A Supplementary Material

A.1 Proof for Upper Bound on Multilinear Rank

In the following we will proof the upper bound on multilinear rank for lemma 3

Proof. Let rank $(X_m) = r_{max}$. It follows from the basic properties of matrix rank that X_m has r_{max} linearly independent rows. Since the unfolding of **X** in the first and second mode is a block matrix where the k-th block corresponds to X_k or its transpose, i.e.

$$\begin{split} \mathbf{X}_{(1)} &= \begin{bmatrix} X_1 & X_2 & \dots & X_K \end{bmatrix} \\ \mathbf{X}_{(2)} &= \begin{bmatrix} X_1^\top & X_2^\top & \dots & X_K^\top \end{bmatrix}, \end{split}$$

it follows that $X_{(1)}$ and $X_{(2)}$ have also at least r_{\max} linearly independent rows and at most $\sum_k \operatorname{rank}(X_k)$ independent rows, such that $\sum_k \operatorname{rank}(X_k) \ge r_1, r_2 \ge r_{\max}$

A.2 Link Prediction Methods

Table 3 lists typical examples for relational learning functions that we will consider for the construction of **M**. In table 3 score(v_1 , v_2) denotes the score that a function assigns to a link, while $N(v_1)$ denotes

Method	$\operatorname{score}(v_1, v_2)$
Common Neighbors	$ N(v_1) \cap N(v_2) $
Jaccard Coefficient	$\frac{ N(v_1) \cap N(v_2) }{ N(v_1) \cup N(v_2) }$
Adamic/Adar	$\sum_{z \in N(v_1) \cap N(v_2)} (\log N(z))^{-1}$
Katz	$\sum_{k=0}^{\infty} \beta^{k} \operatorname{paths}(v_1, v_2, k) $
Horn Clause	$\begin{cases} 1, & \text{if } P_1 \land P_2 \land \ldots \land P_n \\ 0, & \text{else.} \end{cases}$

Table 3: Link Prediction Heuristics

the set of neighbors of vertex v_1 , and path (v_1, v_2, k) denotes the set of all paths between vertices v_1 and v_2 of length k. For the definition of neighborhood in a digraph see definition 6:

Definition 6 (Neighorhood). Let $\Gamma = (\mathcal{V}, \mathcal{E})$ be a digraph. The in-neighborhood of a vertex v is defined as $N^-(v) = \{u | u \rightsquigarrow v \in \mathcal{E}\}$, the out-neighborhood is defined as $N^+(v) = \{u | v \rightsquigarrow u \in \mathcal{E}\}$, and the neighborhood of v is defined as $N^-(v) \cup N^+(v)$.

A.3 Computational Complexity of Tensor Factorizations

Here, we review the computational complexity of standard algorithms to compute tensor factorizations with regard to the rank of an adjacency tensor. Alternating least-squares algorithms (ALS) are the "workhorse" algorithms to compute the CP decomposition and the RESCAL factorization, while the higher-order orthogonal iterations (HOOI) algorithm is commonly used to compute the Tucker decomposition [2, 6].

Figure 3: Illustration of a diclique.

It can be verified easily that one iteration of CP-ALS scales quadratic with the number of entities and cubic with the number of latent components *r* when factorizing an adjacency tensor $\mathbf{X} \in \{0, 1\}^{N \times N \times K}$. To compute a single update of *C* (and analogously for *A* and *B*), the following term has to be computed

$$C \leftarrow X_{(1)}(B \odot A)(B^{\top}B * A^{\top}A)^{\dagger}.$$
(5)

Since $B^{\top}B * A^{\top}A$ is a $r \times r$ matrix, the computational complexity of $(B^{\top}B * A^{\top}A)^{\dagger}$ is $O(r^3)$. Furthermore, $B \odot A$ is an $N^2 \times r$ matrix, such that its computation needs $O(N^2r)$ operations.

To compute the Tucker decomposition using HOOI, it is necessary to compute the r_1 largest eigenvectors of $Y_{(1)}Y_{(1)}^{\top}$ where $Y_{(1)} = G_{(1)}(C \otimes B)^{\top}$. Since $Y_{(1)}$ is an $N \times r_2 r_3$ matrix, the matrix product $Y_{(1)}Y_{(1)}^{\top}$ alone already needs $O(N^2 r_2 r_3)$ operations. Furthermore, to compute the r_1 largest eigenvectors of a $N \times N$ matrix the implicitly restarted Arnoldi method (IRAM) is used which has a computational complexity of $O(Nr_1^2)$ [3]. Derivations for r_2 and r_3 are analogous.

RESCAL-ALS scales linearly with the data size, i.e. linearly with the number of entities, number of relations, and the number of known facts. The computational complexity with regard to the number of latent components r is $O(r^3)$. For a full derivation of the runtime complexity see Nickel [5].

A.4 Derivation of Updates for R_k and W

The improve updates for W can be derive from the following equality

$$(R \times_1 A \times_2 A)_{(3)} M_{(3)}^{\top} = R_{(3)} (A \otimes A)^{\top} M_{(3)}^{\top}$$

= $R_{(3)} (M_{(3)} (A \otimes A))^{\top}$
= $R_{(3)} (\mathbf{M} \times_1 A^{\top} \times_2 A^{\top})_{(3)}^{\top}$

Please note that A is not required to be orthonormal.

The runtime complexity of computing $(R \times_1 A \times_2 A)_{(3)}M_{(3)}^{\top}$ is $O(N^2Kr + \operatorname{nnz}(M)N)$, while the computational complexity of $R_{(3)}(\mathbf{M} \times_1 A^{\top} \times_2 A^{\top})_{(3)}$ is only $O(NKr^3 + \operatorname{nnz}(M)r)$.

A.5 Datasets

The datasets used in the evaluation are available from the following locations:

```
Social Evolution [4]http://realitycommons.media.mit.edu/socialevolution.htmlKinships Denham [1]http://alchemy.cs.washington.edu/data/kinships/SWRC [7]http://ontoware.org/swrc/Corahttp://people.cs.umass.edu/~mccallum/data.html
```

References

- [1] W. Denham. "The detection of patterns in Alyawarra nonverbal behavior". PhD thesis. University of Washington, 1973.
- [2] T. G. Kolda and B. W. Bader. "Tensor Decompositions and Applications". In: *SIAM Review* 51.3 (2009), pp. 455–500.
- [3] R. R. B. Lehoucq, D. D. C. Sorensen, and C.-C. Yang. Arpack User's Guide: Solution of Large-Scale Eigenvalue Problems With Implicityly Restarted Arnoldi Methods. Vol. 6. 1998.
- [4] A. Madan, M. Cebrian, S. Moturu, K. Farrahi, and S. Pentland. "Sensing the 'Health State' of a Community". In: (2012).
- [5] M. Nickel. "Tensor factorization for relational learning". PhD thesis. LMU München, 2013.
- [6] M. Nickel, V. Tresp, and H.-P. Kriegel. "Factorizing YAGO: scalable machine learning for linked data". In: Proceedings of the 21st international conference on World Wide Web. 2012, pp. 271–280.
- [7] Y. Sure, S. Bloehdorn, P. Haase, J. Hartmann, and D. Oberle. "The SWRC Ontology Semantic Web for Research Communities". In: *Progress in Artificial Intelligence*. 3808. 2005, pp. 218–231.