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Abstract

The neural network filter architecture presented in this paper is well suited for a restricted
class of nonlinear adaptive filter applications. Our filter can model systems with long time
responses and it is able to learn to take into account additional parameters that influence
the filter response nonlinearly. Our filter was successfully used in a biomedical application
for the removal of the cardiac interference from magnetoencephalographic (MEG) data.

1 Introduction

Neural networks have been used in a number of adaptive nonlinear filter applications such
as interference cancellation [1], prediction of time-series [2, 3, 4] and speech recognition [5].
The neural architectures which were used in these applications are very general. Our paper
demonstrates that it is sometimes advantageous to relinquish some of this generality for
an architecture that is more efficient in a particular application. Recent work on on
complexity and generalization has demonstrated clearly that optimal performance can
only be achieved if the architecture and number of free parameters are chosen according
to the problem at hand: a system cannot be modeled by a network with insufficient
resources but, on the other hand, an architecture that is too complex requires a large
amount of training data to sufficiently specify all parameters in the network and, in
addition, it might generalize badly on new data.

We propose a neural network architecture that we have coined the neural impulse re-
sponse (NIR) filter, which is an efficient model for certain systems with complex responses.
Such systems can be found in biomedical applications (the heart beat is a complex re-
sponse to a heart trigger signal), industrial applications (adaptive noise cancellation) and
physiology (modeling the reaction to the administration of drugs). Our filter was suc-
cessfully used in a biomedical application for the removal of the cardiac interference from
magnetoencephalographic (MEG) data.



2 The NIR Filter

2.1 The Architecture

We consider a linear filter which can be described by

g(n) Zaf(n—i) k(i)+;9(n—i) r(i). (1)

The output of the filter is a linear superposition of present and past inputs f(n — i) and
past outputs g(n — 4). If the output depends only on the present and past inputs, the
equation describes a finite impulse response (FIR) filter. A generalization to a nonlinear
filter is described by

g(n) =N[f(n)...f(n = M),g(n = 1)...9(n — K)]. (2)

Here, the next sample depends nonlinearly on the inputs and outputs. If A/ is approxi-
mated by a neural network, one obtains as special cases the filter architecture of Lapedes
and Farber [2] or the time-delay neural network of Waibel [5].

We consider systems in which an input affects the output of the system over a long
time-period. A recursive network can model systems with long responses. The alternative
is to choose M to be equal to the length of the desired system response. This requires a
large number of inputs to the network and therefore results in inefficient training.

We suggest that for some systems with long responses, the neural impulse response
(NIR) filter architecture can be employed to generate models that can be trained effi-
ciently. The output of the NIR filter can be described by

g(n) = ;N[f(n —1),i,p(n — )] (3)

Similar to the FIR filter, the output of the filter is the sum of responses to previous
inputs to the system. The difference from an FIR filter is that the responses depend
nonlinearly on the input f(n — ¢), the time i that has passed since that input occurred
and the parameter vector p. The relation to an FIR filter becomes even more apparent
if we consider the following variation. If we assume that the f(n — i) linearly influences
the output, we obtain

g(n) = ZO f(n =) Nli,p(n — )] (4)

and if the filter is independent of p

g(n) = ZO f(n = )NTil. ()

In the last equation, there is only one input to the network and that is the time that
has passed since the input f(n — i) occurred. It describes an FIR filter with a filter
response that is modeled by a neural network. This, by itself, has certain advantages.
If M is large (in the following application around 400) it requires a lot of training data
to specify all the coefficients in an FIR filter. If the neural network has fewer than M
parameters, it can give a more efficient description of the filter function and therefore
require less training data to learn to approximate the filter response. A related fact is



that the neural network imposes an implicit complexity constraint on the filter response.
The complexity of an FIR filter is typically reduced by decreasing M. This can be done
by either decreasing the time window (which is what we do not want since we want the
filter to have a long response) or by decreasing the sample period, thus reducing the
bandwidth of the filter. The complexity of the neural network, on the other hand, is
defined by the number of neurons and weights in the network. A network has the ability
to assign resources wherever the data indicate that the function to be approximated is
complex, and assign few resources where the data indicate that a good approximation
can be achieved without many resources. In the application that is described later, for
example, the response has a narrow peak (QRS-complex!) but little complexity anywhere
else.

In Equation 4, the parameter vector p is an additional input to the network. Through
p, the response can be influenced by external, typically slowly changing parameters. In
medical applications one of these parameters can be respiration, and in other applications
it might be the time of day, the temperature or the humidity. Here, the efficiency of the
NIR filter is even more important. For a neural network, a new parameter simply requires
an additional input. If, on the other hand, for every possible p a new FIR filter needs to
be trained, the number of coefficients and, therefore, also the number of required training
data quickly becomes enormous.?

Equation 3, finally, describes the most general form of the NIR filter in which the
input f(n — 7) influences the response nonlinearly.

2.2 Training

In supervised learning, the task is to minimize
E=1/2) (gm(n) —g(n))*. (6)

Here, ¢,,(n) denotes the desired output of the system at time n. E can be minimized
using gradient descent, if a weight w in the network is updated such that

dg(n)
dw

Aw o<y (gm(n) — g(n)) (7)

with (considering Equation 3)

dg(n) L ONT[f(n —1i),i,p(n —i)]
dw _Z ow ’ (8)

1=0

2.3 Implementation

An implementation of an NIR filter requires an architecture similar to an FIR filter
(Figure 1A). In a buffer, we store the last M samples and the current sample of the input
f and the parameter vector p. For the calculation of a new output g(n), we successively
present f(n — i), p(n — i) and ¢ (i : 0...M) to the input of the neural network and sum
the corresponding outputs in the accumulator. For the next sample, the contents of the

!The QRS-complex is the predominant peak in a typical electro-cardiogram (ECG). See Figure 2.
’In a way, this corresponds to the representation of a regression function by either a look-up table
(FIR) or a neural network (NIR).
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Figure 1: NIR filter architecture. The architecture on the left corresponds to the fil-
ter described in Equation 3 and the architecture on the right to the filter described in
Equation 5.

buffers are shifted by one sample and a new sample of the input and the parameter
vector is entered into the buffer. As can be seen, the calculations are more involved than
with an FIR filter. Although a neural network should be used in the training phase,
the implementation might sometimes be more straightforward if the mapping which the
neural network has learned is stored in a look-up table, in particular, if the simplified filter
described in Equation 5 is used. For that filter, the architecture is shown in Figure 1B.
Here, f(n — i) is not applied to the network but multiplies the output of the neural
network. In the next section, we will show how the NIR architecture can be utilized in a
practical application.

3 Magnetoencephalography

In Magnetoencephalography (MEG), an array of highly sensitive superconducting SQUID
detectors is employed to scan noninvasively the minute magnetic fields produced by the
brain, e.g. with the Siemens KRENIKON®. These measurements are used to localize
sources of strong neural activity such as centers of epilepsy [7]. Since the magnetic field
of the earth is eight orders of magnitude larger than the magnetic field produced by the
brain, the measurements have to be performed in a magnetically shielded room. The
magnetic field produced in the cardiac muscle is a source of interference which cannot be
shielded as easily and also interferes with the measurement.

Removing the cardiac-interference is a difficult task® since neither MEG nor cardiac-
interference can be measured independently and a mathematical model of the physical and
physiological processes which generate the cardiac-interference are impossible to derive
from first principles. But since we can acquire an independent measurement of the source
of the interference signal in form of the electro-cardiogram (ECG), it is possible to train
a neural network to form a model of that process. In the training phase, the input to

3An alternative method for the removal of the cardiac-interference is described in [6].
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Figure 2: Removal of the cardiac-interference. C is the corrected MEG (C=B-D). A
comparison between E and F demonstrates how well the interference was removed. The
time window is approximately one heart beat (1 second).



the neural network is the ECG and the desired output is the measured MEG signal. In
the recall phase, the output of the neural network describes an estimate of the cardiac-
interference which then can be subtracted from the measured MEG. As has been already
shown by Widrow [1], necessary conditions for the neural network to be able to learn to
predict the cardiac-interference are

e desired signal (MEG) and interference are uncorrelated.
e reference signal and interference are correlated.

e the measured signal is a linear superposition of the interference and the desired
signal.

In the first experiments, we trained a linear filter and a time-delay neural network to learn
to predict the interference from samples of the EKG. Both architectures failed, mainly
because of the high order of the required filter and the strong nonlinearities.

In our approach, we simplified the problem by first nonlinearly extracting a delayed
estimate of the heart trigger from the EFCG by using a QRS-detector. The input to
the NIR filter has a unit sample at the peak of the QRS-complex and is equal to zero
elsewhere. A further input was the amplitude of the QRS-complex of the most recent
heart beat. Another relevant input would be the respiration because the heart moves
during breathing but this was not yet considered.

In the experiments we used a radial-basis-function neural network with typically 20
hidden units. Figure 2C shows the MEG signal after removal of the interference. In a
test, we averaged the MEG triggered on Ty. If the cardiac-interference is not completely
removed, it will add up in phase and should become visible after a number of averages.
Figure 2F shows that after interference removal the averaged signal consists mostly of
random noise.

4 Conclusion

The viability of the NIR filter was demonstrated on a difficult interference canceling
problem. The results demonstrate that a restricted problem-specific architecture should
generally be preferred over more general approaches. The NIR filter can generate complex
responses and should therefore also find applications in robotics to train and reproduce
complex time sequences, such as intricate movements of a joint.

Appendix

Here, we briefly describe a model of the generation of EKG and cardiac-interference C'. Both
ECG and cardiac-interference can be thought of as complex responses to the last heart trigger:
ECG(n) =Y, feca(i) Ta(n — i) and C(n) = >, fo(i)Tg(n —i). Here, Ty(n —i) = 1 if at
time n — 4 a heart trigger occurred and zero otherwise. The filter has to learn the complex
mapping fr = fo fEé‘G‘ The filter function fr can be simplified under certain circumstances
(for example, if fo = frca) but not in this application. The peak of the QRS-complex occurs at
a time interval after Ty, therefore, a QRS-detector can be used to generate a delayed estimate
of TH.
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