
i,kT(Ac

i ), τc
k,2 = βc

2 +
NcX
i=1

ηc
i,k, (10)

ρb
k,`,1 = βb

1 +
X
i,j

η
ci
i,kη

cj

j,`T(Rb
i,j), ρb

k,`,2 = βb
2 +

X
i,j

η
ci
i,kη

cj

j,`,

(11)

ηc
i,k ∝ exp

 
Eq [log V c

k ] +

k−1X
k′=1

Eq [log(1− V c
k′ )] + Eq [log P (Ac

i |θc
k)]

+
X
b′

X
j

X̀
η

cj

j,`Eq [log P (Rb′
i,j |φb′

k,`)]

1A , (12)

where λc
k denotes parameters of Beta distribution q(V c

k |λc
k),

thus λc
k is a two-dimensional vector λc

k = (λc
k,1, λ

c
k,2). τ c

k

denotes parameters of the exponential family distribution
q(θc

k|τ c
k). We decompose τ c

k such that τ c
k,1 contains the first

dim(θc
k) components and τ c

k,2 is a scalar. Similarly, βc
1 con-

tain the first dim(θc
k) components and βc

2 is a scalar. ρb
k,`,1,

ρb
k,`,2, βb

1 and βb
2 are defined equivalently. T(Ac

i ) and T(Rb
i,j)

denote the sufficient statistics of the exponential family dis-
tributions P (Ac

i |θc
k) and P (Rb

i,j |φb
k,`), respectively.

It is clear that Equation 9 and Equation 10 correspond
to the updates for variational parameters of object class c,
and they follow equations in [5]. Equation 11 represents the
updates of variational parameters for relationships, which
is computed on the involved objects. The most interest-
ing updates are Equation 12, where the posteriors of object
cluster-assignments are coupled together. These essentially
connect the DPs together. Intuitively, in Equation 12 the
posterior updates for ηc

i,k include a prior term (first two
expectations), the likelihood term about object attributes
(third expectation), and the likelihood terms about relation-
ships (last term). To calculate the last term we need to sum
over all the relationships of the object ec

i weighted by η
cj

j,`

that is variational expectation about cluster-assignment of
the other object involved in the relationship.

Once the procedure reaches stationarity, we obtain the
optimized variational parameters, by which we can approx-
imate the predictive distribution of the relationship Rb

new,j

between a new object ec
new and a known object e

cj

j :

P (Rb
new,j |D, {αc

0, Gc
0}C

c=1, {Gb
0}B

b=1)

≈ q(Rb
new,j |D, λ, η, τ, ρ)

∝
KcX
k

K
cjX̀

q(Rb
new,j |ρb

k,`)q(Z
cj

j = `|ηcj

j )q(Zc
new = k|λc)

× q(Ac
new|τc

k)
Y
b′

Y
j′

X̀
′

q(Z
cj′
j′ = `′|ηcj′

j′ )q(Rb′
new,j′ |ρb′

k,`′ ). (13)

The prediction is a weighted sum of predictions q(Rb
new,j |ρb

k,`)
over all clusters. The weight consists of two parts. One is to
what extent the cluster ` agrees with the object e

cj

j (i.e. the
2nd term), the other is to what extent the cluster k agrees
with the new object (i.e. the product of the last 3 terms).
The computations about the two parts are different. The
reason is that e

cj

j is a known object, we have optimized

variational parameters η
cj

j about its cluster assignment.

Figure 3: Top: A sociogram for movie recommenda-
tion system, illustrated with 2 users and 3 movies.
For readability, only two attributes (user’s occupa-
tion and movie’s genre) show in the figure. Bottom:
IHRM for the sociogram.

5. EXPERIMENTAL ANALYSIS

5.1 Movie Data
We first evaluate the IHRM on the MovieLens data [23].

There are in total 943 users and 1680 movies, and we obtain
702 users and 603 movies after removing low-frequent ones.
Each user has about 112 ratings on average. The model is
shown in Figure 3. There are two classes of objects (users
and movies) and one class of relationships (Like). The task
is to predict preferences of users. The users have attributes
Age, Gender, Occupation, and the movies have attributes
Published-year, Genres and so on. The relationships have
two states, where R = 1 indicates that the user likes the
movie and 0 otherwise. The user ratings in MovieLens are
originally based on a five-star scale, so we transfer each rat-
ing to binary value with R = 1 if the rating is higher than
the user’s average rating, vice versa. The performance of the
IHRM is analyzed from 2 points: prediction accuracy and
clustering effect. To evaluate the prediction performance,
we perform 4 sets of experiments which respectively select
5, 10, 15 and 20 ratings for each test user as the known rat-
ings, and predict the remaining ratings. These experiments
are referred to as given5, given10, given15 and given20 in
the following. For testing the relationship is predicted to
exist (i.e., R = 1) if the predictive probability is larger than
a threshold ε = 0.5.

We implement the following 3 inference methods: Chinese
restaurant process Gibbs sampling (CRPGS), truncated stick-
breaking Gibbs sampling (TSBGS), and the corresponding
mean field method TSBMF. The truncation parameters Ks
for TSBGS and TSBMF are initially set to be the number
of entities. For TSBMF we consider α0 = {5, 10, 100, 1000},
and obtain the best prediction when α0 = 100. For CRPGS
and TSBGS α0 is 100. For the variational methods, the
change of variational parameters between two iterations is
monitored to determine the convergence. For the Gibbs
samplers, the convergence was analyzed by three measures:
Geweke statistic on likelihood, Geweke statistic on the num-
ber of components for each class of objects, and autocorre-
lation. Figure 4 (left) shows the trace of the number of



Figure 4: Left: The traces of the number of user clusters for the runs of two Gibbs samplers. Middle: The
trace of the change of the variational parameter ηu for the mean field method. Right: The sizes of the largest
user clusters of the three inference methods.

Table 2: Performance of the IHRM on MovieLens
data.

CRPGS TSBGS TSBMF Pearson SVD
Given5 65.13 65.51 65.26 57.81 63.72
Given10 65.71 66.35 65.83 60.04 63.97
Given15 66.73 67.82 66.54 61.25 64.49
Given20 68.53 68.27 67.63 62.41 65.13
Time(s) 164993 33770 2892 - -
Time/iter. 109 17 19 - -
#C.u 47 59 9 - -
#C.m 77 44 6 - -

user clusters in the 2 Gibbs samplers. Figure 4 (middle)
illustrates the change of variational parameters ηu in the
variational method. For CRPGS, the first w = 50 itera-
tions (6942 s) are discarded as burn-in period, and the last
W = 1400 iterations are collected to approximate the pre-
dictive distributions. For TSBGS, we have w = 300 (5078 s)
and W = 1700. Although the number of iterations for the
burn-in period is much less in the CRPGS if compared to
the blocked Gibbs sampler, each iteration is approximately a
factor 5 slower. The reason is that CRPGS samples the hid-
den variables one by one, which causes two additional time
costs. First, the expectations of attribute parameters and
relational parameters have to be updated when sampling
each user/movie. Second, the posterior of hidden variables
have to be computed one by one, thus we can not use fast
matrix multiplication techniques to accelerate the compu-
tation. Therefore if we include the time, which is required
to collect a sufficient number of samples for inference, the
CRPGS is slower by a factor of 5 (the row Time(s) in Table 2
) than the blocked sampler. The mean field method is again
by a factor around 10 faster than the blocked Gibbs sampler
and thus almost two orders of magnitude faster than the
CRPGS.

The prediction results are shown in Table 2. All IHRM
inference methods under consideration achieve comparably
good performance; the best results are achieved by the two
Gibbs sampling methods. To demonstrate the performance
of the IHRM, we also implement Pearson-coefficient based
collaborative filtering (CF) method [20] and an SVD-based
CF method [22]. It is clear that the IHRM outperforms
the traditional CF methods, especially when there are few

known ratings for the test users. The main advantage of
the IHRM is that it can exploit attribute information. If
the attribute information is removed, the performance of
the IHRM becomes close to the performance of the SVD
approach. For example, after ignoring all attribute informa-
tion, the TSBMF generates the predictive results: 64.55%
for Given5, 65.45% for Given10, 65.90% for Given15, and
66.79% for Given20.

The IHRM provides cluster assignments for all objects in-
volved, in our case for the users and the movies. The rows
#C.u and #C.m in Table 2 denote the number of clusters
for users and movies, respectively. The Gibbs samplers con-
verge to 46-60 clusters for the users and 44-78 clusters for
the movies. The mean field solution have a tendency to con-
verge to a smaller number of clusters, depending on the value
of α0. Further analysis shows that the clustering results of
the methods are actually similar. First, the sizes of most
clusters generated by the Gibbs samplers are very small,
e.g., there are 72% (75.47%) user clusters with less than 5
members in CRPGS (TSBGS). Figure 4 (right) shows the
sizes of the 20 largest user clusters of the 3 methods. In-
tuitively, the Gibbs samplers tend to assign the outliers to
new clusters. Second, we compute the rand index (0-1) of
the clustering results of the methods, the values are 0.8071
between CRPGS and TSBMF, 0.8221 between TSBGS and
TSBMF, which demonstrates the similarity of the clustering
results.

Table 3 gives the movies with highest posterior proba-
bility in the 6 largest clusters generated from TSBMF. In
cluster 1 most movies are very new and popular (the data
set was collected from September 1997 through April 1998).
Also they tend to be action and thriller movies. Cluster 2
includes many old movies, or movies produced by the non-
USA countries. They tend to be drama movies. Cluster
3 contains many comedies. In cluster 4 most movies in-
clude relatively serious themes. Overall we were quite sur-
prised by the good interpretability of the clusters. Figure 5
(top) shows the relative frequency coefficient (RFC) of the
attribute Genre in these movie clusters. RFC of a genre s
in a cluster k is calculated as (fk,s − fs)/σs, where fk,s is
the frequency of the genre s in the movie cluster k, fs is
mean frequency, and σs is standard deviation of frequency.
The labels for each cluster specify the dominant genres in
the cluster. For example, action and thriller are the two
most frequent genres in cluster 1. In general, each cluster
involves several genres. It is clear that the movie clusters



are related to, but not just based on, the movie attribute
Genre. The clustering effect depends on both movie at-
tributes and user ratings. Figure 5 (middle) shows RFC
of the attribute Occupation in user clusters. Equivalently,
the labels for each user cluster specify the dominant occu-
pations in the cluster. The correlation (COR) between user
clusters and movie clusters is illustrated as Figure 5 (bot-
tom). It is computed as the probability of positive ratings
in the combination of a user cluster k and a movie cluster `,
CORk,l = N+

k,`/(N+
k,` + N−

k,`), where N+
k,` and N−

k,` denote
the numbers of positive and negative ratings between the
user cluster k and the movie cluster `. The darker the cell
is, the more likely the members in the user cluster like the
members in the movie cluster. The interesting phenomenon
is the column 3 about the correlations of the movie cluster
3. Comedy is one of the main genres in movie cluster 3. One
would assume that comedies are well liked, but the learned
positive probability (the 3rd column in Figure 5 (bottom))
is not very high. It turns out that comedy movies are indeed
not so popular in this data set, their positive rating proba-
bility is only 37.04%, which is less than average (42.21%).

Figure 5: Top: The relative frequency coefficient
of the attribute Genre in different movie clusters.
Middle: The relative frequency coefficient of the at-
tribute Occupation in different user clusters. Bot-
tom: The correlation between user clusters and
movie clusters. The darker the cell is, the more
likely the members in the user cluster like the mem-
bers in the movie cluster.

Note that in the experiments we predicted a relationship
attribute R indicating the rating of a user for a movie. The
underlying assumption is that in principle anybody can rate
any movie, no matter whether that person has watched the

movie or not. If the latter is important, we could introduce
an additional attribute Exist to specify if a user actually
watched the movie. The relationship R would then only be
included in the probabilistic model if the movie was actually
watched by a user.

5.2 Monastery Data
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Figure 6: Top: The matrix displaying interactions
between Monks. Left: A sociogram for three monks.
Right: The IHRM model for the monastery so-
ciogram.

The second experiment is performed on Sampson’s monastery
dataset [21]. Sampson surveyed social relationships between
18 monks in an isolated American monastery. The relation-
ships between monks included esteem/disesteem, like/dislike,
positive influence/negative influence, praise and blame. Breiger
et al. [6] summarized these relationships and yielded a single
relationships matrix, which reflected interactions between
monks, shown as Figure 6 (top).

After observing the monks in the monastery for several
months, Sampson provided a description of the factions among
the monks: the loyal opposition (Peter, Bonaventure, Berthold,
Ambrose and Louis), the young turks (John Bosco, Gregory,
Mark, Winfrid, Hugh, Boniface and Albert) and the out-
casts (Basil, Elias and Simplicius). The other three monks
(Victor, Ramuald and Amand) wavered between the loyal
opposition and the young turks, and were identified as the
fourth group, the waverers. Sampson’s observations were
confirmed by the event that the young turks group resigned
after the leaders of the group (John Bosco and Gregory)
were expelled over religious differences. The task of the ex-
periment is to cluster the actors.

Figure 6 left shows a sociogram with 3 monks. The IHRM
model for the monastery network is illustrated as Figure 6
right. There is one auxiliary hidden variable for each monk.
The relationships between monks are conditioned on the hid-
den variables of the involved monks. The mean field method
is used for inference. We initially assume that each monk
is in his own cluster. After convergence, the cluster num-
ber is optimized as 4, which is exactly the same number of
the groups that Sampson identified. The clustering result



Table 3: The largest movie clusters generated by TSBMF on MovieLens data.

Cluster 1 Cluster 2
Independence Day (1996) Truth About Cats and Dogs (1996)
Scream (1996) Top Gun (1986) Ransom (1996) Sleepless in Seat-
tle (1993) Phenomenon (1996) Birdcage (1996) Star Trek IV
(1986) Mission Impossible (1996) Mrs. Doubtfire (1993) Twister
(1996) Starship Troopers (1997) Courage Under Fire (1996) Clear
and Present Danger (1994) While You Were Sleeping (1995)
Ghost (1990) Sabrina (1995) That Thing You Do (1996) My Best
Friend’s Wedding (1997)...

A Fish Called Wanda (1988) English Patient (1996) Stand
by Me (1986) Leaving Las Vegas (1995) Butch Cassidy and
the Sundance Kid (1969) Young Frankenstein (1974) Chas-
ing Amy (1997) Groundhog Day (1993) Willy Wonka and the
Chocolate Factory (1971) Full Metal Jacket (1987) E.T. the
Extra-Terrestrial (1982) Monty Python’s Life of Brian (1979)
Contact (1997) Dances with Wolves (1990) Jaws (1975) When
Harry Met Sally (1989) Blues Brothers (1980) ...

Cluster 3 Cluster 4
Volcano (1997) Cable Guy (1996) Down Periscope (1996) Jun-
gle2Jungle (1997) Waterworld (1995) Batman Returns (1992)
Chain Reaction (1996) Multiplicity (1996) Sgt. Bilko (1996)
Phantom (1996) Broken Arrow (1996) Vegas Vacation (1997) Nine
Months (1995) Murder at 1600 (1997) Escape from L.A. (1996)
Net (1995) Wolf (1994) Mimic (1997) McHale’s Navy (1997)
Dante’s Peak (1997)...

Fargo (1996) Godfather (1972) Amadeus (1984) Blade Runner
(1982) Casablanca (1942) To Kill a Mockingbird (1962) Rear
Window (1954) Das Boot (1981) Citizen Kane (1941) North by
Northwest (1959) It’s a Wonderful Life (1946) Vertigo (1958)
Monty Python and the Holy Grail (1974) Manchurian Candi-
date (1962) Chinatown (1974) Secrets and Lies (1996) Usual
Suspects (1995) Lawrence of Arabia (1962) Schindler’s List...

Cluster 5 Cluster 6
Indiana Jones a nd the Last Crusade (1989) Return of the Jedi
(1983) Fugitive (1993) Sound of Music (1965) Back to the Future
(1985) Beauty and the Beast (1991) Hunt for Red October (1990)

A Clockwork Orange (1971) Dr. Strangelove or: How I
Learned to Stop Worrying and Love the Bomb (1963) Pulp
Fiction (1994) Maltese Falcon (1941)

Table 4: Clustering result of the IHRM on Samp-
son’s monastery data.

Cluster Members
1 Peter, Bonaventure, Berthold, Am-

brose, Louis, Victor, Ramuald
2 John, Gregory, Mark, Winfrid, Hugh,

Boniface, Albert
3 Basil, Elias, Simplicius
4 Amand

of the IHRM is shown as Table 4. It is quite close to the
real groups. Cluster 1 corresponds to the loyal opposition.
Cluster 2 is the young turks, and cluster 3 is the out-
casts. The waverers are split. Amand is assigned to cluster
4, Victor and Ramuald are assigned to the loyal opposition.
Actually, previous research analysis has questioned the dis-
tinction of the waverers, e.g., [6, 11] clustered Victor and
Ramuald into the loyal opposition, which coincides with the
result of the IHRM.

6. RELATED WORK
The work on infinite relational model (IRM) [16] is sim-

ilar to the IHRM and has been developed independently.
One difference is that the IHRM can specify any reason-
able probability distribution for an attribute given its par-
ent, whereas the IRM would model an attribute as a unary
predicate, i.e. would need to transform the conditional distri-
bution into a logical binary representation. Aukia et al. also
developed a DP mixture model for large networks [4]. The
model associates an infinite-dimensional hidden variable for
each link (relationship), and the objects involved in the link
are drawn from a multinomial distribution conditioned on
the hidden variable of the link. The model is applied to the
community web data with promising experimental results.
The latent mixed-membership model [1] can be viewed as a
generalization of LDA model on relational data. Although

it is not nonparametric, it exploits hidden variables to avoid
the extensive structure learning and provides a principled
way to model the relational networks. The model associates
each object with a membership probability-like vector. For
each relationship, cluster assignments of the involved objects
are generated with respect to their membership vectors, and
then the value of the relationship is conditioned on the clus-
ter assignments.

There are some other important SRL research works for
complex relational networks. The probabilistic relational
model (PRM) with class hierarchies [9] specializes distinct
probabilistic dependency for each subclass, and thus obtains
refined probabilistic models for relational data. Taskar et
al. explore a classification/clustering relational model, which
associates a finite-dimensional latent variable with each ob-
ject. The probabilistic dependency can be learned from the
data or be specified in advance. A group-topic model for
text mining is proposed in [25]. It jointly discovers the la-
tent groups in a network as well as the latent topics of events
between objects. The latent group model in [18] introduces
two latent variables ci and gi for an object, and ci is condi-
tioned on gi. The object attributes depends on ci and rela-
tions depend on gi of the involved objects. The limitation is
that only relations between members in the same group are
considered. These models demonstrate good performance
in certain applications. However, most are restricted to do-
mains with simple relationships.

7. CONCLUSIONS
We explored a nonparametric relational model IHRM for

social network modeling and analysis. The IHRM enables
expressive knowledge representation of social networks and
allows for flexible probabilistic inference without the need
for extensive structural learning. The IHRM can be applied
to community discovery and product recommendation. The
empirical analysis on social network data showed encourag-
ing results. We analyzed the cluster structure discovered
in the experiments and found interpretable clusters for the
objects. For example, the clusters learned from Sampson’s



monastery dataset are quite close to the real groups, and
coincide with the results of previous research work. For the
future work, it will be interesting to explore even more com-
plex relational structures in social network systems, such as
domains including hierarchical class structures (ontologies)
or dynamic domains.
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