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Abstract

Tensor factorization has become a popular method for learning from multi-
relational data. In this context, the rank of the factorization is an important parame-
ter that determines runtime as well as generalization ability. To identify conditions
under which factorization is an efficient approach for learning from relational data,
we derive upper and lower bounds on the rank required to recover adjacency tensors.
Based on our findings, we propose a novel additive tensor factorization model
to learn from latent and observable patterns on multi-relational data and present
a scalable algorithm for computing the factorization. We show experimentally
both that the proposed additive model does improve the predictive performance
over pure latent variable methods and that it also reduces the required rank — and
therefore runtime and memory complexity — significantly.

1 Introduction

Relational and graph-structured data has become ubiquitous in many fields of application such
as social network analysis, bioinformatics, and artificial intelligence. Moreover, relational data is
generated in unprecedented amounts in projects like the Semantic Web, YAGO [26], NELL [4], and
Google’s Knowledge Graph [5] such that learning from relational data, and in particular learning from
large-scale relational data, has become an important subfield of machine learning. Existing approaches
to relational learning can approximately be divided into two groups: First, methods that explain
relationships via observable variables, i.e. via the observed relationships and attributes of entities, and
second, methods that explain relationships via a set of latent variables. The objective of latent variable
models is to infer the states of these hidden variables which, once known, permit the prediction
of unknown relationships. Methods for learning from observable variables cover a wide range of
approaches, e.g. inductive logic programming methods such as FOIL [22], statistical relational
learning methods such as Probabilistic Relational Models [6] and Markov Logic Networks [23], and
link prediction heuristics based on the Jaccard’s Coefficient and the Katz Centrality [16]. Important
examples of latent variable models for relational data include the IHRM and the IRM [28, 10], the
Mixed Membership Stochastic Blockmodel [1] and low-rank matrix factorizations [16, 25, 7]. More
recently, tensor factorization, a generalization of matrix factorization to higher-order data, has shown
state-of-the-art results for relationship prediction on multi-relational data [20, 8, 2, 13]. The number
of latent variables in tensor factorization is determined via the number of latent components used
in the factorization, which in turn is bounded by the factorization rank. While tensor and matrix
factorization algorithms scale typically well with the size of the data — which is one reason for their
appeal — they often do not scale well with respect to the rank of the factorization. For instance,
RESCAL is a state-of-the art relational learning method based on tensor factorization which can be
applied to large knowledge bases consisting of millions of entities and billions of known facts [21].
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However, while the runtime of the most scalable known algorithm to compute RESCAL scales
linearly with the number of entities, linearly with the number of relations, and linearly with the
number of known facts, it scales cubical with regard to the rank of the factorization [21].1 Moreover,
the memory requirements of tensor factorizations like RESCAL become quickly infeasible on large
data sets if the factorization rank is large and no additional sparsity of the factors is enforced. Hence,
tensor (and matrix) rank is a central parameter of factorization methods that determines generalization
ability as well as scalability. In this paper we study therefore how the rank of factorization methods
can be reduced while maintaining their predictive performance and scalability. We first analyze under
which conditions tensor and matrix factorization requires high or low rank on relational data. Based
on our findings, we then propose an additive tensor decomposition approach to reduce the required
rank of the factorization by combining latent and observable variable approaches.

This paper is organized as follows: In section 2 we develop the main theoretical results of this paper,
where we show that the rank of an adjacency tensor is lower bounded by the maximum number
of strongly connected components of a single relation and upper bounded by the sum of diclique
partition numbers of all relations. Based on our theoretical results, we propose in section 3 a novel
tensor decomposition approach for multi-relational data and present a scalable algorithm to compute
the decomposition. In section 4 we evaluate our model on various multi-relational datasets.

Preliminaries We will model relational data as a directed graph (digraph), i.e. as an ordered pair
Γ “ pV ,Eq of a nonempty set of verticesV and a set of directed edges E Ď V ˆV . An existing
edge between node vi and v j will be denoted by vi  v j . By a slight abuse of notation, ΓpY q will
indicate the digraph Γ associated with an adjacency matrix Y P t0,1uNˆN . Next, we will briefly
review further concepts of tensor and graph theory that are important for the course of this paper.
Definition 1. A strongly connected component of a digraph Γ is a maximal subgraph Ψ for which
every vertex is reachable from any other vertex in Ψ by following the directional edges in the subgraph.
A strongly connected component is trivial if it consists only of a single element, i.e. if it is of the form
Ψ “ ptviu,Hq, and nontrivial otherwise.

We will denote the number of strongly connected components in a digraph Γ by sccpΓq. The number
of nontrivially connected components will be denoted by scc`pΓq.
Definition 2. A digraph Γ “ pV ,Eq is a diclique if it is an orientation of a complete undirected
bipartite graph with bipartition pV1,V2q such that v1 P V1 and v2 P V2 for every edge v1  v2 P E.

Figure 3 in supplementary material A shows an example of a diclique. Please note that dicliques
consist only of trivially strongly connected components, as there cannot exist any cycles in a diclique.
Given the concept of a diclique, the diclique partitioning number of a digraph is defined as:
Definition 3. The diclique partition number dppΓq of a digraph Γ “ pV ,Eq is the minimum number
of dicliques such that each edge e P E is contained in exactly one diclique.

Tensors can be regarded as higher-order generalizations of vectors and matrices. In the following, we
will only consider third-order tensors of the form X P RIˆJˆK , although many concepts generalize
to higher-order tensors. The mode-n unfolding (or matricization) of X arranges the mode-n fibers
of X as the columns of a newly formed matrix and will be denoted by Xpnq. The tensor-matrix
product A “ X ˆn B multiplies the tensor X with the matrix B along the n-th mode of X such
that Apkq “ BXpkq. For a detailed introduction to tensors and these operations we refer the reader
to Kolda et al. [12]. The k-th frontal slice of a third-order tensor X P RIˆJˆK will be denoted by
Xk P RIˆJ . The outer product of vectors will be denoted by a ˝ b. In contrast to matrices, there exist
two non-equivalent notions of the rank of a tensor:
Definition 4. Let X P RIˆJˆK be a third-order tensor. The tensor rank t-rankpXq of X is defined as
t-rankpXq “ min tr |X “

řr
i“1 ai ˝ bi ˝ ciu where ai P RI , bi P RJ , and ci P RK . The multilinear

rank n-rankpXq of X is defined as the tuple pr1,r2,r3q, where ri “ rank
`

Xpiq
˘

.

To model multi-relational data as tensors, we use the following concept of an adjacency tensor:
Definition 5. Let G “ tpV ,Ek quKk“1 be a set of digraphs over the same set of vertices V , where
|V| “ N . The adjacency tensor of G is a third-order tensor X P t0,1uNˆNˆK with entries xi jk “ 1
if vi  v j P Ek and xi jk “ 0 otherwise.

1Similar results can be obtained for state-of-the-art algorithms to compute the well-known CP and Tucker
decompositions. Please see the supplementary material A.3 for the respective derivations.
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For a single digraph, an adjacency tensor is equivalent to the digraph’s adjacency matrix. Note that K
would correspond to the number of relation types in a domain.

2 On the Algebraic Complexity of Graph-Structured Data

In this section, we want to identify conditions under which tensor factorization can be considered
efficient for relational learning. Let X denote an observed adjacency tensor with missing or noisy
entries from which we seek to recover the true adjacency tensor Y. Rank affects both the predictive
as well as the runtime performance of a factorization: A high factorization rank will lead to poor
runtime performance while a low factorization rank might not be sufficient to model Y. We are
therefore interested in identifying upper and lower bounds on the minimal rank — either tensor rank
or multilinear rank — that is required such that a factorization can model the true adjacency tensor
Y. Please note that we are not concerned with bounds on the generalization error or the sample
complexity that is needed to learn a good model, but on bounds on the algebraic complexity that is
needed to express the true underlying data via factorizations. For sign-matrices Y P t˘1uNˆN , this
question has been discussed in combinatorics and communication complexity via their sign-rank
rank˘pY q, which is the minimal rank needed to recover the sign-pattern of Y :

rank˘pY q “ min
MPRNˆN

 

rankpMq
ˇ

ˇ@i, j : sgnpmi jq “ yi j
(

. (1)

Although the concept of sign-rank can be extended to adjacency tensors, bounds based on the sign-
rank would have only limited significance for our purpose, as no practical algorithms exist to find
the solution to equation (1). Instead, we provide upper and lower bounds on tensor and multilinear
rank, i.e. bounds on the exact recovery of Y, for the following reasons: It follows immediately
from (1) that any upper-bound on rankpYq will also hold for rank˘pYq since it has to hold that
rank˘pYq ď rankpYq. Upper bounds on rankpYq can therefore provide insight under what conditions
factorizations can be efficient on relational data — regardless whether we seek to recover exact values
or sign patterns. Lower bounds on rankpYq provide insight under what conditions the exact recovery
of Y can be inefficient. Therefore, such bounds provide also insight under which conditions the
recovery of the sign patterns in Y can potentially be inefficient.

Based on these considerations, we state now the main theorem of this paper, which bounds the
different notions of the rank of an adjacency tensor by the diclique partition number and the number
of strongly connected components of the involved relations:
Theorem 1. Tensor rank t-rankpYq and multilinear rank n-rankpYq “ pr1,r2,r3q of any adjacency
tensor Y P t0,1uNˆNˆK representing K relations tΓk pYk quKk“1 are bounded as

ÿK

k“1
dppΓk q ě θ ě max

k
scc`pΓk q,

where θ is any of the quantities t-rankpYq, r1, or r2.

To prove theorem 1 we will first derive upper and lower bounds on adjacency matrices and then show
how these bounds generalize to adjacency tensors.
Lemma 1. For any adjacency matrix Y P t0,1uNˆN it holds that dppΓq ě rankpY q ě scc`pΓq.

Proof. The upper bound of lemma 1 follows directly from the fact that dppΓpY qq “ rankNpY q and the
fact that rankNpY q ě rankpY q, where rankNpY q denotes the non-negative integer rank of the binary
matrix Y [18, see eq. 1.6.5 and eq. 1.7.1]. �

Next we will prove the lower bound of lemma 1. Let λipY q denote the i-th (complex) eigenvalue
of Y and let ΛpY q denote the spectrum of Y P RNˆN , i.e. the multiset of (complex) eigenvalues of
Y . Furthermore, let ρpY q “ maxi |λipY q| be the spectral radius of Y . Now, recall the celebrated
Perron-Frobenius theorem:
Theorem 2 ([24, Theorem 8.2]). Let Y P RNˆN with yi j ě 0 be a non-negative irreducible matrix.
Then ρpY q ą 0 is a simple eigenvalue of Y associated with a positive eigenvector.

Please note that a nontrivial digraph is strongly connected iff its adjacency matrix is irreducible [3,
Theorem 3.2.1]. Furthermore, an adjacency matrix is nilpotent iff the associated digraph is acyclic [3,
Section 9.8]. Hence, the adjacency matrix of a strongly connected component Ψ is nilpotent iff Ψ is
trivial. Given these considerations, we can now prove the lower bound of lemma 1:
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Lemma 2. For any non-negative adjacency matrix Y P RNˆN with yi j ě 0 of a weighted digraph Γ
it holds that rankpY q ě scc`pΓq.

Proof. Let Γ consist of k nontrivial strongly connected components. The Frobenius normal form B
of its associated adjacency matrix Y consists then of k irreducible matrices Bi on its block diagonal.
It follows from theorem 2 that each irreducible Bi has at least one nonzero eigenvalue. Since B is
block upper triangular, it holds also that ΛpBq “

Ťk
i“1 ΛpBiq. As the rank of a square matrix is

larger or equal to the number of its nonzero eigenvalues, it follows that rankpBq ě k. Lemma 2
follows from the fact that B is similar to Y and that matrix similarity preserves rank. �

So far, we have shown that rankpY q of an adjacency matrix Y is bounded by the diclique covering
number and the number of nontrivial strongly connected components of the associated digraph. To
complete the proof of theorem 1 we will now show that these bounds for unirelational data translate
directly to multi-relational data and to the different notions of the rank of an adjacency tensor. In
particular we will show that both notions of tensor rank are lower bounded by the maximum rank of
a single frontal slice in the tensor and upper bounded by the sum of the ranks of all frontal slices:
Lemma 3. The tensor rank t-rankpYq and multilinear rank n-rankpYq “ pr1,r2,r3q of any third-order
tensor Y P RIˆJˆK with frontal slices Yk are bounded as

ÿK

k“1
rankpYk q ě θ ě max

k
rankpYk q,

where θ is any of the quantities t-rankpYq, r1, or r2.

Proof. Due to space constraints, we will include only the proof for tensor rank. The proof for
multilinear rank can be found in supplementary material A.1. Let t-rankpYq “ r and rankpYk q “ rmax.
It can be seen from the definition of tensor rank that Yk “

řr
i“1 ckr parbJr q. Consequently, it follows

from the subadditivity of matrix rank, i.e. rankpA` Bq ď rankpAq ` rankpBq, that

rmax “ rank
`
řr

i“1 ckrarbJr
˘

ď
řr

i“1 rank
`

ckrarbJr
˘

ď r

where the last inequality follows from rank
`

ckrarbJr
˘

ď 1. Now we will derive the upper bound
of lemma 3 by providing a decomposition of Y with rank r “

ř

k rankpYk q that recovers Y exactly.
Let Yk “ Uk SkVJ

k
be the SVD of Yk with Sk “ diagpsk q. Furthermore, let U “ rU1 U2 ¨ ¨ ¨ UK s,

V “ rV1 V2 ¨ ¨ ¨ VK s, and let S be a block-diagonal matrix where the i-th block on the diagonal is
equal to sJi and all other entries are 0. It can be easily verified that

řr
i“1 ûi ˝ v̂i ˝ ŝi provides an exact

decomposition of Y, where r “
ř

k rankpYk q and ûi , v̂i , and ŝi are the i-th columns of the matrices
U, V , and S. The inequality in lemma 3 follows since r is not necessarily minimal. �

Theorem 1 can now be derived by combining lemmas 1 and 3 what concludes the proof.

Discussion It can be seen from theorem 1 that factorizations can be computationally efficient when
ř

k dppΓk q is small. However, factorizations can potentially be inefficient when scc`pΓk q is large
for any Γk in the data. For instance, consider an idealized marriedTo relation, where each person is
married to exactly one person. Evidently, for m marriages, the associated digraph would consist of
m strongly connected components, i.e. one component for each marriage. According to lemma 2,
a factorization model would at least require m latent components to recover this adjacency matrix
exactly. Consequently, an algorithm with cubic runtime complexity in the rank would only be able
to recover Y for this relation when the number of marriages is small, what limits its applicability
to these relations. A second important observation for multi-relational learning is that the lower
bound in theorem 1 depends only on the largest rank of a single frontal slice (i.e. a single adjacency
matrix) in Y. For multi-relational learning this means that regularities between different relations
can not decrease tensor or multilinear rank below the largest matrix rank of a single relation. For
instance, consider an N ˆ N ˆ 2 tensor Y where Y1 “ Y2. Clearly it holds that rankpYp3qq “ 1, such
that Y1 could easily be predicted from Y2 when Y2 is known. However, theorem 1 states that the rank
of the factorization must be at least rankpY1q — which can be arbitrarily large up to N — when
the first two modes of Y are also factorized. Please note that this is not a statement about sample
complexity or generalization error which can be reduced when factorizing all modes of a tensor, but
a statement about the minimal rank that is required to express the data. A last observation from the
previous discussion is that factorizations and observable variable methods excel at different aspects
of relationship prediction. For instance, predicting relationships in the idealized marriedTo relation
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can be done easily with Horn clauses and link predication heuristics as listed in supplementary
material A.2. In contrast, factorization methods would be inefficient in predicting links in this relation
as they would require at least one latent component for each marriage. At the same time, links in a
diclique of any size can trivially be modeled with a rank-2 factorization that indicates the partition
memberships, while standard neighborhood-based methods will fail on dicliques since — by the
definition of a diclique — there do not exist links within one partition yet the only vertices that share
neighbors are located in the same partition.

3 An Additive Relational Effects Model

RESCAL is a state-of-the-art relational learning method that is based on a constrained Tucker-
decomposition and as such is subject to bounds as in theorem 1. Motivated by the results of
section 2, we propose an additive tensor decomposition approach to combine the strengths of latent
and observable variable methods to reduce the rank requirements of RESCAL on multi-relational
data. To include the information of observable pattern methods in the factorization, we augment the
RESCAL model with an additive term that holds the predictions of observable pattern methods. In
particular, let X P t0,1uNˆNˆK be a third-order adjacency tensor and M P RNˆNˆP be a third-order
tensor that holds the predictions of an arbitrary number of relational learning methods. The proposed
additive relational effects model (ARE) decomposes X into

X « Rˆ1 Aˆ2 A`Mˆ3 W, (2)

where A P RNˆr , R P RrˆrˆK and W P RKˆP . The first term of equation (2) corresponds to
the RESCAL model which can be interpreted as following: The matrix A holds the latent variable
representations of the entities, while each frontal slice Rk of R is an asymmetric r ˆ r matrix that
models the interactions of the latent components for the k-th relation. The variable r denotes the
number of latent components of the factorization. An important aspect of RESCAL for relational
learning is that entities have a unique latent representation via the matrix A. This enables a relational
learning effect via the propagation of information over different relations and the occurrences of
entities as a subject or objects in relationships. For a detailed description of RESCAL we refer the
reader to Nickel et al. [20, 21]. After computing the factorization (2), the score for the existence of a
single relationship is calculated in ARE via pxi jk “ aTi R

k
a j `

řP
p“1 wk pmi j p .

The construction of the tensor M is of the following: Let F “ t f puPp“1 be a set of given real-valued
functions f p : V ˆV Ñ R which assign scores to each pair of entities inV . Examples of such score
functions include link prediction heuristics such as Common Neighbors, Katz Centrality, or Horn
clauses. Depending on the underlying model these scores can be interpreted as confidences value or as
probabilities that a relationship exists between two entities. We collect these real-valued predictions
of P score functions in the tensor M P RNˆNˆP by setting mi j p “ f ppvi ,v jq. Supplementary
material A.2 provides a detailed description of the construction of M for typical score functions. The
tensor M acts in the factorization as an independent source of information that predicts the existence
of relationships. The term Mˆ3 W can be interpreted as learning a set of weights wk p which indicate
how much the p-th score function in M correlates with the k-th relation in X. For this reason we refer
to M also as the oracle tensor. If M is composed of relation path features as proposed by Lao et al.
[15], the term MW is closely related to the Path Ranking Algorithm (PRA) [15].

The main idea of equation (2) is the following: The term Rˆ1 Aˆ2 A is equivalent to the RESCAL
model and provides an efficient approach to learn from latent patterns on relational data. The oracle
tensor M on the other hand is not factorized, such that it can hold information that is difficult to
predict via latent variable methods. As it is not clear a priori which score functions are good predictors
for which relations, the term Mˆ3 W learns a weighting of how predictive any score function is for
any relation. By integrating both terms in an additive model, the term Mˆ3 W can potentially reduce
the required rank for the RESCAL term by explaining links that, for instance, reduce the diclique
partition number of a digraph. Rules and operations that are likely to reduce the diclique partition
number of slices in X are therefore good candidates to be included in M. For instance, by including a
copy of the observed adjacency tensor X in M (or some selected frontal slices Xk ), the term Mˆ3 W
can easily model common multi-relational patterns where the existence of a relationship in one
relation correlates with the existence of a relationship between the same entities in another relation
via xi jk “

ř

p‰k wk p xi j p . Since wk p is allowed to be negative, anti-correlations can be modeled

5



efficiently. ARE is similar in spirit to the model of Koren [14], which extends SVD with additive
terms to include local neighborhood information in an uni-relational recommendation setting and
Jiang et al. [9] which uses an additive matrix factorization model for link prediction. Furthermore, the
recently proposed Google Knowledge Vault (KV) [5] considers a combination of PRA and a neural
network model related to RESCAL for learning from large multi-relational datasets. However, in KV
both models are trained separately and combined only later in a separate fusion step, whereas ARE
learns both models jointly what leads to the desired rank-reduction effect.

To compute ARE, we pursue a similar optimization scheme as used for RESCAL which has been
shown to scale to large datasets [21]. In particular, we solve the regularized optimization problem

min
A,R,W

}X´ pRˆ1 Aˆ2 A`Mˆ3 Wq}2F ` λA}A}2F ` λR}R}2F ` λW }W}2F . (3)

via alternating least-squares, which is a block-coordinate optimization method in which blocks of
variables are updated alternatingly until convergence. For equation (3) the variable blocks are given
naturally by the factors A, R, and W .

Updates for W Let E “ pX´ Rˆ1 Aˆ2 Aq and I be the identity matrix. We rewrite equation (2)
as Ep3q « W Mp3q such that equation (3) becomes a regularized least-squares problem when solving
for W . It follows that updates for W can be computed via W Ð pM

p3qM
J

p3q ` λW Iq´1 M
p3qE

J

p3q.
However, performing the updates in this way would be very inefficient as it involves the computation
of the dense N ˆ N ˆ K tensor R ˆ1 Aˆ2 A. This would quickly lead to scalability issues with
regard to runtime and memory requirements. To overcome this issue, we rewrite M

p3qE
J

p3q using the

equality pRˆ1 Aˆ2 Aq
p3qM

J

p3q “ R
p3qpMˆ1 AJ ˆ2 AJqJ

p3q. Updates for W can then be computed
efficiently as

WJ Ð

”

X
p3qM

J

p3q ´ R
p3qpMˆ1 AJ ˆ2 AJqJ

p3q

ı

pM
p3qM

J

p3q ` λW Iq´1. (4)

In equation (4) the dense tensor Rˆ1 Aˆ2 A is never computed explicitly and the computational
complexity with regard to the parameters N , K , and r is reduced from OpN2Krq to OpNKr3q.
Furthermore, all terms in equation (4) except R

p3qpMˆ1 AJ ˆ2 AJqJ
p3q are constant and have only to

be computed once at the beginning of the algorithm. Finally, Xp3qMJ

p3q and Mp3qMJ

p3q are the products
of sparse matrices such that their computational complexity depends only on the number of nonzeros
in X or M. A full derivation of equation (4) can be found in the supplementary material A.4.

Updates for A and R The updates for A and R can be derived directly from the RESCAL-ALS
algorithm by setting E “ X´Mˆ3 W and computing the RESCAL factorization of E. The updates
for A can therefore be computed by:

A Ð
´

ÿK

k“1
Ek ARJk ` EJk ARk

¯´

ÿK

k“1
Rk AJARJk ` RJk AJARk ` λI

¯´1

where Ek “ Xk ´Mˆ3 wk and wk denotes the k-th row of W .

The updates of R can be computed in the following way: Let A “ UΣVJ be the SVD of A, where σi

is the i-th singular value of A. Furthemore, let S be a matrix with entries si j “ σiσ j{pσ
2
i σ

2
j ` λRq.

An update of Rk can then be computed via Rk Ð V
`

S ˚ pUJpXk ´Mˆ3 wk qUq
˘

VJ, where “˚”
denotes the Hadamard product. For a full derivation of these updates please see [19].

4 Evaluation

We evaluated ARE on various multi-relational datasets where we were in particular interested in its
generalization ability relative to the factorization rank. For comparison, we included the well-known
CP and Tucker tensor factorizations in the evaluation, as well as RESCAL and the non-latent model
X « Mˆ3 W (in the following denoted by MW ). In all experiments, the oracle tensor M used in MW
and ARE is identical, such that the results of MW can be regarded as a baseline for the contribution
of the heuristic methods to ARE. Following [10, 11, 27, 20] we used k-fold cross-validation for the
evaluation, partitioning the entries of the adjacency tensor into training, validation, and test sets. In
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Figure 1: Evaluation results for AUC-PR on the Kinships (1a) and Social Evolution data sets (1b-1f).

the test and validation folds all entries are set to 0. Due to the large imbalance of true and false
relationships, we used the area under the precision-recall curve (AUC-PR) to measure predictive
performance, which is known to behave better with imbalanced classes then AUC-ROC. All AUC-PR
results are averaged over the different test-folds. Links and references for the datasets used in the
evaluation are provided in the supplementary material A.5.

Social Evolution First, we evaluated ARE on a dataset consisting of multiple relations of persons
living in an undergraduate dormitory. From the relational data, we constructed a 84ˆ84ˆ5 adjacency
tensor where two modes correspond to persons and the third mode represents the relations between
these persons such as friendship (CloseFriend), social media interaction (BlogLivejournalTwitter
and FacebookAllTaggedPhotos), political discussion (PoliticalDiscussant), and social interaction
(SocializeTwicePerWeek). For each relation, we performed link prediction via 5-fold cross validation.
The oracle tensor M consisted only of a copy of the observed tensor X. Including X in M allows
ARE to efficiently exploit patterns where the existence of a social relationship for a particular pair
of persons is predictive for other social interactions between exactly this pair of persons (e.g. close
friends are more likely to socialize twice per week). It can be seen from the results in figure 1(b´ f )
that ARE achieves better performance than all competing approaches and already achieves excellent
performance at a very low rank, what supports our theoretical considerations.

Kinship The Kinship dataset describes the kinship relations in the Australian Alyawarra tribe
in terms of 26 kinship relations between 104 persons. The task in the experiment was to predict
unknown kinship relations via 10-fold cross validation in the same manner as in [20]. Table 1 shows
the improvement of ARE over state-of-the-art relational learning methods. Figure 1a shows the
predictive performance compared to the rank of multiple factorization methods. It can be seen that
ARE outperforms all other methods significantly for lower rank. Moreover, starting from rank 40
ARE gives already comparable results to the best results in table 1. As in the previous experiments,
M consisted only of a copy of X. On this dataset, the copy of X allows ARE to model efficiently that
the relations in the data are mutually exclusive by setting wii ą 0 and wi j ă 0 for all i ‰ j. This
also explains the large improvement of ARE over RESCAL for small ranks.

Link Prediction on Semantic Web Data The SWRC ontology models a research group in terms
of people, publications, projects, and research interests. The task in our experiments was to predict
the affiliation relation, i.e. to map persons to research groups. We followed the experimental setting
in [17]: From the raw data, we created a 12058 ˆ 12058 ˆ 85 tensor by considering all directly
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connected entities of persons and research groups. In total, 168 persons and 5 research groups are
considered in the evaluation data. The oracle tensor M consisted again of a copy of X and of the
common neighbor heuristics Xi Xi and XJi XJi . These heuristics were included to model patterns like
people who share the same research interest are likely in the same affiliation or a person is related
to a department if the person belongs to a group in the department. We also imposed a sparsity
penalty on W to prune away inactive heuristics during iterations. Table 2 shows that ARE improved
the results significantly over three state-of-the-art link prediction methods for Semantic Web data.
Moreover, whereas RESCAL required a rank of 45, ARE required only a small rank of 15.

Figure 2: Runtime on Cora

10−1 100 101 102

Time (s)

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

nD
C

G

RESCAL
ARE

Table 1: Evaluation Results on Kinships.

MRC BCTF LFM RESCAL ARE
[11] [27] [8]

AUC 86 90 94.6 96 96.9
Rank - - (50,50,500) 100 90

Table 2: Evaluation results on SWRC.

SVD Subtrees [17] RESCAL MW ARE

nDCG 0.8 0.95 0.96 0.59 0.99

Runtime Performance To evaluate the trade-off between runtime and predictive performance
we recorded the nDCG values of RESCAL and ARE after each iteration of the respective ALS
algorithms on the Cora citation database. We used the variant of Cora in which all publications are
organized in a hierarchy of topics with two to three levels and 68 leaves. The relational data consists
of information about paper citations, authors and topics from which a tensor of size 28073ˆ28073ˆ3
is constructed. The oracle tensor consisted of a copy of X and the common neighbor patterns Xi X j

and XJi XJj to model patterns such that a cited paper shares the same topic, a cited paper shares
the same author etc. The task of the experiment was to predict the leaf topic of papers by 5-fold
cross-validation on a moderate PC with Intel(R) Core i5 @3.1GHz, 4G RAM. The optimal rank 220
for RESCAL was determined out of the range r10,300s via parameter selection. For ARE we used a
significantly smaller rank 20. Figure 2 shows the runtime of RESCAL and ARE compared to their
predictive performance. It is evident that ARE outperforms RESCAL after a few iterations although
the rank of the factorization is decreased by an order of magnitude. Moreover, ARE surpasses
the best prediction results of RESCAL in terms of total runtime even before the first iteration of
RESCAL-ALS has terminated.

5 Concluding Remarks

In this paper we considered learning from latent and observable patterns on multi-relational data.
We showed analytically that the rank of adjacency tensors is upper bounded by the sum of diclique
partition numbers and lower bounded by the maximum number of strongly connected components of
any relation in the data. Based on our theoretical results, we proposed an additive tensor factorization
approach for learning from multi-relational data which combines strengths from latent and observable
variable methods. Furthermore we presented an efficient and scalable algorithm to compute the
factorization. Experimentally we showed that the proposed approach does not only increase the
predictive performance but is also very successful in reducing the required rank — and therefore also
the required runtime — of the factorization. The proposed additive model is one option to overcome
the rank-scalability problem outlined in section 2, however not the only one. In future work we intend
to investigate to what extent sparse or hierarchical models can be used to the same effect.

Acknowledgements Maximilian Nickel acknowledges support by the Center for Brains, Minds and Ma-
chines (CBMM), funded by NSF STC award CCF-1231216. We thank Youssef Mroueh and Lorenzo Rosasco
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A Supplementary Material

A.1 Proof for Upper Bound on Multilinear Rank

In the following we will proof the upper bound on multilinear rank for lemma 3

Proof. Let rankpXmq “ rmax. It follows from the basic properties of matrix rank that Xm has rmax
linearly independent rows. Since the unfolding of X in the first and second mode is a block matrix
where the k-th block corresponds to Xk or its transpose, i.e.

Xp1q “
“

X1 X2 . . . XK

‰

Xp2q “
“

XJ1 XJ2 . . . XJK
‰

,

it follows that Xp1q and Xp2q have also at least rmax linearly independent rows and at most
ř

k rankpXk q

independent rows, such that
ř

k rankpXk q ě r1,r2 ě rmax �

A.2 Link Prediction Methods

Table 3 lists typical examples for relational learning functions that we will consider for the construction
of M. In table 3 scorepv1,v2q denotes the score that a function assigns to a link, while Npv1q denotes

Table 3: Link Prediction Heuristics

.

Method scorepv1,v2q

Common Neighbors |Npv1q X Npv2q|

Jaccard Coefficient
|Npv1q X Npv2q|

|Npv1q Y Npv2q|

Adamic/Adar
ř

zPNpv1qXNpv2q
plog |Npzq|q´1

Katz
ř8

k βk | pathspv1,v2, kq|

Horn Clause
"

1, if P1 ^ P2 ^ . . . ^ Pn

0, else.

the set of neighbors of vertex v1, and pathpv1,v2, kq denotes the set of all paths between vertices v1
and v2 of length k. For the definition of neighborhood in a digraph see definition 6:

Definition 6 (Neighorhood). Let Γ “ pV ,Eq be a digraph. The in-neighborhood of a vertex v is
defined as N´pvq “ tu|u  v P Eu, the out-neighborhood is defined as N`pvq “ tu|v  u P Eu,
and the neighborhood of v is defined as N´pvq Y N`pvq.

A.3 Computational Complexity of Tensor Factorizations

Here, we review the computational complexity of standard algorithms to compute tensor factorizations
with regard to the rank of an adjacency tensor. Alternating least-squares algorithms (ALS) are the
“workhorse” algorithms to compute the CP decomposition and the RESCAL factorization, while
the higher-order orthogonal iterations (HOOI) algorithm is commonly used to computed the Tucker
decomposition [2, 6].

¨ ¨ ¨

¨ ¨ ¨

V1

V2

Figure 3: Illustration of a diclique.
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It can be verified easily that one iteration of CP-ALS scales quadratic with the number of entities and
cubic with the number of latent components r when factorizing an adjacency tensor X P t0,1uNˆNˆK .
To compute a single update of C (and analogously for A and B), the following term has to be computed

C Ð Xp1qpB d AqpBJB ˚ AJAq:. (5)

Since BJB ˚ AJA is a r ˆ r matrix, the computational complexity of pBJB ˚ AJAq: is Opr3q.
Furthermore, B d A is an N2 ˆ r matrix, such that its computation needs OpN2rq operations.

To compute the Tucker decomposition using HOOI, it is necessary to compute the r1 largest eigen-
vectors of Yp1qYJp1q where Yp1q “ Gp1qpC b BqJ. Since Yp1q is an N ˆ r2r3 matrix, the matrix product

Yp1qYJp1q alone already needs OpN2r2r3q operations. Furthermore, to compute the r1 largest eigen-
vectors of a N ˆ N matrix the implicitly restarted Arnoldi method (IRAM) is used which has a
computational complexity of OpNr2

1q [3]. Derivations for r2 and r3 are analogous.

RESCAL-ALS scales linearly with the data size, i.e. linearly with the number of entities, number of
relations, and the number of known facts. The computational complexity with regard to the number
of latent components r is Opr3q. For a full derivation of the runtime complexity see Nickel [5].

A.4 Derivation of Updates for Rk and W

The improve updates for W can be derive from the following equality

pRˆ1 Aˆ2 Aqp3qMJ

p3q “ Rp3qpAb AqJMJ

p3q

“ Rp3q
`

Mp3qpAb Aq
˘J

“ Rp3q
`

Mˆ1 AJ ˆ2 AJ
˘J

p3q

Please note that A is not required to be orthonormal.

The runtime complexity of computing pR ˆ1 Aˆ2 Aqp3qMJ

p3q is OpN2Kr ` nnzpMqNq, while the

computational complexity of Rp3qpMˆ1 AJ ˆ2 AJqp3q is only OpNKr3 ` nnzpMqrq.

A.5 Datasets

The datasets used in the evaluation are available from the following locations:

Social Evolution [4] http://realitycommons.media.mit.edu/socialevolution.html
Kinships Denham [1] http://alchemy.cs.washington.edu/data/kinships/
SWRC [7] http://ontoware.org/swrc/
Cora https://people.cs.umass.edu/~mccallum/data.html
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