
Learning Representations for Discrete Sensor Networks using Tensor
Decompositions

Stephan Baier1, Denis Krompass2 and Volker Tresp3

Abstract— With the rising number of sensing devices installed
in today’s and future sensor networks, there is an increasing
demand for machine learning solutions performing tasks like
automatic behavior detection and decision making. In particu-
lar, to classify the state of the complete sensor network, machine
learning models are needed, which are capable of fusing the
information from multiple sensors. In this paper we examine
the use of tensor models to describe the relationship between
multiple discrete sensor outputs and attendant class labels
describing the overall system state. Tensor decompositions can
be considered as a form of representation learning and they
have been used for a variety of tasks, e.g. knowledge graph
modeling and EEG data analysis. We propose a new approach
for multiclass classification using tensor decompositions. As the
dimensions of the tensors used in the multi-sensor classification
are much higher than in traditional tasks, not all standard
decomposition approaches are applicable due to scaling prob-
lems. In our experiments on real data, we show that the
PARAFAC and Tensor Train decompositions work well for
discrete multi-sensor fusion tasks and outperform other state-
of-the-art machine learning algorithms.

I. INTRODUCTION

Due to the growing number of sensing devices in many
application areas, the study and the modeling of large sensor
networks have received increasing attention. To make sense
of the collected information, novel machine learning models
are needed, which are able to detect and predict a system’s
behavior. These models need to fuse and filter relevant
information from a variety of sensing devices to obtain high
quality classification results [1][2].

Representation learning, also referred to embedding learn-
ing, is a key concept in many modern machine learning
applications including natural language processing, computer
vision and relational learning [3], [4], [5]. The goal is to learn
a vector representation of fixed length for every entity, where
similar entities get similar representations. Those expressive
representations are then the basis for tasks like classification,
clustering or outlier-detection.

Tensor decompositions, which are a generalization of
matrix factorizations, can be considered as a form of rep-
resentation learning. They have been used successfully for
modeling large semantic knowledge graphs [4]. Another
application area of tensor decompositions is the analysis of
factors in multi-channel time series like EEG data [6].

1 Stephan Baier, Ludwig Maximilian University of Munich, Oettingenstr.
67, 80538 Munich stephan.baier@campus.lmu.de

2Denis Krompass, Siemens AG, Otto-Hahn-Ring 6, 81739 Munich
denis.krompass@siemens.com

3Volker Tresp, Siemens AG, Otto-Hahn-Ring 6, 81739 Munich and
Ludwig Maximilian University of Munich, Oettingenstr. 67, 80538 Munich
volker.tresp@siemens.com

In this paper we propose a new modeling approach for
sensor networks with discrete sensor measurements. The
models learn a representation for each possible value of
each sensor and fuse these representations for classifying
the current behavioral state of the whole sensor network.

To perform multiclass classification tasks, the data is
mapped to multiple class tensors which are decomposed us-
ing standard factorization techniques. The approximations of
the class tensors are then combined by a softmax function. To
enforce representations that are suitable for the classification
task, the tensor decompositions are directly learned end-to-
end, using multinomial classification labels of the training
data. The number of free parameters is reduced by sharing
the representations between the decompositions of the class
tensors.

In typical machine learning applications where tensor
models are used, the number of dimensions is relatively
low, typically three or four [7], [4]. Our proposed method
uses tensors with a rather large number of dimensions: More
specifically, the number of dimensions is as large as the
number of sensors in the network. However, the tensor is
extremely sparse as only entries describing settings from
the training data are non-zero. Many tensor decomposition
approaches do not scale to large dimensions. Exceptions are
the standard PARAFAC decomposition [8] and the recently
proposed Tensor Train decomposition [9], which are thus
both applicable to high-dimensional domains, e.g. to data
fusion in large systems.

The novel contributions of this paper are, first, the model-
ing of discrete sensor inputs using a high dimensional tensor
representation as opposed to a single feature vector, and,
second, a novel approach for doing multiclass classification
using tensor factorization techniques. In our experiments, we
use board configurations from the game connect-4 to simu-
late a sensor network with discrete sensor values. The task
is to classify the most probable outcome of the game given
a certain board configuration. The problem is transferable
to classifying the system state of a sensor network with 42
sensors and 342 possible combinations of sensor states.

The paper is organized as follows. In the next section we
give an overview of related work. Section III summarizes
the most important tensor decompositions. In Section IV
we show how representation learning using tensor decom-
positions can be used for multi-sensor fusion and propose a
framework for solving multiclass classification using tensor
decompositions. In Section V an empirical study shows the
effectiveness of the proposed method. We conclude our work
in Section VI.

II. RELATED WORK

Representation learning is used in many areas of machine
learning. In particular, representation learning using matrix
factorizations has become popular due to its success in
the Netflix challenge [10]. In natural language processing,
word embeddings are used for automatic machine translation,
knowledge extraction, clustering, etc. [3], [11], [12]. Large
knowledge bases like Yago or DBPedia have been modeled
using latent embedding models like the tensor decomposition
RESCAL [4] or Google’s Knowledge Vault model [12][13].
Representation learning is also used in state-of-the-art com-
puter vision applications like Facebook’s DeepFace [5] for
similarity search in face images. Tensor decompositions are
a great way to learn representations of entities, which are
involved in relationships of higher orders. An overview of
tensor decompositions can be found in [7] and [14]. Latent
representations obtained by tensor decompositions are also
used for factor analysis in data mining [6], [8].

The Tensor Train decomposition [9] is a generalization of
the well known Tucker2 decomposition [15], [7]. It found
applications in physics and quantum chemistry for function
approximation [16], [17]. An application of Tensor Trains in
machine learning can be found in [18] where the memory
footprint of fully connected layers in a deep convolutional
neural network are significantly reduced by using a low rank
factorization. A similar approach has been taken in [19] using
the PARAFAC decomposition [8] for compressing weight
tensors in convolutional neural networks.

III. TENSOR DECOMPOSITIONS

Tensor decompositions are a generalization of low rank
matrix factorizations to higher order tensors. There are
multiple ways of decomposing a higher order tensor into
low rank tensors. In this section we present the basic variants
Canonical Decomposition and Tucker Decomposition as well
as the relatively new Tensor Train Decomposition, which
solves the scalability problem of the full Tucker Decompo-
sition.

In the following, scalars are represented by small letters
x, vectors are represented by bold small letters x and
matrices by capital letters X . Cursive capital letters X denote
higher order tensors. Furthermore, elements of a vector are
represented by indexing with a scalar x(i). Elements of a
matrix are denoted by indexing with a tuple of length two
X(i1, i2) and elements of a higher order tensor are denoted
by indexing with a tuple of length d̃ ∈ N as X (i1, ..., id̃)
accordingly.

A. Canonical Decomposition
A straight forward generalization of the matrix factoriza-

tion to higher dimensions is the canonical decomposition also
called PARAFAC. It decomposes a tensor X ∈ Rn1,n2,...,nd̃

into matrices Ad ∈ Rnd×r̃ for d ∈ {1, ..., d̃} and a core
vector g ∈ Rr̃ such that

X (i1, i2, ..., id̃) =

r̃∑
r=1

g(r) ·A1(i1, r) ·A2(i2, r)... ·Ad̃(id̃, r).

(1)

The rows of the matrices A1 to Ad̃ contain the represen-
tations for all entities in all dimensions. The length of the
representation vectors is r̃, which is equal for all dimensions.
The vector g can be interpreted as a weight vector fusing the
representations.

B. Tucker Decomposition

In the Tucker decomposition all interactions between the
latent dimensions are modeled in a core tensor G ∈ Rr̃1,...,r̃d̃ .
The Tucker decomposition is defined as

X (i1, i2, ..., id̃) =

r̃1∑
r1

...

r̃d̃∑
rd̃

G(r1, ..., rd̃) ·A1(i1, r1)

·A2(i2, r2)... ·Ad̃(id̃, rd̃).

(2)

The matrices A1 to Ad̃ contain representations for the
indexed entities similar to the PARAFAC decomposition.
However, the fusion of the multiple representations is more
powerful as each possible combination of factors is weighted
differently by an element of the core tensor G. Note that
PARAFAC is a special case of the Tucker decomposition,
where the core tensor is diagonal. For higher order ten-
sors the core tensor in the Tucker decomposition quickly
explodes, as the number of elements in the core tensor grows
exponentially with the number of dimensions.

C. Tensor Train Decomposition

Due to the limitations on scalability of the Tucker decom-
position, the Tensor Train decomposition for higher order
tensors has been proposed. Tensor Trains consist of multiple
low rank tensors in a row, each with a fixed order of three,
such that the number of elements does not grow exponen-
tially with the dimensions. The tensor train decomposition is
defined as

X (i1, i2, ..., id̃) =

r̃0∑
r0=1

...

r̃d̃∑
rd̃=1

A1(r0, i1, r1) · A2(r1, i2, r2)

... · Ad̃(rd̃−1, id̃, rd̃),
(3)

where Ad ∈ Rr̃d−1,nd,r̃d for d ∈ {1, ..., d̃} and r̃0 = r̃d̃ = 1
so that A1 and Ad̃ are in fact matrices as the third dimension
has only length one and A2, ...,Ad̃−1 are tensors of order 3.
To reduce the number of hyperparameters, the length of the
representations r̃1 to r̃d̃−1 are assumed equal in our paper.

If the factorized tensor X has only three dimensions, this
decomposition is similar to the earlier proposed Tucker-2
model [7]. Note that in the Tensor Train decomposition the
representations for the dimensions are not vectors but matri-
ces. Thus every entity is represented by a latent matrix, which
controls the interaction with the neighboring entities. Only
entities of the first and last dimensions are represented by
vectors as in the PARAFAC and the Tucker decompositions
mentioned before.

g(1)

A1 A2 AS

A1 A2 AS

g(2)

v2

vS
v1

v2

vS
v1

σ

σ(Φ1)

σ(Φ2)

σ(Φ3)

P(yv1, ..., vS
 = 3 | (v1, ..., vS), Θ)

P(yv1, ..., vS
= 1 | (v 1, ..., vS), Θ)

P(yv1, ..., vS
 = 2 | (v1, ..., vS), Θ)

Y1

Y2

Y3

(v1, ..., vS)

≈

≈

≈
A1 A2 AS

g(3)

v2

vS
v1

...

...

...

Fig. 1. Multinomial classification model using PARAFAC decomposition. The tensors are plotted three dimensional for illustrative reasons, however
in reality their dimensionality is determined by the number of sensors in the network. The three class tensors Yc are decomposed into the embedding
matrices A1 to AS . σ denotes the softmax function such that the output can be interpreted as probabilities for each class. Θ denotes all parameters of the
decomposition.

D. Low Rank Approximation

Tensors can be approximated by a reconstruction based on
a factorization with limited rank. If the tensor is sparse, i.e.
most entries are zero, only the non-zero elements have to
be stored. The tensor can still be decomposed using either
sparse linear algebra or batch training where only a small
amount of zero entries is sampled for each batch [4], [20],
[21]. Using low ranks, the decompositions are much smaller
in the number of dimension than the full tensor and can thus
be stored more easily in memory. Also, single entities of
the approximate tensor can be computed, without having to
compute the full approximate tensor. This way one can deal
with very large tensors as long as their entries are sparse. In
this paper we make use of this property.

IV. TENSOR MODELS FOR SENSOR FUSION

In this chapter we formulate the problem of discrete multi-
sensor fusion for multiclass classification as a tensor decom-
position problem and show how the model can be trained
using a maximum likelihood approach. Figure 1 shows the
model schematically when using a PARAFAC decomposition
and Figure 2 when using Tensor Train decomposition.

A. Discrete Multi Sensor Fusion

We consider the scenario of multiple sensors where S ∈ N
is the amount of sensors in a sensor network. The i-th sensor
for i ∈ {1, ..., S} measures one out of Fi ∈ N discrete
sensor values. Additionally we consider a class label y,
which describes the state of the whole system, e.g. normal,
incident, shut down. The training data consists of tuples
(v1, ..., vS) with vi ∈ {1, ..., Fi}, which describe the discrete
measurements of all sensors at a certain point in time, and
the attendant class labels yv1,...,vS for the respective system
state.

All training examples belonging to the same class are
mapped to a sparse tensor Yc ∈ RF1,...,FS for c ∈ {1, ..., C}
where C ∈ N describes the number of classes. The tensors
Yc are filled as

Yc(v1, ..., vS) = Π(yv1,...,vS = c), (4)

where the indicator function Π(x) is one if the statement
x is true and zero otherwise. Thus, in the class tensors
all positions indexed by the training tuples are set to one,
other positions are set to zero. The dimensions of the class
tensors Yc with order S represent the multiple sensors in
the network. The elements along each dimension describe
the discrete values of the respective sensor. This way every
sensor can take a different set of possible values, which is
necessary for modeling various types of sensors within the
same sensor network.

B. Multinomial Logistic Regression

We assume a categorical distribution for the class label
y. The class label yv1,...,vS which is associated with the
sensor measurements described by the indexes (v1, ..., vs)
is modeled as

yv1,...,vS ∼ Cat
(

[σ(Φ1(v1, ..., vS)), ..., σ(ΦC(v1, ..., vS))]
)
,

(5)
where Cat stands for the categorical distribution, parame-
terized by a vector of probabilities, Φc denotes a low rank
tensor approximation of Yc and σ is the softmax function,
which is defined as

σ(Φc(v1, ..., vS)) =
eΦc(v1,...,vS)∑C
k e

Φk(v1,...,vS)
. (6)

The softmax function normalizes the values across the low
rank approximations such that

∑C
c=1 σ(Φc(v1, ..., vS)) = 1.

σ
A1 A2 AS

σ(Φ1)

σ(Φ2)

σ(Φ3)

v2

vS
v1

P(yv1, ..., vS
 = 3 | (v1, ..., vS), Θ)

P(yv1, ..., vS
= 1 | (v 1, ..., vS), Θ)

P(yv1, ..., vS
 = 2 | (v1, ..., vS), Θ)

A1 A2 AS

v2

vS
v1

A1 A2 AS

v2

vS
v1

(1) (1) (1)

(2) (2) (2)

(3) (3) (3)

Y1

Y2

Y3

(v1, ..., vS)

≈

≈

≈

...

...

...

Fig. 2. Multinomial classification model with three classes using Tensor Train decomposition. The order of the tensors is S, but drawn three dimensional.
The three rows correspond to the number of classes. The three class tensors Yc are decomposed into the core tensors A1 to AS . σ denotes the softmax
function such that the output can be interpreted as probabilities for each class. Θ denotes all parameters of the decomposition.

This makes the values interpretable as probabilities for the
categorical distribution, i.e.

σ(Φc(v1, ..., vS)) = P (yv1,...,vS = c | (v1, ..., vS); Θ), (7)

where Θ are all parameters of the decomposition. The
categorical cross-entropy loss function, which corresponds to
the negative log-likelihood for the categorical distribution, is
defined as

l = −
N∑
i=1

C∑
c=1

Π(yvi
1,...,v

i
S

= c) log σ(Φc(v
i
1, ..., v

i
S)), (8)

where i ∈ {1, ..., N} denotes the i-th training example. The
negative log-likelihood can be minimized using stochastic
gradient descent. Note, that the iteration only goes over the
entries in the training set and not over all positions in the
tensors, i.e. the sparsity of the tensors is exploited. All tensor
decompositions are learned jointly end-to-end. Thus, optimal
representations for the multinomial classification task are
learned. It would also be possible to use a separate cost
function for the decomposition of each class tensor and
normalize the outcomes only for the predictions in order
to obtain probabilities. Efficient closed form solutions exist
for all common tensor factorizations, when using a squared
error cost function. However, the assumption of a Gaussian
distribution, implied by a squared error, for each tensor
element is not very natural for the classification task we are
considering, as opposed to the categorical distribution we are
using. It also has been found for other representation learning
methods, that learning the decompositions directly end-to-
end for the respective task yields a significant performance
gain [20], [22], [23].

During training the weights of the tensor decompositions
are learned in a way that they are optimal for the multi-
class classification. When predicting a class label for a
new sensor setting (v1, ..., vS), which is not included in the
training set, the representations for that tuple are indexed and
the approximations Φ1 to ΦC are computed. Applying the

softmax function one obtains the class probabilities for that
new sensor setting.

C. Learning Representations

The approximation Φc to the class tensors Yc can be ob-
tained by any of the tensor decompositions stated in equation
1 to 3 using low ranks for the decompositions. To reduce the
number of parameters, representations can be shared between
the decompositions of the multiple class tensors. Using
the PARAFAC model one can leave only the core vector
g independent for each class and share all representation
matrices A1 to AS . The same is possible for the Tucker
model where all representations can be shared except for the
core tensor G. For the Tensor Train model this sharing is not
possible, as there is no clear distinction between embedding
and fusion components in the factorization. Note that for
Tensor Trains, there is an ordering in the dimensions, which
interact with each other as next neighbors. As the dimensions
in Yc represent the sensors in the sensor network, it makes
sense to use a neighboring order of the sensors.

By the factorization approach, latent representations are
learned for all possible values of all sensors. The multiplica-
tive fusion of these representations enables the modeling of
complex sensor interactions. By using low rank decompo-
sitions the model learns to generalize, such that predictions
can also be performed for new positions in the tensor, which
have not been included in the training data.

V. EXPERIMENTS

In this section we evaluate our method for the task of
multi-sensor classification and compare the results against
state-of-the-art machine learning algorithms.

A. Dataset

We perform our experiments on a dataset from the game
connect-4 from [24] which is transferable to a multi-sensor
classification scenario. Consider a game board of size 6× 7
where sensors report the occupancy at every position of

TABLE I
ACCURACY AND STANDARD DEVIATION FOR THE CONNECT-4 DATASET

Method Accuracy
Random Baseline 0.3339 ± 0.0038
Decision Tree 0.7575 ± 0.0036
Logistic Regression 0.7573 ± 0.0021
PCA Logistic Regression 0.7572 ± 0.0022
Support Vector Machine 0.7720 ± 0.0020
Tensor-Fusion with PARAFAC 0.8182 ± 0.0036
Tensor-Fusion with Tensor Train ordered 0.8311 ± 0.0032
Tensor-Fusion with Tensor Train unordered 0.7763 ± 0.0039

the board. The possible values are player1 if a token of
player one is placed, player2 if a token of player two is
placed and blank if the field is not occupied. This setting
leads to 342 possible board configurations. However, not all
configurations appear in practice, as the game ends as soon
as one player has four tokens in a row and the game board
can only be filled column-wise from bottom to top. For each
setting in the game there is a class label which is the game
theoretical outcome of the game for the first player. The class
label can be either win, loss or draw.

When transferring the game setting to an industrial sensor
network it would refer to a network with 42 sensors each
reporting discrete values like temperature low, medium or
high or any discrete scale. The outcome of the game would
relate to the system’s overall state which is going to be
classified, e.g. normal, incident or shut down.

The whole dataset consists of 67557 game states, where
none of the player has won yet and the next move is not
forced.1 We split the dataset into 70 percent training and 30
percent test data. The goal is to classify the outcomes of
the game given a specific setting of the board, by using a
classification model that has been trained on the training set.
Within the training data we hold out 10 percent as validation
set to tune the hyperparameters of the models which are de-
scribed in the next section. The splits are randomly repeated
10 times. We report the mean classification accuracies of all
models along with their standard deviations.

B. Methods

We compare the classification results of our models against
state-of-the-art machine learning algorithms. The baseline
models are decision tree, logistic regression and support vec-
tor machine with a linear kernel. For these methods the board
setting was encoded in one long feature vector. A standard
factorization approach to this kind of data is to factorize the
matrix consisting of the feature vectors of the various training
examples. Therefore, we performed as a fourth baseline
model a Principal Component Analysis (PCA) on that matrix
and built a logistic regression model on the data projected to
the top principal components. The logistic regression models
were regularized using L2-regularization. The amount of
regularization and the penalty term for the support vector
machine were tuned on the validation set.

1https://archive.ics.uci.edu/ml/machine-learning-databases/connect-
4/connect-4.names

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12

A
cc

u
ra

cy

Rank

PARAFAC
Tensor Train

Fig. 3. Classification accuracy in dependency of the embedding rank.

For our method, which we refer to as tensor-fusion in
the following, we used the PARAFAC and the Tensor Train
decomposition. As the dataset has 42 dimensions, the full
Tucker decomposition is not tractable. For PARAFAC we
do the parameter sharing of the embedding matrices as
proposed in section IV-C. For the Tensor Train model we
once use a random ordering of the dimensions respectively
the sensors, and once a row-wise order. Other space filling
curves like z-ordering and Hilbert curve could also be useful
for obtaining a one dimensional ordering of the sensors,
however we found the row-wise order to perform best for
this dataset. The learning rate of stochastic gradient descent
and the initialization parameters of the tensor fusion model
were tuned on the validation set. For the baseline models the
implementations from the python package scikit-learn [25]
where used. For the implementation of the tensor models
we used the python package theano [26]. We initialized the
weights of the PARAFAC decomposition uniformly between
0.9 and 1.1 to yield numerical stable results. The core tensors
of the Tensor Train model where initialized with a stack of
identity matrices where Gaussian noise was added to each
element of the matrix. The noise was parameterized with a
standard deviation of 0.01 and mean zero. The entries of the
vector embeddings in the first and the last dimension of the
Tensor Train where initialized with a uniform distribution
between -0.05 and 0.05.

C. Results

Table V-A summarizes the results of the experiments.
It shows that our tensor-fusion models clearly outperform
the baseline algorithms. The tensor-fusion model with Ten-
sor Train decomposition and row-wise ordered dimensions
reaches the highest accuracy with 0.8311, followed by the
tensor-fusion model using PARAFAC decomposition with an
accuracy of 0.8182. The support vector machine, which is
the best baseline approach, reaches 0.7720. Our method used
with Tensor Train with a random order of the dimensions per-
forms about as good as the support vector machine (0.7763),
however this is much worse than the model with row-wise
orders. This might be due to the fact, that the similarities
between neighboring dimensions are explicitly modeled in

the Tensor Train decomposition and this might be useful for
the game connect-4 as the goal for every player is to build
sequences of 4 connected fields. For all decompositions, a
rank of 10 was found to be sufficient. Higher ranks did not
improve the classification results. Figure 3 shows the results
of the factorization models using different ranks. With the
rank of 10 it was also not necessary to introduce additional
parameter regularization. All baseline models performed best
with a one hot encoding of the categorical input features. Due
to the multiplicative interactions of latent representations, the
tensor-fusion models might be able to model more complex
interactions between sensors, if compared to linear models.
The PCA for the logistic regression model did not improve
the results. With a high number of principal components (top
80%) it performs as good as the regular logistic regression;
with fewer principal components the performance decreased.

VI. CONCLUSION

We have shown how tensor models can be used for
multinomial classification in sensor networks with discrete
sensor values. Using tensor decompositions, latent repre-
sentations for the outputs of all sensors are learned. By
representing the data in a high dimensional tensor the tensor
decompositions become applicable. To obtain a categorical
distribution over the class labels describing the overall sys-
tem state, multiple class tensors are built and decomposed.
Representations between the decompositions can be shared
for some decompositions. With our classification and training
method, any tensor decomposition can be used for multiclass
classification. However, not all decompositions scale to the
multi-sensor setting. Our method may also be interesting for
other domains, where classification tasks are performed given
many categorical input variables. Our experimental results
show the effectiveness of our method in comparison to state-
of-the-art machine learning algorithms, indicating the great
potential of tensor models for multi-sensor classification.
An important observation from the experiments is that the
order of the dimensions plays a critical role when using
Tensor Train decomposition. With a proper ordering, the
Tensor Train model yields excellent classification results. The
PARAFAC model turns out to be a good sensor fusion model
due to its ability to share representations across classes and
due to its good classification performance. In future work an
extension to continues inputs could be realized by explicitly
learning mapping functions such as radial basis functions.
Also an extension to distributed architectures is conceivable
by using distributed tensor factorization techniques.

REFERENCES

[1] M. Abu Alsheikh, S. Lin, D. Niyato, and H.-P. Tan, “Machine learning
in wireless sensor networks: Algorithms, strategies, and applications,”
Communications Surveys & Tutorials, IEEE, vol. 16, no. 4, pp. 1996–
2018, 2014.

[2] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network
survey,” Computer networks, vol. 52, no. 12, pp. 2292–2330, 2008.

[3] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[4] M. Nickel, V. Tresp, and H.-P. Kriegel, “A three-way model for
collective learning on multi-relational data,” in Proceedings of the 28th
international conference on machine learning (ICML-11), 2011, pp.
809–816.

[5] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing
the gap to human-level performance in face verification,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2014, pp. 1701–1708.

[6] M. Mørup, L. K. Hansen, C. S. Herrmann, J. Parnas, and S. M.
Arnfred, “Parallel factor analysis as an exploratory tool for wavelet
transformed event-related eeg,” NeuroImage, vol. 29, no. 3, pp. 938–
947, 2006.

[7] T. G. Kolda and B. W. Bader, “Tensor decompositions and applica-
tions,” SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[8] R. A. Harshman, “Foundations of the parafac procedure: Models and
conditions for an” explanatory” multi-modal factor analysis,” 1970.

[9] I. V. Oseledets, “Tensor-train decomposition,” SIAM Journal on Sci-
entific Computing, vol. 33, no. 5, pp. 2295–2317, 2011.

[10] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques
for recommender systems,” Computer, no. 8, pp. 30–37, 2009.

[11] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in ICLR, 2015.

[12] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy,
T. Strohmann, S. Sun, and W. Zhang, “Knowledge vault: A web-scale
approach to probabilistic knowledge fusion,” in Proceedings of the
20th ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM, 2014, pp. 601–610.

[13] M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich, “A review
of relational machine learning for knowledge graphs: From multi-
relational link prediction to automated knowledge graph construction,”
arXiv preprint arXiv:1503.00759, 2015.

[14] A. Cichocki, “Tensor networks for big data analytics and large-scale
optimization problems,” arXiv preprint arXiv:1407.3124, 2014.

[15] L. R. Tucker, “Some mathematical notes on three-mode factor analy-
sis,” Psychometrika, vol. 31, no. 3, pp. 279–311, 1966.

[16] S. V. Dolgov, B. N. Khoromskij, I. V. Oseledets, and D. V.
Savostyanov, “Computation of extreme eigenvalues in higher dimen-
sions using block tensor train format,” Computer Physics Communi-
cations, vol. 185, no. 4, pp. 1207–1216, 2014.

[17] T. Rohwedder and A. Uschmajew, “On local convergence of alternat-
ing schemes for optimization of convex problems in the tensor train
format,” SIAM Journal on Numerical Analysis, vol. 51, no. 2, pp.
1134–1162, 2013.

[18] A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov, “Tensorizing
neural networks,” in Advances in Neural Information Processing
Systems, 2015, pp. 442–450.

[19] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempitsky,
“Speeding-up convolutional neural networks using fine-tuned cp-
decomposition,” arXiv preprint arXiv:1412.6553, 2014.

[20] M. Nickel and V. Tresp, “Logistic tensor factorization for multi-
relational data,” arXiv preprint arXiv:1306.2084, 2013.

[21] D. Krompaß, S. Baier, and V. Tresp, “Type-constrained representation
learning in knowledge graphs,” in The Semantic Web-ISWC 2015.
Springer, 2015, pp. 640–655.

[22] C. Esteban, D. Schmidt, D. Krompaß, and V. Tresp, “Predicting
sequences of clinical events by using a personalized temporal latent
embedding model,” in Healthcare Informatics (ICHI), 2015 Interna-
tional Conference on. IEEE, 2015, pp. 130–139.

[23] C. Esteban, V. Tresp, Y. Yang, S. Baier, and D. Krompaß, “Predicting
the co-evolution of event and knowledge graphs,” arXiv preprint
arXiv:1512.06900, 2015.

[24] M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[26] Theano Development Team, “Theano: A Python framework
for fast computation of mathematical expressions,” arXiv e-
prints, vol. abs/1605.02688, May 2016. [Online]. Available:
http://arxiv.org/abs/1605.02688

