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Abstract
Due to their flexible nonparametric nature, Gaus-
sian process models are very effective at solving
hard machine learning problems. While existing
Gaussian process models focus on modeling one
single relation, we present a generalized GP model,
named multi-relational Gaussian process model,
that is able to deal with an arbitrary number of rela-
tions in a domain of interest. The proposed model
is analyzed in the context of bipartite, directed, and
undirected univariate relations. Experimental re-
sults on real-world datasets show that exploiting the
correlations among different entity types and rela-
tions can indeed improve prediction performance.

1 Introduction
The analysis of complex relational data is of growing inter-
est within the machine learning community. In relational
data, relationships between entities are highly informative
for learning tasks. The past few years have seen a surge of
interest in the field of statistical relational learning (SRL),
which combines expressive knowledge representation for-
malisms with statistical approaches to perform probabilistic
inference and learning on relational networks [Getoor and
Taskar, 2007]. Example applications of SRL are social net-
work analysis, web mining, and citation graph analysis. An
example of social movie recommendation system is illus-
trated in Fig. 1. There are two types of entities (person,
movie) with different attributes such as gender and genre
and two (typed) relations (friend : person× person,
like : person× movie). Statistical relational learning
can exploit the additional correlations revealed by multi-
relational knowledge to improve recommendation quality,
e.g. if friends of a person tend to rate dramas higher than
comedies, then this might reflect her preference as well, with
some probability.

Most SRL approaches are parametric, i.e., they focus on
probabilistic models with finitely many parameters. In turn,
they face the challenging model selection problem of seek-
ing the single structural representation (cliques as well as
the classes of potential functions) that performs best. In
contrast, nonparametric Bayesian approaches, i.e. probabilis-
tic models with infinitely many parameters can deal grace-

Figure 1: Social movie recommendation as an example for
multi-relational data. Top: Colors resp. lines styles encode
the different types of entities and relations. Bottom: Single-
relational and hence colorless variant.

fully with the problem of model selection because compet-
ing models contribute to the overall prediction. Major re-
search works in nonparametric Bayesian SRL approaches are
NP-BLOG [Carbonetto et al., 2005], infinite (hidden) rela-
tional models [Kemp et al., 2006; Xu et al., 2006], and rela-
tional Gaussian processes [Chu et al., 2006; Yu et al., 2006;
Yu and Chu, 2007; Silva et al., 2007].

Considering the movie recommendation example, we can
model it with Gaussian processes along the lines of Chu et
al. [2006] based on the friend relation only. Essentially,
we introduce latent variables f(xi) (shortened as fi) for the
noise-free recommendations drawn from a Gaussian process
for each person. xi is an attribute vector of person i. Now,
we add relational information by conditioning on relational
indicators such as friend. That is we let friendi,j be an
indicator that assumes different values 1 or 0 depending on
whether person i is a friend of j or not. Then a likelihood
distribution P (friendi,j = 1|fi, fj) can be defined with a
sigmoid function. It essentially encodes a constraint on fi and
fj making sure that fi and fj correlate if friendi,j is true.
The evidence is incorporated into the Gaussian process by
conditioning on all indicators that are positive. The essential
dependency structure of the probabilistic model is depicted in
Fig. 2(c).

Chu et al.’s as well as other Gaussian process models only



Figure 2: Graphical representation of (a) RGPs [Chu et al., 2006], (b) XGPs [Silva et al., 2007], and (c) MRGPs for a single
univariate relation. Here, yi and R1,2 respectively denote the observed entity class labels and univariate relations. The nodes
εi denote Gaussian noise. Nodes f1 and f2 are latent variables sharing a common Gaussian process, which can be viewed as
function values of entity attributes. Nodes g1 and g2 are latent variables sharing another Gaussian process, which can be viewed
as function values of relations. The graphical representations highlight that MRGPs essentially combine RGPs and XGPs.

focus on one single relation between two types of entities.
In this paper, we present a multi-relational Gaussian process
(MRGP) model that is able to deal with an arbitrary number
of relations and entity types in a domain of interest. The key
idea is to introduce latent random variables gi resp. fi for
all relations and entity types as depicted in Fig. 2(c). Now,
we model the relational indicator friendi,j is conditioned
on the linear combination of all latent variables involved in
the relation. Because we condition on the indicators, the
relation-wise and entity-wise Gaussian processes exchanges
information between the participating GPs through the entire
multi-relational network. Our experiments on real-world data
demonstrate that simultaneously utilizing all relations and en-
tity types in a domain of interest can indeed improve the qual-
ity of predictions.

The paper is organized as follows. We start off with related
work. Then, we will introduce MRGPs and discuss how to
model different types of relations in Sec. 3. Sec. 4 will de-
scribe approximate inference and hyperparameter estimation.
Before concluding, we will present the experimental results
in Sec. 5.

2 Related Work
There have been many research efforts in multi-relational
learning [Getoor and Taskar, 2007; De Raedt, 2008]. The
application of Gaussian processes [Rasmussen and Williams,
2006] to relational learning, however, has been fairly re-
cent. Two issues need to be addressed for relational Gaus-
sian process models: First, one needs to decide at which
level the Gaussian processes are defined, and, second, one
needs to decide how to incorporate the relation knowledge.
One line of research [Chu et al., 2006; Yu et al., 2006;
Yu and Chu, 2007] introduced GP models where the same
type of entities share a common GP. For each entity i of type
c, there are d latent variables associated (d = 1 in [Chu et al.,
2006]), all of which are generated from GP c. In MRGPs, as
we will show in the next section, there are Gaussian processes
introduced for each type of relations. Similar to MRGPs,
Silva et al. [Silva et al., 2007] use a Gaussian process re-
served to model the relations but here only one Gaussian pro-
cess is employed. For modeling relations, there have been es-

sentially two strategies followed in existing work. One is en-
coding relations in the covariance matrix [Zhu et al., 2005;
Silva et al., 2007]. The other is encoding relations as ran-
dom variables conditioned on the latent variables of enti-
ties involved in relations [Chu et al., 2006; Yu et al., 2006;
Yu and Chu, 2007]. In MRGPs, we essentially combine the
two strategies. An important property of relational system
is that predicted relations depend on known relations. For
example, prescribed procedures u of a patient will influence
his future procedure u∗ with likelihood P (u∗|f(u)), where
f(·) is a nonparameterized function of the prescribed proce-
dures. Thus it is natural to encode relations both in the co-
variance matrix and as random variables. Fig. 2 illustrates
the differences between these models. The linear combina-
tion of latent variables used in MRGPs is similar to Singh
and Gordon’s [2008] generalization of linear models to multi-
relational domains.

3 Multi-relational Gaussian Process Model
In this section, we will give a detailed description of the
multi-relational GP (MRGP) model, and analyze it in the con-
text of different types of relations.

3.1 Basic Idea
Reconsider our social movie recommendation scenario.
Multi-relational GP models have several latent variables for
each entity and several latent variables for each relation.
The latent variables capture the basic information about en-
tities and relations. Specifically, let’s first consider the en-
tities, i.e. persons and movies. To capture the basic infor-
mation/profile of a person (that a priori only depends on the
person’s attribute) we add a variable for the person
fpi ∼ GP (0,Σp) /*basic profile of persons*/.

In the example, each person can be involved in two relations:
friend and like. Therefore we add
gfriend,pi ∼ GP (0,Σfriend,p) /*preference on friendships*/

hlike,pi ∼ GP (0,Σlike,p) /*preference on movies*/
encoding the person’s preference on friendships and movies.
Similarly, we proceed for movies. Because movies are only



involved in the like relation, we add only two latent vari-
ables, namely fmk ∼ GP (0,Σm) capturing a movie’s ba-
sic profile and hlike,mk ∼ GP (0,Σlike,m) representing a
movie’s role in the like relation. The latent variables are
coupled via the observed relations. We represent each rela-
tion as a random variable, which is a common child of all la-
tent variables involved in the relation. Consider for example
the like relation between person i and movie k. We intro-
duce the variableRlikei,k as a common child of fpi , fmk , hlike,pi ,
and hlike,mk . To represent the infinitely many values the par-
ents can take in the conditional probability distribution, we
aggregate their joint state in a variable ξlikei,k . Several aggre-
gation function are possible. In this paper, we use a linear
combination, i.e.,

ξlikei,k = (fpi , f
m
k , h

like,p
i , hlike,mk )·ωlike /*aggregate*/,

where ωlike is a vector of mixing weights. Then, we set

P (Rlikei,k |ξlikei,k ) = Φ(ξlikei,k ) /*relation indicator*/,

where Φ(·) is a sigmoid function. Now, conditioning onRlikei,k

couples the relevant latent variables. Note that with the latent
variable fpi representing basic profiles of entities, relations of
different types are coupled together. Similarly, the class label
ypi of a person i can be modeled as P (ypi |ξ

p
i ) = Φ(ξpi ), where

ξpi = (fpi , h
like,p
i , gfriend,pi )·ωp. In other words, persons

are classified taking all (heterogeneous) information about the
persons into account.

The basic idea underlying the MRGP model can also be
formulated in the following way. Assume that the class la-
bel ypi of a person i is conditioned on a function value ξpi of
person attributes xi, friendships ui and favorite movies vi:

ξpi = φ(xi, ui, vi)·ω, ω ∼ N (0,Ω),

where φ(·) is a set of basis functions mapping the input vec-
tor into a higher dimensional feature space where the in-
put vectors are (obviously) distinct. Since xi, ui and vi
come from different information sources, it is natural that
in different, higher dimensional feature spaces (i.e., mapping
functions), the heterogeneous inputs are distinguished respec-
tively. Thus, we introduce for each information source a dis-
tinct set of basis functions, and get a multiple GP model.

ξpi = (φ1(xi)·ω1, φ2(ui)·ω2, φ3(vi)·ω3)·ωp.

Note, that ω1, ω2 and ω3 are vectors of different dimension-
ality. Finally, ωp is a three dimensional weight vector, which
combines the latent function values together.

3.2 The Model
The social movie recommendation example can be general-
ized to the general multi-relational case as summarized in
Fig. 2(c):
• With each entity type c, there are multiple Gaussian pro-

cesses associated: GP (0,Σc) for entity attributes, and
GP (0,Σr,c) for each relation b in which this type of en-
tities participate.
• For each entity i of type c:

– Add a latent variable f ci drawn fromGP (0,Σc) en-
coding the essential property of the entity.

– Add a latent variable gr,ci drawn from GP (0,Σr,c),
if the entity is involved in the relation r. It repre-
sents the hidden causes for the entity to be involved
in the relation r.

• Each relation Rri,j between entities i and j has two
states, +1 if the relation is true, −1 otherwise. The like-
lihood is P (Rri,j = +1|ξri,j) = Φ(ξri,j), where Φ(·) is a
sigmoid function and ξbi,j aggregates the involved latent
variables. For simplification, we use a linear model:

ξri,j = ωr1f
ci
i + ωr2f

cj

j + ωr3g
r,ci

i + ωr4g
r,cj

j , (1)

where ci and cj are the types of the entities i and j,
ωr = (ωr1, . . . , ω

r
4) is a vector of mixing weights. Since

the weights are just to scale the latent variables, we can
integrate them into the parameters of covariance func-
tions, then Eq. (1) simplifies to

ξri,j = f ci
i + f

cj

j + gr,ci

i + g
r,cj

j . (2)

Assuming finitely many entities and relations it is clear that
a MRGP is well-defined, i.e., it encodes a proper probability
density. Moreover, the latent variable f ci is involved in all
relations the entity i appears in. Consequently different types
of relations are coupled, which also motivates the name of our
model: multi-relational Gaussian processes.

3.3 Types of Relations
In real-world domains, one typically encounters several types
of relations: bipartite relations between different entity types,
directed and undirected relations between entities of the same
type. Within MRGPs, we can easily encode the different
types of relations. Notice that latent variables on relations of
the same type share a Gaussian process with mean function
µ = E(ξri,j) and covariance function k(ξri,j , ξ

r
i′,j′). Without

loss of generality, we assume the mean is zero. By using the
right covariance function, we can encode the different types
of relations as will show now.

Bipartite relations involve entities of different types,
e.g., like: person × movie. The latent variable of a rela-
tion between a person i and a movie k can be written as

ξlikei,k = fpi + fmk + glike,pi + glike,mk . (3)

Intuitively, fpi and fmk respectively represent the essential
profiles of the person i and the movie k, glike,pi and glike,mk re-
spectively represent the preference of the person i on movies
and the preference of the movie k on persons. Eq. (3) reveals
that whether a person likes a movie is dependent on the per-
son’s profile, the movie’s profile, and the person’s preference
on movies, as well as the movie’s preference on persons. The
corresponding covariance function can be written as

k(ξlikei,j , ξ
like
i′,j′) = Σpi,i′ + Σmj,j′ + Σlike,pi,i′ + Σlike,mj,j′ . (4)

In directed univariate relations, the pairs of entities are
of the same type but ordered. Consider e.g. citations of pa-
pers cite: paper × paper. Such relations give raise to non-
symmetric matrixes, and the entities typically play different



roles such as the citing and the cited paper. The latent variable
of a relation from a paper i to a paper j is written as

ξcitei,j = fpi + fpj + gcitingi + gcitedj . (5)

because the relation is univariate, fpi and fpj are drawn from
the same GP. The latent variables gcitingi and gcitedj , how-
ever, are drawn from different GPs, since they represent the
preferences of the different roles. The covariance function
k(ξcitei,j , ξ

cite
i′,j′) can be set to

Σpi,i′ + Σpi,j′ + Σpj,i′ + Σpj,j′ + Σcitingi,i′ + Σcitedj,j′ . (6)

Undirected univariate relations are symmetric, i.e., there
is no semantic direction. As an example consider friend:
person × person. The latent variable of a relation from a
person i to a person j is written as

ξfriendi,j = fpi + fpj + gfriend,pi + gfriend,pj . (7)

Because the two involved entities play the same role, we do
not need to distinguish them, thus gfriend,pi and gfriend,pj
are drawn from the same GP. The covariance function
k(ξfriendi,j , ξfriendi′,j′ ) is set to

Σpi,i′ + Σpi,j′ + Σpj,i′ + Σpj,j′ + Σfriend,pi,i′ + Σfriend,pi,j′

+ Σfriend,pj,i′ + Σfriend,pj,j′ , (8)

which is indeed symmetric because the following four co-
variances between relations Ri,j , Rj,i, Ri′,j′ , Rj′,i′ equal:
k(ξfriendi,j , ξfriendi′,j′ ), k(ξfriendi,j , ξfriendj′,i′ ), k(ξfriendj,i , ξfriendi′,j′ ),
and k(ξfriendj,i , ξfriendj′,i′ ).

3.4 The Covariance Functions
Finally, we need to define sensible covariance functions for
the GPs. There are two types of covariance matrices, namely
the attribute-wise ones and the relation-wise ones, which we
will now discuss in turn.

The attribute-wise latent variable f ci ∼ GP (0,Σc) repre-
sents the essential profile of an entity. In the GP framework,
the covariance matrix Σc can be derived from entity attributes
xci with any kernel functions k(xci , x

c
j), e.g. the squared expo-

nential covariance function.
For relation r between entity types ci and cj , there

are two GPs associated, namely GP (0,Σr,ci) for ci and
GP (0,Σr,cj ) for cj . There are generally two strategies to de-
fine the covariance matrices. The simplest way is to represent
the known relations of entity i as a vector. Then the relation-
wise covariance matrix can be computed like the attribute-
wise ones. Alternatively, we can employ graph-based kernels,
see e.g. [Zhu et al., 2005; Silva et al., 2007]. However, there
is one difficulty in the multi-relational case. If the relations
are bipartite, i.e., ci 6= cj , then the graph kernels for univari-
ate relations are not applicable. We address the problem by
projecting the bipartite relations to univariate ones. Specifi-
cally, we add a relation between entities i and j iff. both en-
tities link to the same (heterogeneous) entity. Then we can
compute the graph kernels on the projected graphs. For ex-
ample, we can convert a bipartite relation Direct: movie

× person to an undirected one Co-Directed: movie ×
movie.

Finally, let us touch upon the case that attributes or re-
lations are not informative, missing or unavailable. In this
case, the covariance matrices will not be reliable and it would
be better to estimate it from data. To do so, we assume
the covariance matrix has an inverse Wishart distribution
Σ ∼W−1(Σ0, β).

4 Inference and Parameter Learning
So far, we have described the MRGP model. In this section,
we will discuss the inference and the hyperparameter estima-
tion for MRGPs.

Let us illustrate the inference procedure on the movie
recommendation example. Without loss of generality, we
only consider the relations like. The inference involv-
ing multi-types of relations can be derived straightforwardly.
Assume there are N persons, M movies and N × M
ratings. The latent variables are fp = {fp1 , . . . , f

p
N},

fm = {fm1 , . . . , fmM} and glike,p = {glike,p1 , . . . , glike,pN },
glike,m = {glike,m1 , . . . , glike,mM }. The key inference prob-
lem is to compute the posterior over the latent variables given
ratings R: P (fp, fm, glike,p, glike,m|R) ∝

P (fp)P (fm)P (glike,p)P (glike,m)P (R|ξ), (9)

where ξ is a linear combination of fp, fm, glike,p, glike,m,
see Eq. (3). We assume that a rating of person i on movie k
has the likelihood

P (Ri,k|ξi,k) = 1/ [1 + exp(−Ri,kξi,k)] . (10)

Ri,k is 1 if the user likes the movie, -1 otherwise. Unfortu-
nately, computing this posterior is intractable becauseP (R|ξ)
is non-Gaussian, and because ξ is a weighted sum of multiple
latent variables coupling the GPs. Therefore, we stick to ap-
proximate inference. To solve the computational complexity
introduced by coupling of GPs, we directly compute the pos-
terior of ξ instead of that of fp, fm, glike,p and glike,m. More
precisely, we compute P (ξ|R) ∝ P (ξ)P (R|ξ) where P (ξ) is
the prior of ξ, which is a GP with mean and covariance matrix
as discussed in the previous section. Then, we use the expec-
tation propagation (EP) algorithm [Minka, 2001] to approxi-
mate the posterior, i.e., we use an unnormalized Gaussian dis-
tributions ti,k(ξi,k|µ̃i,k, σ̃2

i,k, Z̃i,k) to approximate Eq. (10).
In the inference procedure, we update the approximations for
each latent variable ξi,k sequentially until convergence.

We learn the hyperparameters θ under the empirical
Bayesian framework. The hyperparameters include the pa-
rameters of kernel functions and the means of the GPs. We
seek θ∗ = arg maxθ logP (R|θ) =

arg max
θ

log
∫
P (ξ|θ)P (R|ξ) dξ, (11)

where the prior P (ξ|θ) is a Gaussian process, but the likeli-
hood P (R|ξ) is not Gaussian, thus the integral is analytically
intractable. To solve the problem, we approximate the log



likelihood with un-normalized Gaussian distributions:

log
∫
P (ξ|θ)

∏
i,k

ti,k(ξi,k|µ̃i,k, σ̃2
i,k, Z̃i,k) dξi,k =

− 1
2

log |K + Σ̃ΣΣ|− 1
2 − 1

2
(µ̃µµ−µµµ)T (K + Σ̃ΣΣ)−1(µ̃µµ−µµµ) + C,

where Σ̃ΣΣ is a diagonal matrix, whose entries are σ̃2
i,k. C can be

viewed as a constant for our purpose (which can be omitted).
We propose a generalized Expectation Maximum approach to
learn the hyperparameters. In the E step, the EP parameters
(µ̃i,k, σ̃2

i,k, Z̃i,k) are optimized to approximate the posterior
of latent variables with the current values of hyperparameters.
The approximation procedure has been discussed above. In
the M step, the hyperparameters are optimized to maximize
the log marginal likelihood. We omit the derivation of the
gradient due to space restrictions.

5 Experimental Evaluation
To investigate the performance of the multi-relational Gaus-
sian process model MRGPs, we empirically evaluated it in
different scenarios: (1) multiple relations, (2) multiple types
of entities, and (3) directed relations. To this end, we imple-
mented the model and compared it with Silva el al.’s [2007]
recent relational Gaussian process model called XGPs 1 with
the default settings provided by Silva et al. For MRGPs, we
maximized the likelihood as described in the previous section
with the l2-norm of the weights as penalty term to prevent
overfitting using SCG. In the experiments, we use the Gaus-
sian kernel for the attribute-wise covariance function, and the
graph kernel [Silva et al., 2007] for the relation-wise covari-
ance function. The performance was evaluated with the area
under the ROC curve (AUC).

5.1 Multiple Relations
Domains with multiple relations are especially interesting
for evaluating the MRGP models. We perform experimental
analysis with the Rummel’s [1999] dataset on dimensionality
of nations. The dataset includes 14 countries, 54 binary predi-
cates representing interactions between countries, and 90 fea-
tures of the countries as preprocessed by Kemp et al. [2006].
The task was to predict whether a country is a communist or
not based on their attributes and relations. We selected two
relations, namely conferences and time since ally. To do so,
we ran XGPs on all 54 relations separately and selected the
two that XGPs did not achieve an AUC score of 1.0.

We conducted the experiments with a transductive setting
where both relations were used to learn MRGPs, and com-
parisons were made with XGPs using only one relation for
predicting the labels of unlabeled samples. We randomly se-
lected two nations, one communist and the other not, to learn
the models. Then we predicted the labels of the remaining
unlabeled nations. Of course, the feature “communist” was
excluded from the countries’ features. Table 1 summarizes
the results over 10 runs. It shows that using two relations is
clearly beneficial. With only one relation, MRGPs perform
similar to XGPs. Combining both relations substantially in-
creased the AUC score.

1http://www.statslab.cam.ac.uk/ silva/code/xgp/

Table 1: The average AUC scores of class prediction on Rum-
mel’s nation data.

XGP MRGP
R1 R2 R1 R2 R1+R2

Mean 0.8296 0.8296 0.8370 0.8259 0.8556
Var. 0.0226 0.0226 0.0229 0.0189 0.0294

Table 2: The average AUC scores of rating prediction on the
MovieLens dataset.

90% 80% 70% 60%

MRGP Mean 0.6503 0.6272 0.6298 0.6236
Var. 0.0024 0.0006 0.0005 0.0003

IHRM Mean 0.6402 0.5681 0.5411 0.5305
Var. 0.0021 0.0024 0.0008 0.0006

5.2 Multiple Types of Entities
In contrast to XGPs, MRGPs can deal with multiple types of
entities. We evaluated this feature of MRGPs with the Movie-
Lens data [Sarwar et al., 2000]. We randomly selected a sub-
set with 100 users, 50 movies and 1061 relations for the ex-
periment. The task is to predict the preferences of users on
the movies. The users have attributes Age, Gender, Occupa-
tion, and the movies have attributes Published-year, Genres
and so on. The like relations have two states, where R = 1
indicates that the user likes the movie and−1 otherwise. Note
that the user ratings in MovieLens are originally based on a
five-star scale, so we transfer each rating to binary value with
R = 1 if the rating is higher than the user’s average rating,
and vice versa. Again, the experiments are performed with
the transductive-learning setting, i.e. the information about
both training and test users is considered in the learning pe-
riod. XGPs can neither explore the relations involving mul-
tiple types of entities, nor predict relations. RGPs focus on
domains with single type of entities and undirected relations.
The MovieLens data, however, contains two types of entities
and bipartite relations. So we compare MRGPs with another
nonparametric Bayesian relational method: infinite hidden
relational models (IHRMs) [Xu et al., 2006], which introduce
Dirichlet process into relational learning. We randomly select
90% (80%, 70%, 60%) ratings as known ones, and predict the
remaining ones. We run the experiment 30 times and report
the averaged AUC scores of rating predictions. As shown
in the experimental results in Table 2, MRGPs display better
performance than IHRMs.

5.3 Directed Relations
The presence of directed relations over entities of the same
type is also an interesting scenario for MRGPs. We perform
experimental analysis with the same subset of the WebKB
dataset as in the work of Silva et al. [2007]. The subset con-
tains 4160 pages and 9998 hyperlinks interconnecting them
from 4 different universities, as well as features describing the
content of the web pages. In contrast to the work of Silva et
al., we use the directed link relations. We compared MRGPs



with XGPs on the performance of predicting if a webpage
is of class “other” or not. We used the first 20 subsamples,
where 10% of the whole data is sampled from the pool for a
specific university, and the remaining is used for test. We also
used the same webpage features as Silva et al. The results
show that MRGPs perform similar to XGPs. For instance, the
mean and standard deviation of AUC in the Cornell Univer-
sity results were 0.934±0.037 for MRGPs and 0.917±0.022
for XGPs. In the results of the University of Washington, they
were 0.923± 0.02 for MRGPs and 0.923± 0.016 for XGPs.
XGPs convert the directed links into two undirected links, and
manually selects the one with better performance. Whereas
MRGPs can model direction of relations, and executes the
selection procedure implicitly and automatically.

We have evaluated MRGPs with three categories of rela-
tional data. To summarize, the experimental results showed
that exploiting the correlations among different entity types
and relations can indeed improve the prediction performance.

6 Conclusion
In this paper we proposed a nonparametric Bayesian frame-
work for multi-relational data. The resulting multi-relational
Gaussian process (MRGP) model combines the covariance
and the random variables approaches to model multiple re-
lations within Gaussian processes. It provides a flexible
tool for many relational learning tasks with multiple types
of entities and relations. The experimental results on sev-
eral real-world datasets show a performance gain of multiple-
relational Gaussian processes over single relational ones.

MRGPs suggest several interesting directions for future re-
search such as sparse MRGPs, developing multi-relational
variants of dimensionality reduction techniques [Lawrence,
2005] and of ranking techniques [Guiver and Snelson, 2008],
and applying MRGPs in spatial-relational domains such as
computer vision and robotics.

7 Acknowledgments
The authors would like to thank the anonymous reviewers
for their comments. This research was supported by the
Fraunhofer ATTRACT fellowship STREAM, the German
Federal Ministry of Economy and Technology (BMWi) re-
search program THESEUS, and the EU FP7 project LarKC.

References
[Carbonetto et al., 2005] P. Carbonetto, J. Kisynski, N. de

Freitas, and D. Poole. Nonparametric bayesian logic. In
Proc. 21st Conf. on Uncertainty in AI (UAI), 2005.

[Chu et al., 2006] W. Chu, V. Sindhwani, Z. Ghahramani,
and S. Keerthi. Relational learning with gaussian pro-
cesses. In Neural Information Processing Systems, 2006.

[De Raedt, 2008] L. De Raedt. Logical and Relational
Learning. Springer, 2008.

[Getoor and Taskar, 2007] L. Getoor and B. Taskar, editors.
Introduction to Statistical Relational Learning. The MIT
Press, 2007.

[Guiver and Snelson, 2008] J. Guiver and E. Snelson. Learn-
ing to rank with softrank and gaussian processes. In SIGIR,
2008.

[Kemp et al., 2006] C. Kemp, J. B. Tenenbaum, T. L. Grif-
fiths, T. Yamada, and N. Ueda. Learning systems of con-
cepts with an infinite relational model. In Proc. 21st AAAI,
2006.

[Lawrence, 2005] N.D. Lawrence. Probabilistic non-linear
principal component analysis with gaussian process latent
variable models. JMLR, 6:1783–1816, 2005.

[Minka, 2001] T.P. Minka. A family of algorithms for ap-
proximate Bayesian inference. PhD thesis, MIT, 2001.

[Rasmussen and Williams, 2006] C.E. Rasmussen and C.K.
Williams. Gaussian Processes for Machine Learning. The
MIT Press, 2006.

[Rummel, 1999] R.J. Rummel. Dimensionality of nations
project: attributes of nations and behavior of nation dyads
19501965. In ICPSR data file. 1999.

[Sarwar et al., 2000] B. M. Sarwar, G. Karypis, J. A. Kon-
stan, and J. Riedl. Analysis of recommender algorithms
for e-commerce. In Proc. ACM E-Commerce Conference,
pages 158–167. ACM, 2000.

[Silva et al., 2007] R. Silva, W. Chu, and Z. Ghahramani.
Hidden common cause relations in relational learning. In
Neural Information Processing Systems, 2007.

[Singh and Gordon., 2008] A.P. Singh and G.J. Gordon. Re-
lational learning via collective matrix factorization. In
Proc. 14th Intl. Conf. on Knowledge Discovery and Data
Mining, 2008.

[Xu et al., 2006] Z. Xu, V. Tresp, K. Yu, and H.-P. Kriegel.
Infinite hidden relational models. In Proc. 22nd UAI, 2006.

[Yu and Chu, 2007] K. Yu and W. Chu. Gaussian process
models for link analysis and transfer learning. In Neural
Information Processing Systems, 2007.

[Yu et al., 2006] K. Yu, W. Chu, S. Yu, V. Tresp, and Z. Xu.
Stochastic relational models for discriminative link predic-
tion. In Neural Information Processing Systems, 2006.

[Zhu et al., 2005] X. Zhu, J. Kandola, J. Lafferty, and
Z. Ghahramani. Graph kernels by spectral transforms. In
O. Chapelle, B. Schoelkopf, and A. Zien, editors, Semi-
Supervised Learning. MIT Press, 2005.


