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Abstract

We consider sequential or online learning in dynamic neural regression models. By using
a state space representation for the neural network’s parameter evolution in time we obtain
approximations to the unknown posterior by either deriving posterior modes via the Fisher
scoring algorithm or by deriving approximate posterior means with the importance sampling
method. Furthermore, we replace the commonly used Gaussian noise assumption in the neural
regression model by a more ¤exible noise model based on the Studentt-density. Since the
t-density can be interpreted as being an in£nite mixture of Gaussians, hyperparameters such
as the degrees of freedom of thet-density can be learned from the data based on an online
EM-type algorithm. We show experimentally that our novel methods outperform state-of-the
art neural network online learning algorithms like the extended Kalman £lter method for both,
situations with standard Gaussian noise terms and situations with measurement outliers.

1 Introduction

Linear regression is a widely used technique for data analysis which dominates empirical data
modeling in various £elds. The reason for its popularity is that it is both conceptually and com-
putationally simple to identify a linear model. The most prominent de£ciency of the linear model
is its strong assumption about the true relationship in the data set: for data sets which do not con-
form well to a linear model, predictions based on a linear regression model may be completely
inaccurate. Many real-world systems and phenomena exhibit complexnonlinearcharacteristics
and cannot be treated satisfactorily using conventional linear models. This work focuses onneural
network regression modelswhich are able to extract general nonlinear relationships from empiri-
cal data. During the last decade, there has been a tremendously growing interest in using neural
networks as an alternative approach for empirical data modeling. In recent years neural computing
has proven a practical technology and has gained widespread acceptance with successful applica-
tions in many £elds. The objective of this work is to developsequentialor online learningmethods
for situations where the characteristics of the data-generation process undergo changes over time.
Sequential or online learning is of great interest in many applications where data sequences either
exhibit non-stationary behavior or are dif£cult and expensive to obtainbeforethe training process.
These include time-series forecasting, tracking and surveillance, signal and image processing,
communications, and fault detection. Sequential learning refers to situations where the learning
process occurs uninterrupted over the whole lifetime of the operation, which allows us to track
changing dynamics of the underlying process. We adopt aBayesian frameworkto sequential esti-
mation of neural network model parameters. A suitable way to online estimation of the probability
distribution of the neural network parameter vector over time is to use a state space formulation. In
this approach the network parameters are treated as hidden states which have to be estimated from
observed input-output data. Two sequential approximate Bayesian learning methods are derived
which turn out to be particularly promising. The £rst is based on a Gaussian approximation to the
posterior parameter distribution where centers and widths of the approximating Gaussian are de-
rived from posterior modes and curvatures of the parameter distribution and the second approach
derives parameter updates from a Gausssian approximation based on approximate posterior means
and covariances. A commonly used assumption in linear or neural regression models is that targets
are disturbed by independent additive Gaussian noise. The most common reason why researchers
depart from the Gaussian noise assumption is the presence of outliers. Dealing with outliers is
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of critical importance for online learning tasks. Here one is interested in avoiding inappropri-
ate parameter changes due to measurement outliers to maintain stable online learning capability.
State-of-the art online learning algorithms are known to be nonrobust against such outliers since
they are based on a Gaussian error assumption. We replace the Gaussian noise model by a more
¤exible noise model based on the Student-t-density. The degrees of freedom of thet-density can
be chosen such that as special cases either the Gaussian density or the Cauchy density are real-
ized. The latter is commonly used for deriving robust learning methods. The application of the
posterior mode approximation tot-distributed output errors leads to a robust sequential learning
algorithm where the hyperparameters of thet-density can be determined from the data with an
online EM-type algorithm.

The paper is organized as follows. In the next Section 2 we provide a brief introduction to
the neural network methodology in the context of regression models. For simplicity, we assume
that a set of batch data is given such that the neural network parameter vectors can be estimated
with the maximum likelihood method. In Section 3 we develop sequential learning algorithms
for Gaussian measurement noise terms (3.1) andt-distributed error terms (3.2). In the last two
sections (Section 4 and Section 5) we present experiments and conlusions, respectively.

2 Neural Regression Models

Let us assume we have given atraining datasetD = {ut, yt}T
t=1 whereut = (u1,t, . . . , uk,t)>

∈ IRk is thet-th k-dimensional (independent) input vector andyt ∈ IR is thet-th single valued
dependent output variable.1 > denotes the transpose operator. Alinear regression modelhypothe-
sizes that the dependent variabley can be modeled as the outcome of an underlying deterministic
linear relationship between the independent variableu and the outputy, corrupted by additive
noise termsε

y =
k∑

i=1

wiui + w0 + ε. (1)

Hereby, ε denotes zero-mean uncorrelated Gaussian noise with known varianceσ2
ε , i.e. ε ∼

N (0, σ2
ε ).

2 w = (w0, w1, . . . , wk)> ∈ IRk+1 denotes the vector of parameter values in the model.
The application of themaximum likelihood methodleads to the optimization problem

wML = arg min
w

E(w) = arg min
w

T∑
t=1

(
yt −

k∑
i=1

wiui,t − w0

)2
(2)

which can be conveniently solved with a pseudo-inverse (Rao and Mitras 1971). The linear model
is one of the most popular models used for learning relationships between continuous variables.
The reason for its popularity is that it is both conceptually and computationally simple to learn a
linear model and the resulting model is easily given an intuitive representation. The most promi-
nent de£ciency of the linear model is its strong assumption about the true relationship in the data
set. For data sets which do not conform well to a linear model, predictions may be completely

1For notational convenience, we restrict ourselves to one-dimensional outputs.
2In the following,N (z|µ, σ2) is the abbreviation for a Gaussian density with meanµ and varianceσ2, evaluated at

z ∈ IR. We useε ∼ N (µ, σ2) without argumentz to distinguish a Gaussian density from its distribution.
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inaccurate. Many real-world systems and phenomena exhibit complexnonlinearcharacteristics
and cannot be treated satisfactorily using conventional linear models. Therefore, it would be of
great interest to have a broader class of models capable of handling more complex relationships
than linear models provide. There are in fact many different ways in which to extract general non-
linear dependencies from data. Here, the focus is onneural networksfor representing nonlinear
mappings between multi-dimensional real-valued spaces. It is a mere half-century since the pub-
lication of arguably the £rst paper on neural network modeling by McCulloch and Pitts (1943).
The early motivation originated in deriving simple mathematical models of nervous activity. This
motivation was extended during the 1950’s and 60’s from cognitive scientists to constructing sim-
pli£ed models of the human brain. The human brain very quickly achieves complex tasks because
of a vast number of neurons, complex interneuron connections, and the massively parallel way in
which many simple operations are carried out simultaneously. Research in cognitive science aims
at discovering and emulating the precise structure and mode of operation of the brain. Our moti-
vation for using neural networks, however, is to exploit, in nonneurological contexts, the potential
of simple computational units interlinked in an appropriate way, to learn models for complex non-
linear dependencies that are interesting from the viewpoint of arti£cial intelligence or useful in
engineering applications. For a general introduction to neural computation we suggest the book
by Bishop (1995).

The neural network most commonly used in engineering applications is themulti-layer per-
ceptron network(MLP) (Rumelhart et al. 1986; Bishop 1995). This network takes in a multivariate
input vectoru = (u1, . . . , uk)> ∈ IRk and computes one or more output values,y1, . . . , yq, per-
haps using some number of layers ofhidden units. In a typical network with one hidden layer and
a singleoutput unit, such as illustrated in Figure 1 (left), the output valuey might be computed as3

g : IRk → IR,

y = g(u; w) =
h∑

i=1

wibi(u) + w0

=
h∑

i=1

wi tanh
( k∑

j=1

wijuj + wi0

)
+ w0. (3)

Here,wij are theweightson the connection from input unitj to hidden uniti. Similarly, wi is
the weight on the connection from hidden uniti to the output unit. Thewi0 andw0 are thebiases
of the hidden units and the output unit, respectively. The output value is just a weighted sum of
h hidden unit values orbasis functionsbi(u), plus a bias. Each hidden uniti computes a similar
weighted sum of input values, and then passes it through a nonlinearactivation function. Here,
the activation function is the hyperbolic tangent, an anti-symmetric function of sigmoidal shape,
whose value is close to−1 for large negative arguments, zero for a zero argument, and close to+1
for large positive arguments. Figure 1 (right) displays the responsebi(u) of a hidden unit with a
hyperbolic tangent activation function to a bivariate input signalu = (u1, u2)>. The dashed line
shows the hyperplanewi1u1 + wi2u2 = wi0 for wi0 = 0.

A straightforward extension of the linear regression model (1) is theneural regression model

y = g(u; w) + ε (4)

3For notational convenience, we group the adjustable parameters{w0, w1, . . . , wh, w10, . . . , whk} of the MLP into
the parameter vectorw = {wi}i=1,...,h(k+2)+1 using a single index.
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Figure 1. Left: A multi-layer perceptron with one layer of three hidden units. The input units at the bottom take in a
bivariate input vectoru = (u1, u2)

>. The values of the hidden units are then computed, followed by the value of the
output unity. The value of a unit is a function of the weighted sum of values received from other units connected to it
via arrows. Each arrow is assigned a single weight which is determined by the learning procedure.Right: Response
of a hidden unit basis functionbi(u) to a two-dimensional input vectoru = (u1, u2)

>. The dashed line indicates the
hyperplanewi1u1 + wi2u2 = 0 with wi1 = 1 andwi2 = −1.

where the nonlinear regression functiong : IRk → IR is implemented using the multi-layer percep-
tron network (3) with weight vectorw ∈ IRh(k+2)+1. The weight vectorw in the neural network
can be determined based on the training data setD by applying the maximum likelihood principle
yielding to the optimization problem

wML = arg min
w

E(w) = arg min
w

T∑
t=1

(
yt − g(ut; w)

)2
. (5)

E(w) is the commonly applied cost function to compute regression estimates in a neural network
context. Unlike in the linear regression case, the optimal parameter vectorwML cannot be de-
termined with the methods of linear algebra anymore. Finding the appropriate weight vector is
now a nonlinear optimization problem, which is commonly solved using some gradient-based op-
timization method. Such methods take advantage of the gradients of the error functionE which
can be calculated bybackpropagation(Werbos 1974; Rumelhart et al. 1986). Backpropagation4

is an ef£cient method for calculating the gradients∂E/∂wi, ∂E/∂wij of the error function with
respect to all adjustable network weights and biases in one forward and backward pass through
the network. For the multi-layer perceptron architecture given in (3) and the sum of squares error
function (5) the backpropagation algorithm is derived in the Appendix. The gradient informa-
tion calculated by backpropagation is used to compute the adjustments to be made to the network
parameters with an iterative optimization method. The simplest such technique, and the one origi-
nally considered by Rumelhart et al. (1986), involvesgradient descentand is given by the iterative

4Backpropagation can be traced back to Werbos, but only found widespread use after it was independently discov-
ered by Rumelhart and co-workers in 1986.



2 Neural Regression Models 5

update rule

wnew = wold − η
∂E

∂w
= (6)

wold + η

T∑
t=1

∂g

∂w

(
yt − g(ut; w)

)
(7)

where thestepsize parameterη is typically a small positive real number. (6) is applied itera-
tively until some convergence criterion is satis£ed, e.g. such as that the norm of the error gradient
∂E/∂w is within some speci£ed tolerance of zero forw = wnew. The problem of minimizing
continuous, differentiable functions of many variables, however, is one which has been exten-
sively studied, and many of the conventional approaches to this problem are directly applicable
to the training of neural networks. Therefore, details about sophisticated higher order methods,
for instance, the family of Quasi-Newton methods, are not provided and the reader is referred to
some of the textbooks which cover standard nonlinear optimization techniques, for instance, the
textbook by Gill et al. (1981).

An important aspect that makes neural networks interesting for practical applications is the fact
that they areuniversal approximators. Even the relatively simple multi-layer perceptron network
as de£ned in (3) is capable of approximating arbitrarily well any nonlinear functional continuous
relationship from one £nite-dimensional space to another, provided the number of hidden neurons
h is suf£ciently large (Cybenko 1989; Hornik 1991). The ability of neural networks to approx-
imate arbitrary nonlinear functional mappings, however, is not extraordinary. Polynomials and
Fourier series, for instance, also obey this universal approximation ability. The importance of
neural networks lies in the way in which they deal with the problem of scaling with dimensional-
ity. Jones (1992) and Barron (1993, 1994) have studied the way in which the sum of squares error
E decreases for an interesting class of functions as the number of weights in the model increases.
For the multi-layer perceptron (3) they showed that this error falls asO(1/h) whereh is the num-
ber of hidden units in the network. This is a remarkable result since the error is independent of the
input-dimension. By contrast, the error only decreases asO(1/h2/k), wherek is the dimension-
ality of the input space, for polynomials or any other series expansion where the coef£cients of
linear combinations of £xed basis functions are adapted. The approximation accuracy is also de-
termined by the complexity of the underlying function which gives rise to the numberh of hidden
units in the network. Barron (1994) has also shown that the number of hidden units only needs to
grow as the complexity of the problem itself grows, and not simply as the dimensionality grows.
Practical experience shows that the number of free parameters in a multi-layer perceptron, for a
given number of hidden units, typically only grows linearly or quadratically, with the dimension-
ality of the input space, as compared tokh growth for a generalh-order polynomial (Tresp 1995).
Hence, multi-layer perceptrons overcome Bellman’s “curse of dimensionality”.

Neural networks offer a dramatic advantage for nonlinear function approximation in multi-
dimensional spaces. The key point that makes this difference is that — in contrast to standard
universal approximation techniques — the shape of each single basis function in the neural net-
work can be determined in an optimal way by adapting the connections from the input to the hidden
units. When using conventional function approximators like polynomials, the basis functions are
predetermined and £xed. The price we have to pay for this ef£cient scaling with dimensionality is
that we face a nonlinear optimization problem that is computationally intensive.
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3 Dynamic Neural Regression Models

The traditional way tosequentialor onlineestimation of neural network models is to applyonline
backpropagation(Rumelhart et al. 1986). In online backpropagation one computes a single gradi-
ent step in the error each time a new data pattern arrives to update the neural network weight vector
sequentially. Although known for more than a decade now, online backpropagation may still be
considered as the de facto state-of-the art neural network training method for online environments.
In the last section neural network weight vectors were treated as unknown £xed constants. In the
maximum likelihood framework described there, the goal was to £nd the single most likely value
for the parameters given the observed data. For online learning purposes, however, it is convenient
to employ asequential Bayesian approachwhere the neural network weightsw are treated as
random variables. To account for changing dynamics in the underlying data-generation process
we assume the weight vectorw to be time-variant, i.e.w = wt. We shall call a neural regression
model with time-variant weight vectors adynamic neural regression modelfollowing the termi-
nology “dynamic generalized linear model” used in the statistics literature (Fahrmeir and Tutz
1994).

We account for time-variant neural network weights by assuming that the parameter vector
at time t depends on the previous valuewt−1 and a stochastic componentεt. It is convenient
to employ a state space representation to model the neural network’s weight evolution in time.
The neural network weights are interpreted as time-varying hidden states, following a £rst order
random walk

wt = wt−1 + εt. (8)

The processεt may represent our uncertainty in how the neural network parameters evolve with
time. Assuming Gaussian distributed incrementsεt ∼ N (0,Qt) leads to the state transition
distribution

wt|wt−1 ∼ N (wt−1,Qt). (9)

The measurement equation describes the nonlinear relation between the input vectorut ∈ IRk and
the corresponding measurement outputyt ∈ IR

yt = g(ut; wt) + vt. (10)

The initial weight vector is normally distributed, i.e.w0 ∼ N (a0,Q0). w0 may be initialized
with the maximum likelihood regression estimate obtained from of¤ine adaptation of the network
if prior batch data is available. (10) implies the observation density

p(yt|ut, wt) = pvt

(
yt − g(ut; wt)

)
. (11)

Figure 2 shows a graphical representation of the above state space model in engineering block
form. With the state space formulation above the weight vectorswt are now considered as random
variables in a Bayesian context. Each time a new measurementyt and inputut arrives, our belief
about the distribution of the weight vectorwt can be updated using thestate prediction density

p(wt|Y t−1, U t−1) =
∫

p(wt|wt−1) p(wt−1|Y t−1, U t−1) dwt−1 (12)
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Figure 2. Dynamic neural regression model in engineering block form. Thez−1 block is a unit time delay. The non-
linearityg(.) is represented by a multi-layer perceptron neural network model. The covariance matrix of the Gaussian
disturbance termεt is Qt and the variance of the Gaussian measurement noisevt is σ2

vt
.

and the£ltering density

p(wt|Y t, U t) =
p(yt|ut, wt) p(wt|Y t−1, U t−1)∫

p(yt|ut, wt) p(wt|Y t−1, U t−1) dwt
(13)

whereY t = (y1, . . . , yt)> andU t = (u>
1 , . . . ,u>

t )> denote the sequence of inputs and mea-
surements up to timet. The £ltering densityp(wt|Y t, U t) constitutes the complete solution to
the sequential learning problem. Each time a new data tupel arrives the prior belief about the net-
work weights — compressed in the state prediction densityp(wt|Y t−1, U t−1) — is updated by
employing the information contained in the new data pattern(ut, yt). By computing the densities
recursively we do not have to keep track of the complete history of weight distributions. While for
the linear regression model (1) with Gaussian observation density

pvt

(
yt −

k∑
i=1

wiui,t − w0

)
= N

(
yt

∣∣∣ k∑
i=1

wiui,t + w0, σ
2
vt

)
(14)

the linear Kalman £lter algorithm may be used to evaluate (12) and (13) analytically, for the gen-
eral nonlinear caseg(ut; wt) involving either Gaussian or non-Gaussian observation densities
pvt(.), the above integrals are analytically intractable. This is why we need to resort to alterna-
tive approximateapproaches to obtain feasible methods. Some researchers have derived solutions
for the distributions of interest above by numerical integration methods. Kitagawa (1987) used
this method to replace the state prediction and £ltering integrals by £nite sums over a large set
of equally spaced grid points. Pole and West (1990) have attempted to reduce the problem of
choosing the grid’s location by implementing a dynamic grid allocation method. However, these
methods are very dif£cult to implement in high-dimensional neural network weight spaces. Com-
puting at every point in a dense multi-dimensional grid becomes prohibitively expensive in such
environments (Gilks et al. 1996). In view of the above shortcomings and limitations, we propose
two approximateBayesian methods which are based on Gaussian approximations to the poste-
rior. Gaussian approximations have the great advantage that we only have to propagate estimated
means and covariances as suf£cient statistics for the Gaussian state prediction and £ltering densi-
ties, rather than propagating a set of samples for representing these densities or using numerical
integration. In the £rst method (Section 3.1.1) we estimate the suf£cient statistics of the Gaussian
approximation by applying the Fisher scoring algorithm developed by Fahrmeir and Kaufmann
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(1991). The second method (Section 3.1.2) propagates Gaussian approximations where approxi-
mate means and covariances of the Gaussian densities are derived from Monte Carlo integration
implemented with importance sampling. For the £rst approach, we distinguish between the stan-
dard Gaussian noise assumption in the following Section 3.1 and a heavy-tailed noise model in
3.2, which is suitable for handling additive measurement outliers for robust online learning tasks.

3.1 Gaussian Measurement Noise

We start with the standard assumption of Gaussian distributed measurement noise termsvt ∼
N (0, σ2

vt
) resulting in the observation distribution

yt|ut, wt ∼ N (
g(ut; wt), σ2

vt

)
. (15)

The most popular advanced approach to sequentially estimating the weight sequence, i.e. to ap-
proximate the integrals above, is a Gaussian approximation to the state prediction and £ltering
density using theextended Kalman £lter algorithm. This method and the aforementioned online
backpropagation algorithm still represent the state-of-the art for sequentially adapting neural net-
works (Sum et al. 1999). One of the earliest implementations of extended Kalman £lter trained
neural networks is due to Singhal and Wu (1989). In their method, they used the state space for-
mulation (8) and (10) with the noise distribution (15) to update the weight sequence in accordance
with the following extended Kalman £lter equations.

Algorithm extended Kalman £lter based online learning

Initialization: w0|0 = a0, Σ0|0 = Q0

t = 1, 2, . . .

Predictor step:

wt|t−1 = wt−1|t−1 (16)

Σt|t−1 = Σt−1|t−1 + Qt (17)

Corrector step:

wt|t = wt|t−1 + Kt

(
yt − g(ut; wt|t−1)

)
(18)

Σt|t = Σt|t−1 − KtGtΣt|t−1 (19)

Kt = Σt|t−1G
>
t

(
GtΣt|t−1G

>
t + σ2

vt

)−1
(20)

The entries of the (single row) Jacobian matricesGt = ∂g(ut; wt)/∂wt

∣∣
wt=wt|t−1

, i.e. the

derivatives of the network outputs with respect to the weights, are calculated by backpropagat-
ing the output observations through the network (Appendix). The extended Kalman £lter is an
improvement over conventional neural network online learning techniques such as online back-
propagation, in that it makes use of second order statistics (covariances). Online backpropagation
is, in fact, a degenerate of the extended Kalman £lter algorithm above. This can be seen easily
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when writing the corrector step in a slightly different form by applying the matrix inversion lemma
(Anderson and Moore 1979) leading to

Σt|t =
(
Σ−1

t|t−1 + Gtσ
−2
vt

G>
t

)−1
(21)

wt|t = wt|t−1 + Σt|tG>
t σ−2

vt

(
yt − g(ut; wt|t−1)

)
. (22)

In online backpropagation, the £ltering error covariance matrixΣt|t is constrained to a small
positive constant value (σ−2

vt
Σt|t = ηt) resulting in the well-known online backpropagation update

equation

wnew = wold + ηt Gt

(
yt − g(ut; wold)

)
. (23)

The Gaussian approximation to the Bayesian solution, implemented with the extended Kalman
£lter, results in a simple and elegant framework that is amenable to the design of sequential learn-
ing algorithms. Nevertheless, following arguments given in Briegel and Tresp (1999a), it is not
well-de£ned where the approximating Gaussian posterior densities are centered with respect to the
true (unknown) posterior density function. As pointed out in Sage and Melsa (1971), the Gaus-
sian approximation derived from extended Kalman £ltering are not centered about the mode of
the posterior weight densities, they only provide an approximation to the posterior mode. There-
fore, for highly nonlinear mappingsg(.; wt), the Gaussian approximation derived from extended
Kalman £ltering may be not guaranteed to cover much of the probability mass of the posterior
£ltering density. In the following Section 3.1.1, we extend the work of Fahrmeir & Kaufmann to
our online environment by proposing a Laplace approximation to the posterior weight distribution.
In particular, the posterior weight distribution is approximated by a Gaussian, centered about the
mode, thereby determining the covariance of the approximating Gaussian by the local curvature
of the posterior. This is achieved by adopting the Fisher scoring framework from Fahrmeir &
Kaufmann to the state space model (8) and (10).

3.1.1 Sequential Learning Based on Posterior Modes

We start by considering the problem from an of¤ine learning perspective where batch data setsU t

andY t are given. An of¤ine smoothed estimate for the weight sequenceW t = (w>
0 , . . . ,w>

t )>

is obtained by maximizing the log-posterior with respect toW t, i.e.

W FS
t = arg max

Wt

log p(W t|Y t, U t) (24)

or, equivalently after applying Bayes’ rule, by maximizing the following expression

W FS
t = arg max

Wt

{
log p(W t) + log p(Y t|W t, U t)

}
(25)

= arg max
Wt

{
log p(w0) +

t∑
s=1

log p(ws|ws−1) +
t∑

s=1

log p
(
ys|g(us; ws)

)}
. (26)
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Inserting the model assumptions (9) and (15), multiplying by(−1) and dropping constant terms
leads to thepenalized log-likelihood criterion

pll(W t) ∝ 1
2

t∑
s=1

1
σ2

vs

(
ys − g(us; ws)

)2 +
1
2
(w0 − a0)>Q−1

0 (w0 − a0)

+
1
2

t∑
s=1

(ws − ws−1)>Q−1
s (ws − ws−1) (27)

which is subject to minimization. The £rst term in (27) is the standard sum of squares error
function which is usually employed in neural network learning tasks. The second and third term
in (27) can be interpreted aspenalty terms. From a regularization theoretical point of view5 these
penalty terms serve two purposes, namely to restrict the complexity of each individual network
g(.; wt) and to restrict the temporal variation of each network model, i.e. penalize roughness in the
weight sequence. The justi£cation for the latter is that in the case whereg(.; wt) changes slowly
relative to the arrival rate of new data pattern we can expect to track the underlying relationship
within reasonable bounds. The cost function (27) is the straightforward extension to the standard
weight decay cost function which results from Laplace approximation to the posterior in neural
of¤ine regression tasks (Bishop 1995).

A suitable way to determine a stationary point ofpll(W t) — the posterior mode estimate
of W t — is to apply Fisher scoring. With the current estimateW old

t we get a new estimate
W new

t = W old
t + ηδ for the unknown weight sequenceW t whereδ is the solution of

S(W old
t )δ = s(W old

t ) (28)

with the score function

s(W t) = −∂ pll(W t)
∂W t

(29)

and the expected information matrix

S(W t) = E
[ ∂2pll(W t)
∂W t∂W>

t

]
. (30)

The derivations in Fahrmeir and Kaufmann (1991) apply straightforward to this situation. Hence,
solving (28), i.e. to compute the inverse of the expected information matrix, can be performed by
LDL> decomposition in one forward and backward pass since the expected information matrix is
a block-tridiagonal matrix. The forward-backward steps have to be iterated to obtain the posterior
mode estimateW FS

t =
(
wFS

0|t
>
, . . . ,wFS

t|t
>)>

for W t. A single forward-backward step is given
by the following algorithm.

5For an overview of regularization in neural networks, consult Bishop (1995).
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Algorithm Fisher scoring based online learning

Initialization: wFS
0|0 = a0, Σ0|0 = Q0

Forward recursions:s = 1, . . . , t

Σs|s−1 = Σs−1|s−1 + Qs (31)

Bs = Σs−1|s−1(Σs|s−1)
−1 (32)

Σs|s =
(
(Σs|s−1)

−1 + Gs(wFS
s|t )σ

−2
vs

G>
s (wFS

s|t )
)−1

(33)

γs = st(wFS
s|t ) + Bs

>γs−1 (34)

Corrector step: δt = Σt|tγt

Backward recursions:s = 1, . . . , t

(Ds−1)−1 = Σs−1|s−1 − BsΣs|s−1Bs
> (35)

Σs−1|t = (Ds−1)−1 + BsΣs|tBs
> (36)

δs−1 = (Ds−1)−1γs−1 + Bsδs (37)

whereGs(z) = ∂g(us; z)/∂z andst(z) = −∂pll(W t)/∂ws

∣∣
ws=z

. The score functions =
−∂pll(W t)/∂W t = (s>0 , . . . , s>t )> can be derived as

s0 = −Q−1
0 (w0 − a0) + Q−1

1 (w1 − w0)

...

ss = Gsσ
−2
vs

(
ys − g(us; ws)

) − Q−1
s (ws − ws−1)

+Q−1
s+1(ws+1 − ws), s = 1, . . . , t (38)

...

st = Gtσ
−2
vs

(
yt − g(ut; wt)

) − Q−1
t (wt − wt−1).

The above algorithm provides estimates only after a block oft consecutive £lter steps. For
online posterior mode smoothingit is of interest to smooth backwards aftereachnew data pattern.
If posterior mode estimation is applied sequentially fort = 1, 2, . . . , then

W FS
t−1 =

(
wFS

0|t−1

>
, . . . ,wFS

t−1|t−1

>)>
, (39)

the posterior mode smoother for timet − 1, grouped together with the step-one predictor

wt|t−1 = wFS
t−1|t−1 (40)

into

W old
t =

(
W FS

t−1, w
>
t|t−1

)>
(41)

is a reasonable starting vector for obtaining the posterior mode smootherW FS
t at time stept

as soon as a new data tupel(ut, yt) becomes available. It is clear that as the algorithm has to
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traverse all previous observations repeatedly to £nd a solution, the processing time for a new
pattern becomes longer and longer as new patterns arrive. To allow for online processing it may
thus be necessary to truncate the current data history at some £xed horizon, e.g. account only for
the latestτt data tupels, to reduce the computational load. This is a reasonable assumption in non-
stationary environments for online purposes. A formal justi£cation of such a truncation approach
in the context of inference in dynamic Bayesian networks has recently been provided by Boyden
and Koller (1999).

If we further make the assumption that in most cases a new data tupel(ut, yt) shouldnot
change weight estimates too drastically implies that asingleFisher scoring step often suf£ces to
obtain the new posterior mode estimate at timet. The resultingsingle Fisher scoring step algo-
rithm is derived in Fahrmeir and Kaufmann (1991) in the context of dynamic exponential family
regression and is extended here to sequential Bayesian neural network learning. The algorithm
with lookback parameterτt is given below.

Algorithm single Fisher scoring step online learning

Initialization: wFS
0|0 = a0 , Σ0|0 = Q0 , γ0 = s0(a0)

Predictor step:wt|t−1 = wt−1|t−1

Forward recursions:s = 1, . . . , t

Σs|s−1 = Σs−1|s−1 + Qs (42)

Bs = Σs−1|s−1Σ
−1
s|s−1 (43)

Σs|s =
(
Σ−1

s|s−1 + G>
s (wFS

s|t−1)σ
−2
vt

Gs(wFS
s|t−1)

)−1
(44)

γs = ss(wFS
s|t−1) + B>

s γs−1 (45)

Corrector step: wFS
t|t = wt|t−1 + ηΣt|tγt

Backward recursions:s = t, ..., t − τt

D−1
s−1 = Σs−1|s−1 − BsΣs|s−1B

>
s (46)

wFS
s−1|t = ws−1|t−1 + Bs(ws|t − ws|t−1) + ηD−1

s−1γs−1 (47)

Σs−1|t = D−1
s−1 + BsΣs|tB>

s (48)

whereGs(z) = g(us; z)/∂z.

The two algorithms above provide a convenient means of propagating Gaussian approxima-
tions to the posterior weight distributions.Step-one predictionŝyt of the outcomeyt for a new data
point ut — based on the information available at the current time stept − 1 — can be derived in
the following way. To obtain the optimal step-one predictor, we have to evaluate the expectation
of

p(yt|Y t−1, U t−1) =
∫

p
(
yt|g(ut; wt)

)
p(wt|Y t−1, U t−1) dwt. (49)
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In order to evaluate this density we shall make use of the Gaussian approximation obtained from
the above (single) Fisher scoring step algorithm. If we further make the assumption that the width
of the posterior distribution (determined by the covarianceΣt−1|t−1) is suf£ciently narrow then we
may approximate the network functiong(ut; wt) by its £rst order Taylor series expansion about
the posterior mode, i.e.

g(ut; wt)
.= g(ut; wFS

t−1|t−1) + Gt(wt − wFS
t−1|t−1) (50)

whereGt = ∂g(ut; wt)/∂wt

∣∣
wt=wFS

t−1|t−1

. Hence, we can easily derive the expectation of (49)

resulting in

ŷt = E[yt|Y t−1, U t−1, ut] = g(ut; wFS
t−1|t−1). (51)

This solution is intuitively appealing since it represents the obvious way of predicting a new out-
come, namely basing the prediction on the most recent weight vector available.

3.1.2 Sequential Learning Based on Posterior Means

As stated above, in the linear Gaussian case the state prediction and £ltering densities (12)-(13)
are Gaussian and the linear Kalman £lter algorithm propagates the £rst two moments as suf£cient
statistics of these Gaussians using a sequential recursive scheme. For nonlinear systems, however,
the posteriors are not of well-known type and they cannot be calculated analytically. The strategy
from the last section was to propagate mode and local curvature of the posterior weight distribution
as centers and widths of a Gaussian approximation. The idea in this section is to propagate the
£rst two moments of the £ltering density (13), i.e.meanandcovariance, in a sequential fashion,
given the £rst two moments of anapproximatestate prediction density (12). The £ltering density
(13) at timet−1 can be characterized by its meanwm

t−1|t−1 and covarianceΣm
t−1|t−1. However, it

cannot be fully characterized by the £rst two moments as suf£cient statistics like in the Gaussian
case. But if we approximate this density to be Gaussian with the £rst two moments of the £ltering
density, i.e.

wt−1|Y t−1, U t−1 ∼ N (wm
t−1|t−1,Σ

m
t−1|t−1) (52)

then we obtain anapproximatestate prediction density (12)

p(wt|Y t−1, U t−1) ≈
∫

p(wt|wt−1)N (wt−1|wm
t−1|t−1,Σ

m
t−1|t−1) dwt (53)

which can be evaluated analytically (due to the linear Gaussian transition equation (8)) resulting
in the approximate state prediction distribution

wt|Y t−1, U t−1 ∼ N (wm
t−1|t−1,Σ

m
t−1|t−1 + Qt). (54)

In order to obtain the £rst two moments of the £ltering density at time stept we have to solve

wm
t|t =

∫
wt p(wt|Y t, U t) dwt

=

∫
wtp(yt|ut, wt)N (wt|wm

t−1|t−1,Σ
m
t−1|t−1 + Qt) dwt∫

p(yt|ut, wt)N (wt|wm
t−1|t−1,Σ

m
t−1|t−1 + Qt) dwt

(55)
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for deriving the posterior mean and

Σm
t|t =

∫
wtw

>
t p(wt|Y t, U t) dwt − wm

t|tw
m
t|t

>

=

∫
wtw

>
t p(yt|ut, wt)N (wt|wm

t−1|t−1,Σ
m
t−1|t−1 + Qt) dwt∫

p(yt|ut, wt)N (wt|wm
t−1|t−1,Σ

m
t−1|t−1 + Qt)dwt

− wm
t|tw

m
t|t

> (56)

for obtaining the posterior covariance at time stept. Both integrals can be calculated easily from

I(α(wt)) =
∫

α(wt) p(yt|ut, wt)N (wt|wm
t−1|t−1,Σ

m
t−1|t−1 + Qt) dwt (57)

using the identities (Hennevogl 1991; Schnatter 1992)

wm
t|t =

I(wt)
I(1)

, Σm
t|t =

I(wtw
>
t )

I(1)
− wm

t|tw
m
t|t

>. (58)

In the context of dynamic generalized linear models Schnatter (1992) proposes to compute these
moments with numerical Gauss-Hermite integration. As stated above, due to the exponentionally
increasing effort in high dimensions, this approach is computationally intractable for neural net-
work applications. Instead, we follow the approach by Hennevogl (1991) and make use of impor-
tance sampling (MacKay 1999) to derive a Monte Carlo estimate ofI(.). Since we use importance
sampling in a sequential fashion, each time step withnewnormalized weights, we can circumvent
the problems generally associated with importance sampling (Hennevogl 1991; MacKay 1999).
In order to keep the computational effort low, we choose a Gaussian importance densityq(.) with
centers and widths derived from the extended Kalman £lter corrector step (18)-(20), i.e.

q ∼ N (wt|t,Σt|t). (59)

Hence, importance sampling yields to the solution

wm
t|t =

S∑
s=1

c(yt|ut, w
s
t|t)∑S

s̃=1 c(yt|ut, ws̃
t|t)

ws
t|t =

S∑
s=1

c̃sws
t|t (60)

for the £ltered mean and to

Σm
t|t =

S∑
s=1

c̃sws
t|tw

s
t|t

> − wm
t|tw

m
t|t

> (61)

for the covariance of the £ltering density at time stept. ws
t|t, s = 1, . . . , S are i.i.d. samples from

the Gaussian importance densityq(.). The weighting factorsc(yt|ut, wt) are de£ned as

c(yt|ut, wt) =
N (

yt|g(ut; wt), σ2
vt

)N (wt|wm
t−1|t−1,Σ

m
t−1|t−1 + Qt)

N (wt|wt|t,Σt|t)
. (62)

With importance sampling we can evaluate the £rst two moments of the £ltering densityexactly
given a suf£cient amount of samples. The computational effort is low since we do not have to prop-
agate a set of (high-dimensional) samples for describing the £ltering density, rather we keep track
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only of mean and covariance estimates. The overallapproximate predictor conditional mean £lter
algorithm is given below (with the normalized weighting factorsc̃s andws

t|t as de£ned above).

Algorithm approximate predictor conditional mean £lter based online learning

Initialization: wm
0|0 = a0, Σm

0|0 = Q0

t = 1, 2, . . .

Predictor step:

wt|t−1 = wm
t−1|t−1 (63)

Σt|t−1 = Σm
t−1|t−1 + Qt (64)

Corrector step:

wt|t = wt|t−1 + Kt

(
yt − g(ut; wt|t−1)

)
(65)

Σt|t = Σt|t−1 − KtGtΣt|t−1 (66)

Kt = Σt|t−1G
>
t

(
GtΣt|t−1G

>
t + σ2

vt

)−1
(67)

wm
t|t =

S∑
s=1

c̃sws
t|t (68)

Σm
t|t =

S∑
s=1

c̃sws
t|tw

s
t|t

> − wm
t|tw

m
t|t

> (69)

Step-one predictions of the outcomeyt are derived the same way as for the Fisher scoring
approximation, i.e. by evaluating the expectation of (49), resulting in

ŷt = E[yt|Y t−1, U t−1, ut] = g(ut; wm
t−1|t−1). (70)

Independently from this work, de Freitas et al. (1998, 1999) have also addressed sequential
learning in dynamic neural regression models. They take a full-¤ash Bayesian approach for solv-
ing both, the state prediction density (12) and the £ltering density (13) by Monte Carlo integration
with a sequential version of importance sampling. The computational load of their method is sig-
ni£cantly higher, since £rst, they propagate samples rather than suf£cient statistics, and secondly,
they have to updateeachsingle sample by application of extended Kalman £ltering. Since step-
one predictions in their approach are also only based on posterior modes or posterior means —
rather than evaluating the integral (49) using Monte Carlo integration — the usefulness of prop-
agating and updating a huge amount of samples is not obvious and their method appears to be a
computational overkill. In effect, as our experiments will show, the two approximate Bayesian
approaches are quite competitive to their approach, while limiting the computational resources to
a reasonable level.

3.2 Handling Additive Measurement Outliers

The commonly used assumption in neural network regression modeling is that output measure-
mentsyt are disturbed by independent additive Gaussian noise terms. Although one can derive
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the Gaussian noise assumption based on a maximum entropy approach (Deco and Brauer 1995),
the main reason for employing this noise model is practicability. Under the Gaussian noise as-
sumption standard online- or of¤ine backpropagation training can be performed by minimization
of squared errors. Despite its common use it is far from clear that the Gaussian noise assumption
is a good choice for many practical problems. The most common reason why researchers depart
from the Gaussian noise assumption is the presence of additive measurement outliers. Outliers
are errors which occur with low probability and which are not generated by the data-generation
process that is subject to identi£cation. The general problem is that a few (maybe even one) out-
liers of high leverage are suf£cient to throw the standard Gaussian error estimators completely
off-track (Rousseeuw and Leroy 1987). Dealing with additive measurement outliers is of criti-
cal importance for online learning tasks. Here one is interested in avoiding inappropriate weight
changes due to measurement outliers to maintain stable online learning capability. Outliers might
result in highly ¤uctuating weights and possibly even instability when estimating the neural net-
work weight vector online using a Gaussian error assumption. Advanced neural online learning
algorithms like the extended Kalman £lter sequential learning method from Section 3.1, for in-
stance, are known to be nonrobust against such outliers (Meinhold and Singpurwalla 1989) since
they are based on a Gaussian error assumption. In this section we follow the approach of Meinhold
and Singpurwalla (1989), Lange et al. (1989) and Fahrmeir and Künstler (1999), among others,
and replace the Gaussian noise assumption with a “heavy-tailed” noise model, i.e. a distribution
which has longer than normal tails, to account for additive measurement outliers in dynamic neural
regression models.

According to Lange et al. (1989) and Fahrmeir and Künstler (1999), we replace the Gaussian
noise model by a more ¤exible model based on theStudent-t-distribution. The t-distribution
contains two free parameters — the degrees of freedomν and a width parameterσ2

v . A nice feature
of the t-distribution is that if the degrees of freedom approach in£nity, we recover the Gaussian
noise model. Ifν < ∞ we obtain distributions which are more heavy-tailed than the Gaussian
distribution including the Cauchy noise model withν = 1. The latter is commonly used for robust
regression. Some researchers report good modeling capabilities when using thet-distribution as
measurement noise model, even if the data from the underlying relationship is not generated using
this distribution (West 1981). Surely, there are many different ways to de£ne heavy-tailed noise
models but we focus on thet-density due to its desirable properties (Lange et al. 1989) and due to
the fact that it naturally extends the Gaussian noise model towards a robust error measure.

In the following we modify the Fisher scoring approach from Section 3.1.1 and derive arobust
online learning scheme for dynamic neural regression models. The related problem of robust
maximum likelihood learning in the neural regression model (4) for of¤ine environments with
batch data sets is addressed in the article by Briegel and Tresp (1999c).

3.2.1 Robust Online Learning based on Posterior Modes

The Gaussian noise assumptionvt ∼ N (0, σ2
vt

) from (15) is replaced by the Student-t-distribution
with probability density function

pvt(z) =
Γ
(νvt+1

2 )
σvt

√
πνvt Γ(νvt

2 )

(
1 +

z2

σ2
vt

νvt

)− νvt+1

2
, νvt , σvt > 0. (71)
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It is immediately apparent that forνvt = 1 we recover the heavy-tailed Cauchy distribution. What
is not so obvious is that forνvt → ∞ we obtain a Gaussian distribution. To compare different
noise models it is useful to evaluate the “ψ-function” de£ned as (Huber 1964)

ψ(z) = −∂ log pvt(z)/∂z, (72)

that is the negative score function of the noise density. In the case of i.i.d. samples theψ-function
re¤ects the in¤uence of a single measurement on the resulting estimator. Assuming Gaussian
measurement errorspvt ∼ N (0, σ2

vt
) we derive

ψ(z) = z/σ2
vt

(73)

which means that for|z| → ∞ a single outlierz can have an in£nite leverage on the estimator. In
contrast, for constructing robust estimators West (1981) states that large outliers should not have
any in¤uence on the estimator, i.e.ψ(z) → 0 for |z| → ∞. For thet-distribution (71) we obtain

ψ(z) =
νvt + 1

νvt + z2/σ2
vt

z

σ2
vt

. (74)

When comparing the twoψ-functions above one will recognize that in the latter outliers are
weighted down. The degrees of freedom determine how much “weight”

αt =
νvt + 1

νvt + z2/σ2
vt

(75)

outliers obtain in in¤uencing the regression estimate. For large positive or negative argumentsz

the weightsαt approach zero. Hence, the conditionψ(z) → 0 for |z| → ∞ is satis£ed here. For
νvt → ∞ the weightsαt approach one and we recover the Gassianψ-function. Figure 3 (left)
showsψ(z) for differentνvt for the Student-t-distribution.

Using thet-distribution (71) we can modify the cost function (27) leading to the penalized
log-likelihood criterion

pll(W t) ∝ −
t∑

s=1

log pvs

(
ys − g(us; ws)

)
+

1
2
(w0 − a0)>Q−1

0 (w0 − a0)

+
1
2

t∑
s=1

(ws − ws−1)>Q−1
s (ws − ws−1) (76)

which is subject to optimization with respect toW t. For applying the Fisher scoring algorithm
from 3.1.1 to minimizepll(.) we need the negative score function and the expected information for
the t-density. The negative score function is given by the aboveψ-function and for the expected
information we obtain (Lange et al. 1989)

∂ψ/∂z =
νvt + 1
νvt + 3

σ−2
vt

. (77)

We can apply the same algorithms as in the Gaussian case in 3.1.1 to obtainrobustonline pos-
terior mode weight estimates by substituting the measurement varianceσ−2

vs
in (33) and (44) by

(νvs + 1)/(νvs + 3)σ−2
vs

and by substituting the Gaussianψ-functionσ−2
vs

(
ys − g(us; ws)

)
with

thet-densityψ-function

νvt + 1

νvt +
(
ys − g(us; ws)

)2
/σ2

vt

σ−2
vs

(
ys − g(us; ws)

)
(78)

to evaluate the score function (38).



18

−6 −4 −2 0 2 4 6

−3

−2

−1

0

1

2

3

z

p
s
i(

z
)

ψ−Function of Gaussian vs. t−density

ν=4

ν=15

ν=1

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
χ2−density

z
χ

2 ν
(z

)

Figure 3. Left: ψ-functions for the Gaussian density (dashed) and thet-density withνvt = 1, 4, 15 degrees of freedom.
The Gaussianψ-function is unbounded whereas theψ-function for thet-density is bounded and approaches zero for
large argumentsz. Right: Chi-square density withν = 1, 2, 3, 4 degrees of freedom. The smaller the degrees of
freedomν, the more probability mass lies in the interval(0, 1] (dotted:ν = 1 and dash-dotted:ν = 2) forcing robust
error distributions. For higher degrees of freedom (dashed:ν = 3 and solid:ν = 4) there is a shift of the probability
mass towards larger argumentsz > 1 forcing non-robust error distributions with the extreme case of the Gaussian error
distribution forν = ∞. When picking two particular argumentsz = 1 andz < 1 of the Chi-square distribution and
by assigning probabilitiesπ and1−π to these arguments we obtain Ormoneit and Neuneier’s binary Gaussian mixture
approach as a special case.

3.2.2 Hyperparameter Estimation

So far, we have assumed that the scale factorσ2
vt

and the degrees of freedomνvt of the t-density
are known. Given a suf£cient amount of batch data these hyperparameters can be estimated in an
of¤ine manner with the maximum likelihood method when assuming constant values, i.e.σ2

vt
=

σ2
v , νvt = νv. For performing this task Briegel and Tresp (1999c) developed an EM algorithm

by extending arguments given in Lange et al. (1989) to neural network of¤ine regression models.
If batch data is not available in advance, another option is to set these hyperparameters to some
reasonable values. Lange et al. (1989) use the valueνv = 4 for the degrees of freedom as a
“sensible guesstimate” which works well in many applications. In order to account for changing
dynamics in the underlying data generation process we apply results from Lange et al. (1989)
and Fahrmeir and K̈unstler (1999) to our dynamic neural regression model and develop anonline
EM-type algorithmfor approximate maximum likelihood estimation of the scale factors and the
degrees of freedom of thet-density. The idea is to treat scale factors and degrees of freedom as
constant values within a sliding time window of lengthτ̃t, e.g.σ2

vt
= σ2

v , νvt = νv, t ∈ {t − τ̃t, t}
to account for slowly varying process noise dynamics. Note the difference that is made here
between the sequential Bayesian approach for the neural network weight vectors which are treated
as random variables and the hyperparameters which are assumed to be constant over a certain time
window. For deriving the online EM-type algorithm it is important to note that thet-density can
be thought of as an in£nite mixture of Gaussians with probability density function (Andrews and
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Mallows 1974)

pν(z) =
∫
N (z|0, σ2/ũ) p(ũ) dũ. (79)

Here,p(ũ) denotes the probability density function of the mixing variableũ. The mixing variable
is Chi-square distributed, i.e.̃u ∼ χ2

ν/ν whereχ2
ν denotes the Chi-square distribution withν

degrees of freedom. The probability density function of the Chi-square distribution is de£ned as

pχ2(z) =
ν

2ν/2Γ(ν
2 )

(
νz

)ν/2−1 exp
(−νz

2
)
, z > 0. (80)

This mixture approach can be seen as a continuous extension to the discrete Gaussian mixture
model with a binary mixing variablẽu as employed by Ormoneit and Neuneier (1995) for ob-
taining robust of¤ine neural regression estimates. In their method, the binary mixing variableũ

takes the value1 with probabilityπ and the valueλ < 1 with probability1 − π. The “narrow”
GaussianN (z|0, σ2) (ũ = 1) represents the distribution of the non-outlier part of the data. The
“wider” GaussianN (z|0, σ2/λ) (ũ = λ) accounts for the assumption that some data are located
at larger distances from the prediction. The fact that outliers are basically exceptions is re¤ected
by an appropriate choice of the mixture probabilitiesπ and1 − π, which can be regarded as prior
probabilities for each Gaussian (Ormoneit and Neuneier 1995). This binary mixture approach has
two basic drawbacks compared to the in£nite mixture approach. First, there is an additional hy-
perparameter to estimate and second, evaluation of theψ-function and the expected information
matrix is computationally demanding. In particular, the expected information matrix can only be
derived using numerical integration methods in contrast to the expected information matrix for the
t-density, which is given by (77).

Using the continuous mixture approach, we obtain the observation distribution for a single
data tupel(ut, yt) as

yt|ut, wt, ũt ∼ N (
g(ut; wt), σ2

v/ũt

)
(81)

whereũt ∼ χ2
νv

/νv. Outliers are modeled by “small” values of the mixing variableũt leading
to wider GaussiansN (z|0, σ2/ũt) whereas an “uncontaminated” data tupel is represented by a
“large” valueũt implying a narrow Gaussian. The widths of the Gaussians are determined by the
degrees of freedom of the Chi-square distribution (see Figure 3 right).

With the above representation for thet-distribution we can treat the weight sequencewt to-
gether with the mixture variables̃ut as missing for deriving the online EM-type algorithm. The
E-step is given by

Q(φ, φold) = E
[
log p

(
Y t−τ̃t,t, Ũ t−τ̃t,t, W t−τ̃t,t, U t−τ̃t,t

)∣∣Y t−τ̃t,t, U t−τ̃t,t, φ
old

]
(82)

with Ũ t−τ̃t,t = (ũt−τ̃t , . . . , ũt)> as the sequence of mixing variables andφold = (σ2,old
v , νold

v )>

as the vector of unknown hyperparameters to be estimated. The expectation can be decomposed
into

Q(φ, φold) = E
[
log p

(
Y t−τ̃t,t

∣∣Ũ t−τ̃t,t, W t−τ̃t,t, U t−τ̃t,t

)
+ log p

(
Ũ t−τ̃t,t

)
+ log p

(
W t−τ̃t,t

)∣∣Y t−τ̃t,t, U t−τ̃t,t, φ
old

]
. (83)
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For deriving the maximum likelihood estimate for the scaling parameterσ2
v we have to solve the

equation

∂Q

∂σv
=

∂

∂σv

t∑
s=t−τ̃t

E
[
log p(ys|ũs, ws, us)

∣∣Y t−τ̃t,t, U t−τ̃t,t, φ
old

]
= 0. (84)

By inserting the model assumption (81) into (84) we obtain — after dropping constant terms

t∑
s=t−τ̃t

E
[
log p(ys|ũs, ws, us)

∣∣Y t−τ̃t,t, U t−τ̃t,t, φ
old

] ∝
− τ̃t log σv − 1

2σ2
v

t∑
s=t−τ̃t

E
[
ũs

(
ys − g(us; ws)

)2∣∣Y t−τ̃t,t, U t−τ̃t,t, φ
old

]
. (85)

Applying the law of iterated expectations (Bar-Shalom and Li 1993) results in the expression

E
[
ũs

(
ys − g(us; ws)

)2∣∣Y t−τ̃t,t, U t−τ̃t,t, φ
old

]
=

E
[
E

[
ũs

(
ys − g(us; ws)

)2∣∣W t−τ̃t,t, Y t−τ̃t,t, U t−τ̃t,t, φ
old

]∣∣Y t−τ̃t,t, U t−τ̃t,t, φ
old

]
=

E
[
αs

(
ys − g(us; ws)

)2∣∣Y t−τ̃t,t, U t−τ̃t,t, φ
old

]
(86)

whereαs

αs =
νold + 1
νold + δs

, δs =

(
ys − g(us; ws)

)2

σ2,old
v

(87)

is the expected value of the unknown mixing componentũs given the data point(us, ys) and the
weight vectorws at times (Lange et al. 1989).δs can be approximated by substituting the Fisher
scoring solutionswFS

s|t for ws leading toapproximateweights

αs|t =
νold + 1

νold + δs|t
, δs|t =

(
ys − g(ut; wFS

s|t )
)2

σ2
v

. (88)

Substituting the weightsαs with the approximate weightsαs|t and applying a £rst order Taylor
series expansion ofg(.; ws) about the posterior modewFS

s|t , i.e.

g(us; ws)
.= g(us; wFS

s|t ) + Gs(wFS
s|t )(ws − wFS

s|t ) (89)

leads to the approximate E-step equation for the scaling parameterσ2
v

Q(σ2
v , φ

old) =−τ̃t log σv − 1
2σ2

v

t∑
s=t−τ̃t

E
[
αs|t

(
ys − g(us; ws)

)2∣∣Y t−τ̃t,t, U t−τ̃t,t, φ
old

]
(90)

=−τ̃t log σv − 1
2σ2

v

t∑
s=t−τ̃t

αs|t
(
ys − g(us; wFS

s|t )
)2+Gs(wFS

s|t )Σs|tGs(wFS
s|t )

> (91)
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after substituting posterior meansE[ws|Y t−τ̃t,t, U t−τ̃t,t] with posterior modeswFS
s|t and posterior

covariancescov[ws|Y t−τ̃t,t, U t−τ̃t,t] with curvaturesΣs|t. Setting the £rst order derivatives of
(91) with respect toσv to zero results in the M-step equation

σ2,new
v =

1
τ̃t

t∑
s=t−τ̃t

αs|t
[(

ys − g(us; wFS
s|t )

)2 + Gs(wFS
s|t )Σs|tGs(wFS

s|t )
>
]

(92)

whereGs(wFS
s|t ) denotes the Jacobian of the neural network, i.e.

Gs(wFS
s|t ) = ∂g(us; ws)/∂ws

∣∣
ws=wFS

s|t
. (93)

For a t-density with in£nite degrees of freedom the weights approach one (αs|t = 1) and the up-
date rule degenerates to the update equation for dynamic neural regression models with Gaussian
error sequences. For robust online learningαs|t determines how much weight an individual data
tupel(us, ys) obtains when computing the maximum likelihood estimate. If a speci£c data tupel
is detected as an outlier,αs|t should approach zero which means that this data tupel is discarded
to compute the estimate. Uncontaminated data tupels, on the other hand, may be assigned a larger
weight. Note that the weightsαs|t can be interpretated as an approximation to the weights (75) of
theψ-function (74).

The update rule for the degrees of freedomνv is obtained from solving

∂Q

∂νv
=

∂

∂νv

t∑
s=t−τ̃t

E
[
log p(ũs)

∣∣Y t−τ̃t,t, U t−τ̃t,t, φ
old

]
= 0 (94)

wherep(ũs) is given by the Chi-square densitypχ2 as de£ned in (80). Similar arguments6 lead to
the M-step optimization problem for the degrees of freedom (Lange et al. 1989)

τ̃t

2
+

τ̃t

2
log(

νnew
v

2
) − τ̃t

2
DG(

νnew
v

2
) +

1
2

t∑
s=t−τ̃t

βs|t −
1
2

t∑
s=t−τ̃t

αs|t = 0 (95)

whereβs|t = DG(νold
v +1

2 )− log
(

1
2(νold

v + δs|t)
)

with the Digamma functionDG(z) = ∂Γ(z)/∂z.
Ef£cient numerical algorithms exist for computing the Digamma function (Abramowitz and Ste-
gun 1989). A new update for the degrees of freedom is obtained by solving the one-dimensional
nonlinear optimization problem (95) forνnew

v (Gill et al. 1981).
de Freitas et al. (1998) propose alternative sequential update equations for the measurement

noise varianceσ2
vt

and the transition covariance matrixQt which are either based on adopting
MacKay’s evidence framework (MacKay 1992) to the online case or by maximizing the posterior
density function with respect to the hyperparameters in a recursive fashion.

4 Simulations and Experiments

In this section we present experiments to test the new methods with the Gaussian and thet-
distributed error measures using some arti£cial and real-world data sets. More experiments and
simulations — also with the robust neural of¤ine EM algorithm — can be found in the articles by
Briegel and Tresp (1999b, 1999c).

6That is, applying the law of iterated expectations, a £rst order Taylor series expansion of the network about the
posterior mode and substitution of posterior means and covariances with posterior modes and curvatures.
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Figure 4. Left: Schematic illustration of the two link robot arm.Right: Mean squared errors on the underlying
(unnoisy) transformations (96) and (97). The heights of the bars show average mean squared errors on a regular grid of
the input space[0.3, 1.2] × [π/2, 3π/2].

4.1 Gaussian Measurement Errors

Experiment 1: Learning the Forward Kinematics of a Two-Link Robot Arm

As a £rst example of applying the two online learning procedures, we consider the forward kine-
matics of a simple two-link robot arm, as shown in Figure 4 (left). The robot arm data set is often
used as a benchmark to compare neural network algorithms (MacKay 1992). For given values of
the joint arm anglesφ = (φ1, φ2)>, the end effector is moved to a positiony = (y1, y2)> given
by the cartesian coordinates

y1 = L1 cos(φ1) − L2 cos(φ1 + φ2) (96)

y2 = L1 sin(φ1) − L2 sin(φ1 + φ2) (97)

with L1 = 0.75 andL2 = 0.3 being the lengths of the two links of the robot arm. In the simula-
tions, we restrictedφ1 to the range[0.3, 1.2] andφ2 to the range[π/2, 3π/2]. The mapping from
(φ1, φ2) to (y1, y2) is known as theforward kinematics, and is single valued. A data set of length
T = 1000 was generated by adding uncorrelated Gaussian noiseVt = 0.05I2,2 to the simulated
two-dimensional output valuesyt = (y1,t, y2,t)>. The two-dimensional inputsut = (φ1,t, φ2,t)>

were drawn uniformly from the domain[0.3, 1.2] × [π/2, 3π/2].
The task was to learn the underlying (static) mapping (96)-(97) in an online manner using a

MLP with twelve hidden units. Online backpropagation (BP) with a stepsize parameterη = 0.1
and extended Kalman £ltering (EKF) again serve as benchmark methods. The noise covariances
in the EKF approach were set toQt = 10−4I61,61 and toVt = 0.05I2,2 respectively.Q0 was set
to 10I61,61. The approximate predictor conditional mean £lter (APCM) was assignedS = 500
samplesws

t|t for approximating the conditional £ltered meanswm
t|t and covariancesΣm

t|t. Qt was

set toQt = 10−3I61,61. Online posterior mode smoothing was performed using £ve forward-
backward passes of the Fisher Scoring algorithm over a sliding time window of lengthτt = 50
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Figure 5. Original and neural network mappings after online adaptation with the Fisher scoring algorithm. The top
plots show the original mappings (96) and (97) for the input space[0.3, 1.2] × [π/2, 3π/2]. The bottom plots display
the neural network mappings evaluated at weight vectorwFS

1000|1000 for the Fisher scoring online learning approach.

(FS-50/5). The weight transition noise covariance was set toQt = 10−4I61,61. The experiment
was repeated 25 times, each time with new simulated data{ut, yt}T

t=1 and new initial weightsw0

drawn from a zero-mean Gaussian distribution with covariance0.5I61,61. Figure 4 (right) provides
average mean squared errors between the neural networks and the underlying function on a regular
grid of the input space and error bars corresponding to one standard deviation. The two new
approaches outperform the two benchmark models signi£cantly (based on the pairedt-test with
α = 0.01) but are not signi£cantly different (also based on the pairedt-test with 1% signi£cance
level) indicating corresponding posterior means and modes. Figure 5 shows the mappings (96)-
(97) and the neural network mappings on a regular grid on the input space after online adaptation
for the Fisher scoring approach using the weight vectorwFS

1000|1000.
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Experiment 2: Pricing Options on the FTSE-100 Index

Mathematical modeling of £nancial derivatives has become increasingly important over the past
decade (Hull 1997). The availability of sophisticated pricing models for options contracts is of
great interest to both researchers and practitioners in £nancial institutions. Option pricing im-
poses interesting and challenging problems to the modeler due to the nonlinear, non-stationary,
and stochastic behavior of options prices and therefore provides an ideal means for testing the
algorithms derived in Section 3.1. A new area of research, which has been pioneered by Hutchin-
son et al. (1994) and Niranjan (1997), is concerned with applying neural networks to estimate
option pricing formulas, i.e. compact descriptions of the ,,fair” price of an asset whose value is
contingent on the price of a second, underlying asset. The former showed that good approxi-
mations to the widely used Black-Scholes formula may be obtained with neural networks, while
the latter was concerned with the non-stationary aspects of the problem. Niranjan (1997) uses
the extended Kalman £lter to sequentially propagate neural network weights in an online manner.
de Freitas et al. (1998) apply a fully Bayesian approach based on sequential importance sampling,
to estimate the network parameters online. Here, the two online algorithms (FS and APCM) are
compared to different benchmark models, including the extended Kalman £lter algorithm and the
fully Bayesian approach by de Freitas et al. The Black-Scholes partial differential equation (Black
and Scholes 1973) which is the main industry standard for pricing options (Hull 1997) takes into
account the most important factors in¤uencing the options price.7 It relates the current value of
an option to the current value of the underlying stock, the volatility of the stock, the strike price
and time to maturity of the option, and to the risk free interest rate. This basic equation is, how-
ever, only valid under several conditions, e.g. no risk-less arbitrage opportunities, an instantaneous
risk-less portfolio, constant volatility and risk-free interest rate. In addition, the stock’s price is
assumed to be dictated by a geometric Brownian motion model. The uncertainty arising from the
above model assumptions may be avoided by applying a neural network model with sequential
parameter adaptation. We follow the approach by de Freitas et al. (1998) and map the stock’s
price and time to maturity to the call and put options prices using a MLP. Hereby, the stock’s price
and the options prices are normalized by the strike price. In order to make results comparable we
used the same data sets as de Freitas et al. (1998), £ve call option contracts on the FTSE-100 index
from Febuary 1994 to November 1994 to train our neural pricing models.

In the experiments MLPs with four hidden units, two inputs (the stock’s price and the time
to maturity) and a single output (the options price) were used. The noise covariances for the ex-
tended Kalman £lter approach (EKF)σ2

v andQt were set to10−4 and to10−5I15,15 respectively.
The initial weight vectorw0 was drawn from a zero-mean Gaussian distribution with a covariance
equal toI15,15. Q0 was set to10I15,15. The approximate predictor conditional mean £lter approach
(APCM-100) was assignedS = 100 weight vector samplesws

t|t to obtain Monte Carlo approxi-

mations of the £ltered posterior meanswm
t|t and covariance matricesΣm

t|t. Qt was set to10−3I15,15

to allow the algorithm to explore a large region of the weight space. The single Fisher scoring step
algorithm (FS-30) derives online posterior weight updates over a time window of lengthτt = 30.
Qt was set to10−5I15,15. Figure 6 (left) shows the one-step ahead predictions to the call option
with strike priceX = 2925 obtained from the APCM approach. The right plot shows the re-
sults obtained from the FS approach for the the put option with strike priceX = 3325. Due
to the regularization part in the cost function of the FS approach, which penalizes rough weight

7The textbook by Hull (1997) provides a very readable introduction to options and other derivatives.
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Figure 6. Left: The panel shows the call options data series with strike priceX = 2925 (continuous). Dashed are
shown the one-step ahead forecasts obtained from the APCM approach.Right: Shown is the put options data series
with strike priceX = 3325. The dashed line plots the step-one ahead predictions obtained from the FS approach. After
having seen about one fourth of the options time series the weight sequences obtained from both algorithms start to
converge and accurate step-one forecasts are obtained.

sequences, this approach yields to smoother step-one estimates than the APCM approach. With
both algorithms very close £ts to the measured data were obtained. Figure 7 shows the mean
squared errors between the actual value of the options contract and the one-step ahead prediction
for various methods. These errors are computed on data corresponding to the last 100 days of
the data set allowing the algorithms to converge. Note that within the online setting considered
here, all reported errors are computed on unseen data. For comparison purposes, mean squared
errors reported in de Freitas et al. (1998) for different benchmark models are provided. The trivial
method (TR) simply involves using the current value of the option as the next prediction, while the
Black-Scholes method (BS) corresponds to a conventional Black-Scholes model. A fully Bayesian
approach (SIS-100) uses sequential importance sampling with 100 samples of the weight vector
per time step to approximate the state prediction and £ltering densities. Details about the BS and
the SIS-100 implementation can be found in de de Freitas et al. (1998). As one can see the errors
obtained from FS and APCM are quite competitive to the errors obtained from the fully Bayesian
approach. The reason might be, that the posterior densities are unimodal or sharply peaked about
the mode evidencing also the corresponding errors of our two approaches. For high strike prices
(X = 3225 andX = 3325) the results of the different neural network approaches are not signi£-
cantly different but outperform the conventional Black-Scholes model clearly.
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Figure 7. Mean squared errors on the £ve call options (X = 2925 to X = 3325) for six different methods. TR simply
involves using the current value of the option as the next prediction. BS corresponds to a conventional Black-Scholes
model and serves together with the EKF and a fully Bayesian approach by de Freitas et al. (SIS-100) as benchmarks to
our approaches FS-30 and APCM-100. The heights of the error bars indicate that our approximate Bayesian approaches
are quite competitive to the fully Bayesian approach by de Freitas et al.

4.2 Robust Sequential Learning

Experiment 1: One-Dimensional Toy Example

In this experiment the use of thet-distribution for a one-dimensional toy problem with additive
outliers was examined. Data were generated from the following nonlinear FIR model

yt = au2
t + b sin(6ut) − 1 + vt , t = 1, . . . , 500 (98)

with a = −0.5 andb = 0.9 and whereut was uniformly drawn from the interval[−1, 1]. vt

denote uncorrelated zero-mean Gaussian noise terms with varianceσ2
v = 0.1. With a probability

of 15% outliers uniformly drawn from the interval[−5, 5] were added to the measurementsyt.
Figure 8 (left) shows the results obtained from two different training procedures using a MLP with
four hidden units. The dash-dotted line plots the neural network model obtained from extended
Kalman £ltering based on Gaussian noise terms. The continuous line shows the nonlinearity in
the model (98). The result with the Gaussian error model indicates that a few outliers of high
leverage are suf£cient to throw the extended Kalman £lter based online learning method com-
pletely off-track. The dashed line displays the results obtained from the single-step Fisher scoring
algorithm with a sliding time window of lengthτt = 30 using at-distributed error measure. The
parameters of thet-density were initialized withν = 10 degrees of freedom and with a variance
σ2

v of 1.0. Experiments with the EM-type algorithm suggest that — like in the of¤ine learning
framework for neural state space models — adaptation of hyperparameters should not start from
the very beginning of the learning procedure since this can result in instability and high parameter
¤uctuations during the learning process. Here, adaptation of the hyperparameters was started after
200 measurements over a sliding time window of lengthτ̃t = 150. We obtained the estimates
ν̂v = 5.162 andσ̂2

v = 0.1353. Figure 8 (right) shows some of the weighting factorsαs|t which are
used in the EM update equations forνv andσ2

v . The numerical values of these weighting factors
indicate the occurrence of outliers of large magnitude. Ideally, for a outlier of high leverage,αs|t
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Figure 8. Left: 150 points of the data set including outliers (dots). Shown are the underlying mapping (continuous)
and neural network based mappings: the EKF learned model with Gaussian measurement density (dash-dotted) and the
model adapted with FS based ont-distributed measurement noise (dashed).Right: Weighting factorsαs|t at t = 225
(squares) which are used in the EM-type algorithm. The crosses mark additive outliers (of different magnitude) at
time stepst = 195, 198, 216 and 222. Since extreme outliers should not be taken into account for estimating the
hyperparameters,αs|t should be close to zero for such values. The squares at time stepst = 195, 198 and 216 indicate
that the EM-type algorithm was able to identify these measurements as extreme outliers. The measurement at time
t = 222 on the other hand, was weighted down to a value of 0.57 but was not detected as an “extreme outlier” which
turned out to be the “right decision” for that particular case.

should become zero since the outlier does not contribute at all to improving the estimate of the
hyperparameter in this situation.

Experiment 2: Boston Housing Data

The Boston housing data originates with Harrison and Rubinfeld (1978) who were interested in
the effect of air pollution on housing prices. Although Harrison & Rubinfeld’s original focus was
to obtain insight into factors affecting price, rather than to make predictions, the goal here is to
derive accurate predictions on the housing prices based on certain attributes. The relationships
between the attributes and the housing price are modeled by a MLP with six hidden units.

The data set concerns the median price in 1970 of owner-occupied houses in 506 census tracts
within the Boston metropolitan area. 13 attributes for each census tract are available for use in
predicting the median price as shown in Table 1. As Neal (1996) points out, the data is messy
in several respects. Some of the attributes are not measured on a per-tract basis, but only for
larger regions and the median prices for the highest-priced tracts appear to be censored. When
taking into account these potential problems, it seems unreasonable to expect that the distribution
of the target value (the median price) given the input data, will be of Gaussian shape. Instead, one
would expect the measurement noise distribution to be heavy-tailed, with a few errors being much
greater than the typical measurement noise. Hence, the data set seems to be ideally suited for
applying the robust online learning methods of Section 3.2 based on the Student-t-distribution.8

8A related experiment in an of¤ine adaptation framework was carried out by Briegel and Tresp (1999c).
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Table 1. Description of the 13 input variablesut = (u1,t, . . . , u13,t)
> to the linear and neural network models.

Inputs Description

crim per capita crime rate by town
zn proportion of residential land zoned for lots over 25,000 sq.ft.
indus proportion of non-retail business acres per town
chas Charles River dummy variable (1 if tract bounds river, 0 if not)
nox nitric oxides concentration (parts per 10 million)
rm average number of rooms per dwelling
age proportion of owner-occupied units built prior to 1940
dis weighted distances to £ve Boston employment centers
rad index of accessibility to radial highways
tax full-value property-tax rate per $10,000
ptratio pupil-teacher ratio by town
b 1000(Blk − 0.63)2 where Blk is the proportion of blacks by town
lstat percent lower status of the population

We divided the data set randomly into training and test sets of respectively 400 and 106 input-
output patterns. The degrees of freedom of thet-distribution were initialized withνv = 5 and the
varianceσ2

v was initialized with the value 0.8. A linear model trained with the Kalman £lter (KF)
and a neural network model trained with the extended Kalman £lter (EKF) served as benchmarks
for the neural network model based on Fisher scoring training with thet-density. Online posterior
weight smoothing was performed on a sliding time window of lengthτt = 50 time steps with
£ve forward-backward steps over each time window. For all methods, weight transition matrices
Qt = 10−4I98,98 were chosen. Training was performed by repeated online runs over the training
set until convergence of the parameters, typically taking about 30 to 40 cycles through the training
data. Hyperparameter adaptation was started after 20 cycles through the data to avoid instabilities
during the EM-type adaptation (τ̃t = 250). The experiment was carried out 10 times, each time
started with different Gaussian distributed initial weight vectors and new training and test sets.
Figure 9 (left) shows the explained variance100× (1−MSEM/MSEKF) [in percent] where MSE
is the mean squared prediction error using either the Kalman £lter (KF), the extended Kalman
£lter (EKF) or the Fisher Scoring approach (FS-50/5). The heights of the bars show the explained
variance of the two neural network models with respect to the linear model averaged over the 10
training runs. Clearly, the neural network approaches outperform the linear model by far. Hereby,
the nonlinear model based on thet-distribution could explain signi£cantly more variance (7.1%
on the training set and 7.7% on the test set) than the neural network model based on the Gaussian
noise density (pairedt-test withα = 0.01). Figure 9 (right) shows the normal probability plot
after the extended Kalman £lter based network adaptation for the training set. Clearly visible is
the derivation from the Gaussian distribution for extreme target values. The plot evidences that
the residuals follow a more heavy-tailed distribution than the Gaussian distribution.
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Figure 9. Left: Explained variance of the neural network models compared to the linear model for the training (Tr) and
test sets (Te). The neural network model based on thet-distribution could explain signi£cantly more of the variance
than the neural network model based on the Gaussian density. The error bars show± one standard deviation.Right:
Normal probability plot of the training set after adaptation of the neural network model based on the Gaussian error
density. The dashed line displays the expected normal probabilities. The plot clearly shows that the residuals follow a
heavy-tailed distribution.

5 Conclusions

In this paper we were dealing with online learning methods for dynamic neural regression mod-
els. Online estimation of the neural network weights was based on a Gaussian approximation to
the posterior weight distribution. Speci£cally, we introduced two particular methods which were
based either on posterior modes and curvatures (by employing the Fisher scoring algorithm) or
approximate posterior means and covariances (by employing importance sampling) as the centers
and widths of the approximating posterior Gaussians. Both algorithms turned out to be particularly
suitable for online learning tasks and outperformed state-of-the art methods signi£cantly in the ex-
periments and simulations. Furthermore, we suggested the use of a robust measurement density
for handling additive outliers. The Gaussian density was replaced by the Studentt-density which
includes the Cauchy and the Gaussian densities as special cases. The former is widely used in ro-
bust statistics. The application of the Fisher scoring algorithm lead to a computationally attractive
robust online learning algorithm where hyperparameters were estimated with an online EM-type
algorithm. It was shown experimentially that the novel online learning methods outperform state-
of-the online learning method like the extended Kalman £lter algorithm for both, situations with
Gaussian measurement noise terms as well as for situations with additive outliers.



30

Appendix: Gradient Computation for Of¤ine Neural Regression

In this section we derive the backpropagation algorithm, i.e. the gradients of the sum of squares
error function

E(w) =
T∑

t=1

(
yt − g(ut; w)

)2
(99)

with respect to the multi-layer perceptron weight vectorw. The functional form of the multi-layer
perceptron with a single output unit is given by

g : IRk → IR,

y = g(u; w) =
h∑

i=1

wi tanh
( k∑

j=1

wijuj + wi0

)
+ w0. (100)

The gradients∂E/∂wi, ∂E/∂wij are computed by iterative application of the chain-rule

∂E

∂wi
=

T∑
t=1

∂Et

∂g

∂g

∂wi

∣∣∣
u=ut

,
∂E

∂wij
=

T∑
t=1

∂Et

∂g

∂g

∂wij

∣∣∣
u=ut

. (101)

The gradients∂Et/∂g can be simply evaluated yielding to

∂Et

∂g
= −2

(
yt − g(ut; w)

)
. (102)

The problem now reduces to computing∂g/∂wi, ∂g/∂wij . When de£ning the activities of the

hidden units asoi = tanh
(∑k

j=1 wijuj + wi0

)
, then we can derive

∂g

∂wi
= oi ,

∂g

∂w0
= 1 (103)

and with the de£nition̂oi =
∑k

j=1 wijuj + wi0 we can compute the gradients with respect to the
the input to the hidden unit connectionswij

∂g

∂wij
=

∂g

∂oi

∂oi

∂ôi

∂ôi

∂wij
= wi (1 − oi)2 uj ,

∂g

∂wi0
= wi (1 − oi)2. (104)

Hence, one can easily verify that the computation of the gradients∂E/∂wi, ∂E/∂wij can be
performed in one forward pass whereôi, oi are evaluated atu = ut, t = 1, . . . , T andg(ut; w)
is computed followed by a backward pass where∂Et/∂g and respectively∂g/∂wi, ∂g/∂wij , also
evaluated atu = ut, t = 1, . . . , T , are derived.

For the gradients of the multi-layer perceptron with respect to the network inputs∂g/∂uj we
obtain in a similar manner

∂g

∂uj
=

h∑
i=1

∂g

∂oi

∂oi

∂ôi

∂ôi

∂uj
=

h∑
i=1

wi (1 − oi)2 wij . (105)
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