
A Supplementary Material

A.1 Proof for Upper Bound on Multilinear Rank

In the following we will proof the upper bound on multilinear rank for lemma 3

Proof. Let rankpXmq “ rmax. It follows from the basic properties of matrix rank that Xm has rmax
linearly independent rows. Since the unfolding of X in the first and second mode is a block matrix
where the k-th block corresponds to Xk or its transpose, i.e.

Xp1q “
“

X1 X2 . . . XK

‰

Xp2q “
“

XJ1 XJ2 . . . XJK
‰

,

it follows that Xp1q and Xp2q have also at least rmax linearly independent rows and at most
ř

k rankpXk q

independent rows, such that
ř

k rankpXk q ě r1,r2 ě rmax �

A.2 Link Prediction Methods

Table 3 lists typical examples for relational learning functions that we will consider for the construction
of M. In table 3 scorepv1,v2q denotes the score that a function assigns to a link, while Npv1q denotes

Table 3: Link Prediction Heuristics

.

Method scorepv1,v2q

Common Neighbors |Npv1q X Npv2q|

Jaccard Coefficient
|Npv1q X Npv2q|

|Npv1q Y Npv2q|

Adamic/Adar
ř

zPNpv1qXNpv2q
plog |Npzq|q´1

Katz
ř8

k βk | pathspv1,v2, kq|

Horn Clause
"

1, if P1 ^ P2 ^ . . . ^ Pn

0, else.

the set of neighbors of vertex v1, and pathpv1,v2, kq denotes the set of all paths between vertices v1
and v2 of length k. For the definition of neighborhood in a digraph see definition 6:

Definition 6 (Neighorhood). Let Γ “ pV ,Eq be a digraph. The in-neighborhood of a vertex v is
defined as N´pvq “ tu|u  v P Eu, the out-neighborhood is defined as N`pvq “ tu|v  u P Eu,
and the neighborhood of v is defined as N´pvq Y N`pvq.

A.3 Computational Complexity of Tensor Factorizations

Here, we review the computational complexity of standard algorithms to compute tensor factorizations
with regard to the rank of an adjacency tensor. Alternating least-squares algorithms (ALS) are the
“workhorse” algorithms to compute the CP decomposition and the RESCAL factorization, while
the higher-order orthogonal iterations (HOOI) algorithm is commonly used to computed the Tucker
decomposition [2, 6].
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Figure 3: Illustration of a diclique.
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It can be verified easily that one iteration of CP-ALS scales quadratic with the number of entities and
cubic with the number of latent components r when factorizing an adjacency tensor X P t0,1uNˆNˆK .
To compute a single update of C (and analogously for A and B), the following term has to be computed

C Ð Xp1qpB d AqpBJB ˚ AJAq:. (5)

Since BJB ˚ AJA is a r ˆ r matrix, the computational complexity of pBJB ˚ AJAq: is Opr3q.
Furthermore, B d A is an N2 ˆ r matrix, such that its computation needs OpN2rq operations.

To compute the Tucker decomposition using HOOI, it is necessary to compute the r1 largest eigen-
vectors of Yp1qYJp1q where Yp1q “ Gp1qpC b BqJ. Since Yp1q is an N ˆ r2r3 matrix, the matrix product

Yp1qYJp1q alone already needs OpN2r2r3q operations. Furthermore, to compute the r1 largest eigen-
vectors of a N ˆ N matrix the implicitly restarted Arnoldi method (IRAM) is used which has a
computational complexity of OpNr2

1q [3]. Derivations for r2 and r3 are analogous.

RESCAL-ALS scales linearly with the data size, i.e. linearly with the number of entities, number of
relations, and the number of known facts. The computational complexity with regard to the number
of latent components r is Opr3q. For a full derivation of the runtime complexity see Nickel [5].

A.4 Derivation of Updates for Rk and W

The improve updates for W can be derive from the following equality

pRˆ1 Aˆ2 Aqp3qMJ

p3q “ Rp3qpAb AqJMJ

p3q

“ Rp3q
`

Mp3qpAb Aq
˘J

“ Rp3q
`

Mˆ1 AJ ˆ2 AJ
˘J

p3q

Please note that A is not required to be orthonormal.

The runtime complexity of computing pR ˆ1 Aˆ2 Aqp3qMJ

p3q is OpN2Kr ` nnzpMqNq, while the

computational complexity of Rp3qpMˆ1 AJ ˆ2 AJqp3q is only OpNKr3 ` nnzpMqrq.

A.5 Datasets

The datasets used in the evaluation are available from the following locations:

Social Evolution [4] http://realitycommons.media.mit.edu/socialevolution.html
Kinships Denham [1] http://alchemy.cs.washington.edu/data/kinships/
SWRC [7] http://ontoware.org/swrc/
Cora https://people.cs.umass.edu/~mccallum/data.html
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