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Abstract

Ontologies represent an important source of
prior information which lends itself to the in-
tegration into statistical modeling. This pa-
per discusses approaches towards employing
ontological knowledge for relational learning.
Our analysis is based on the IHRM model
that performs relational learning by includ-
ing latent variables that can be interpreted as
cluster variables of the entities in the domain.
We apply our approach to the modeling of
yeast genomic data and demonstrate that the
inclusion of ontologies as prior knowledge in
relational learning can lead to significantly
improved results and to better interpretable
clustering structures.

1. Introduction

One of the great challenges in Bayesian learning is
to find appropriate ways to include prior knowledge.
Traditionally, prior knowledge is introduced via the
specification of prior parameter distributions. Despite
the wide success of this approach, parameter distri-
butions are often not very intuitive for the domain
expert. Furthermore, even in case that the expert has
sophisticated prior knowledge, a statistician might find
it difficult to formalize this prior knowledge as prior
parameter distributions to be included in statistical
modeling.

A quite different effort to formalize prior knowledge
is practiced in knowledge engineering where typically
many experts are asked to agree on an ontology. An
ontology is a data model that represents a set of con-
cepts within a domain and the relationships between
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those concepts. Typical constructs are subclass hierar-
chies, type constraints for relations and even more so-
phisticated rule-based constraints. A class can be sub-
class of one or several parent classes. If an instance is
known to belong to a given class it is also a member of
all its ancestral classes. This implies that constraints
propagate from top to down: if a constraint is true for
a class it is also true for all its offspring classes.

It should be clear that an ontology is an invaluable
source of information also for machine learning. There
might be some statistical dependencies that apply to
all objects in a domain and some dependencies which
only apply to members of a particular class and all
its subclasses. In this paper we analyze how ontolog-
ical prior knowledge can be integrated into machine
learning. Since most domains for which ontologies
have been developed are relational we apply ontology
supported learning to the recently developed Infinite
Hidden Relational Model (IHRM). The IHRM can be
considered as relational (soft-)clustering and showed
excellent predictive performance in previous experi-
ments.

2. Statistical Relational Learning and
the IHRM Model

In statistical relational learning one needs to agree on
a language for describing a model. Our preference is
the DAPER model (Heckerman et al., 2004), which is
based on the entity relationship (ER) model. The ER
model has been developed as a graphical representa-
tion of a relational database structure. The DAPER
model includes directed arcs indicating direct proba-
bilistic dependencies. The Hidden Relational Model
(HRM) is a particular DAPER model with a uniform
dependency structure: For each entity a latent vari-
able is introduced. The latent variables are the parent
nodes of all attribute nodes and all relational nodes.
The details are best illustrated using a concrete exam-
ple. In the following sections we illustrate the HRM
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in a movie recommendation system. By employing a
Dirichlet Process prior, the Infinite Hidden Relational
Model (IHRM) generalizes the HRM to include an infi-
nite number of states in the latent variables. For more
details about HRM and IHRM see (Xu et al., 2006;
Kemp et al., 2006).

2.1. Hidden Relational Models

Figure 1 shows the structures for a movie recommen-
dation system. It shows the DAPER model with entity
classes User, Movie and relation class Like. In addition
there are User Attributes, Movie Attributes and Rela-
tion Attributes R. The ontological concepts are sim-
ply additional Movie Attributes, the details of which
are discussed in a later section. Directed arcs indicate
direct probabilistic dependencies. In the Hidden Rela-
tional Model (HRM), for each entity a latent variable
is introduced, in the example denoted as Zu and Zm.
They can be thought of as unknown attributes of the
entities and are the parents of both entity attributes
and relationship attributes. The underlying assump-
tion is that if the states of the latent variables were
known, both attributes and the relational attribute R
can be well predicted.

For the sake of clarity figure 1 omits the parameters
and priors, but we will shortly describe them in the fol-
lowing (note that many alternative parameterizations
are also possible). Assume that Zu has Ku states, and
that πu = (πu

1 , . . . , πu
Ku) are multinomial parameters

with P (Zu = k) = πu
k (πu

k ≥ 0,
∑

k πu
k = 1). The

multinomial parameters are drawn from a Dirichlet
prior with πu ∼ Dir(·|αu

0/Ku, . . . , αu
0/Ku). In the ex-

periments all user attributes are assumed to be discrete
and independent given Zu. Thus a particular user at-
tribute Au with S states is a sample from a multino-
mial distribution with P (Au = s|Zu = k) = θu

s,k and

(θu
1,k, . . . , θu

S,k) ∼ Gu
0 = Dir(·|βu∗

1 , . . . , βu∗
S ).

It is also convenient to re-parameterize the Dirich-
let parameters as βu

0 =
∑S

s=1 βu∗
s , βu

s = βu∗
s /βu

0 for
s = 1, . . . , S, and βu = (βu

1 , . . . , βu
S). In the applica-

tion, we assume a neutral prior with βu
s = 1/S, which

represents our prior belief that the multinomial pa-
rameters should be equal. βu

0 is a parameter indicat-
ing how strongly we believe that the prior distribution
should be true. Similarly we can define the parame-
ters for the Movie class and the relationship class Like.
Note, that for the relationship attribute R, Ku ×Km

parameter vectors φ are generated.

2.2. Infinite Hidden Relational Models

The latent variables can be interpreted as cluster as-
signments where the number of their states correspond
to the number of clusters, which is typically unknown
in advance. It thus makes sense to allow an arbitrary
number of latent states by using a Dirichlet process
mixture model. This permits the model to decide it-
self about the optimal number of clusters. For our dis-
cussion it is sufficient to say that we obtain an IHRM
model by simply letting the number of states, Ku and
Km, approach infinity. Although a model with infinite
numbers of states and parameters cannot be repre-
sented, it has been shown that sampling in such model
is elegant and simple. A single parameter α0 is known
to determine the tendency to either use a large or small
number of states in the latent variables. Learning and
inference in the IHRM is based on a Gibbs sampler us-
ing the Chinese Restaurant Process. For more details,
please consult (Xu et al., 2006; Kemp et al., 2006).

3. Integrating Ontological Prior
Knowledge into the IHRM

The lower part of figure 1 shows the inclusion of an
imaginary movie ontology with boolean concept vari-
ables Bk. Let par(Bk) denote the set of parent con-
cepts of Bk. Also let par(Bk) = 1 stand for the
fact that all parents of Bk have state equal to 1 and
par(Bk) 6= 1 indicate that at least one of the parents
is in state equal to 0.

In databases, annotation of an item with respect to a
given attribute is typically as specific as possible. GO
annotations (Gene Ontology Consortium, 2006) for ex-
ample refer to the most specific biological processes
a gene participates in, since the ontological structure
provides implicit annotation with all parent concepts.
Making those explicit is what we call ontological en-
hancement of the data. A simple preprocessing of the
data ensures that

∀Bk : Bk = 1 ⇒ par(Bk) = 1.

This enriched feature representation reflects the full
information from the ontology.

In the following we present two approaches that dif-
fer in the way, dependencies among the ontological
concepts are handled in the model. In our first ap-
proach we simply treat all ontological concepts as ad-
ditional independent attributes of the corresponding
entity as depicted in figure 1(a). We assume that
P (Bk = 1|Zm = l) = ξk,l, P (Bk = 0|Zm = l) = 1−ξk,l
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(a) (b)

Figure 1. The IHRM model for the recommendation example integrating a hypothetical movie ontology.

and thus the dependencies can be modeled as

P ({Bk}|Zm = l) =
∏

k|Bk=1

ξk,l

∏
k|Bk=0

(1− ξk,l).

Treating concepts as independent ignores the con-
straints that our ontological enhancement imposed
on the attributes. Our second approach takes these
constraints into account by defining that P (Bk =
1|par(Bk) 6= 1, Zm = l) = 0. Now we have that
P (Bk = 1|par(Bk) = 1, Zm = l) = ξk,l, P (Bk =
0|par(Bk) = 1, Zm = l) = 1 − ξk,l and the proba-
bility for a concept pattern breaking the ontological
constraint is equal to zero. The resulting dependency
structure is shown in figure 1(b). Now we have

P ({Bk}|Zm = l) =∏
k|Bk=1,par(Bk)=1

ξk,l

∏
k|Bk=0,par(Bk)=1

(1− ξk,l).

Note, that the only difference is that if the ontological
constraints are obeyed, the ontological concepts whose
parent concepts are not all equal to one drop out of
the equations.

4. Experiments on Genomic Data

For the experiments we used 1000 genes from
the Comprehensive Yeast Genome Database
(CYGD) (Guldener et al., 2005). The genes were
randomly selected out of the set of all genes/proteins
having known interactions in the Database of Inter-
acting Proteins (DIP) (Xenarios et al., 2000) and at
least one known annotation for the complex feature.
Additional features included chromosome, structural
class, phenotype and function. Interaction is treated
as the binary relational attribute linking pairs of
genes.

4.1. Ontological information

The complex annotation scheme is an ontologically or-
ganized set of attributes refering to molecular com-
plexes a protein may form with others to perform cer-
tain higher order tasks. It is hierarchically structured
from quite general complexes to more specific ones on
5 levels. The top level comprises 69 different concepts.
Annotations of this feature are very sparse, so we chose
our data set in a way, that every protein has at least
1 complex annotation.

4.2. Clustering

The beneficial effect of the ontological enhancement
becomes apparent in the clustering of the genes.
By enriching the information some drawbacks of the
Dirichlet process mixture model can be diminished.
In all our IHRM experiments without ontological in-
formation we observed the formation of one single ex-
traordinarily big cluster, which obviously collects all
data points which are too similar to be separated. Ad-
ditionally there appear many singleton clusters con-
taining a single element which may be too different
from the rest to be assigned to any populated clus-
ter. When using the ontological information during
clustering, the size of the huge cluster reduces signifi-
cantly, distributing the genes to other existing clusters
and all singeltons disappear. The ontology thus helps
to assign the items to suitable clusters.

4.3. Predictive Performance

To investigate the effects of the improved clustering we
evaluated the IHRM’s performance in predicting the
function attribute from the remaining features. We
conducted 5-fold cross-validation and plotted the av-
eraged ROC-curves to visualize classifier performance.
ROC-curves were averaged vertically, which gives rise
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Figure 2. ROC curves visualizing classification performance.

to confidence intervals at fixed classification thresh-
olds.

At first we investigated the benefits of the complex
ontology assuming independent ontological concepts,
given the state of the latent variable. Model learn-
ing was performed twice and differed in the usage of
the complex attribute in the following way. First, we
only used the complex annotations corresponding to
the lowest (i.e. most specific) class in the ontology ne-
glecting the ontological information about the parents.
In contrast, for the second run we added to each as-
signed complex feature the annotations for all parents
of that feature and their parents, respectively. By the
ontological enhancement, the features got more expres-
sive and therefore more helpful for clustering. Note,
that we did not take dependencies among the concepts
into account, yet and handled every feature indepen-
dently. The results of the two experiments can be seen
in figure 2 (a). The classifier, using ontological infor-
mation clearly outperforms the other in the critical re-
gion near the upper left corner. The error bars denote
95% confidence intervals at selected thresholds.

The next experiment examined, how modeling of the
dependencies within the ontological concepts affects
prediction. An experiment with the same setting was
performed, but dependencies between the ontological
concepts were explicitely modeled as described in sec-
tion 3. In this experiment, however, we couldn’t see an
improvement over the independent concepts. In Fig-
ure 2 (b) it is made clear, that the two classifiers show
no mentionable difference. We suspect, that this is
due to the extreme sparsity of the complex attribute,
which prevents the dependency modeling to have a
wide effect.

Additional experiments, where we let α range from
1 to 100 proved the final clustering to be quite sta-

ble. The insensitivity to variations of this parameter,
which controls the number of clusters, indicates that
the model is robust when there is a true underlying
cluster structure that can be discovered.

5. Conclusions

We have developed a concept for integrating domain
ontologies as prior knowledge into relational machine
learning. Using a genomic data set we have shown that
the integration of the ontology has lead to more mean-
ingful clustering structures and to better predictive
performance. We expect that a growing number of do-
main ontologies will be developed in the future and it
seems quite useful to integrate them in machine learn-
ing problems. A current area of interest concerns the
integration of medical ontologies into learning-based
medical decision support systems.
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