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Abstract

We introduce the mixture of Gaussian processes (MGP) model which is
useful for applications in which the optimal bandwidth of a map is input
dependent. The MGP is derived from the mixture of experts model and
can also be used for modeling general conditional probability densities.
We discuss how Gaussian processes —in particular in form of Gaussian
process classi£cation, the support vector machine and the MGP model—
can be used for quantifying the dependencies in graphical models.

1 Introduction

Gaussian processes are typically used for regression where it is assumed that the underly-
ing function is generated by one in£nite-dimensional Gaussian distribution (i.e. we assume
a Gaussian prior distribution). In Gaussian process regression (GPR) we further assume
that output data are generated by additive Gaussian noise, i.e. we assume a Gaussian like-
lihood model. GPR can be generalized by using likelihood models from the exponential
family of distributions which is useful for classi£cation and the prediction of lifetimes or
counts. The support vector machine (SVM) is a variant in which the likelihood model is
not derived from the exponential family of distributions but rather uses functions with a
discontinuous £rst derivative. In this paper we introduce another generalization of GPR
in form of the mixture of Gaussian processes (MGP) model which is a variant of the well
known mixture of experts (ME) model of Jacobset al. (1991). The MGP model allows
Gaussian processes to model general conditional probability densities. An advantage of
the MGP model is that it is fast to train, if compared to the neural network ME model.
Even more interesting, the MGP model is one possible approach of addressing the problem
of input-dependent bandwidth requirements in GPR. Input-dependent bandwidth is useful
if either the complexity of the map is input dependent —requiring a higher bandwidth in
regions of high complexity— or if the input data distribution is input dependent. In the
latter case, one would prefer Gaussian processes with a higher bandwidth in regions with
many data points and a lower bandwidth in regions with lower data density. If GPR models
with different bandwidths are used, the MGP approach allows the system to self-organize
by locally selecting the GPR model with the appropriate optimal bandwidth.

Gaussian process classi£ers, the support vector machine and the MGP can be used to model
the local dependencies in graphical models. Here, we are mostly interested in the case that
the dependencies of a set of variablesy is modi£ed via Gaussian processes by a set of ex-
ogenous variablesx. As an example consider a medical domain in which a Bayesian net-
work of discrete variablesy models the dependencies between diseases and symptoms and



where these dependencies are modi£ed by exogenous (often continuous) variablesx rep-
resenting quantities such as the patient’s age, weight or blood pressure. Another example
would be collaborative £ltering wherey might represent a set of goods and the correlation
between customer preferences is modeled by a dependency network (another example of
a graphical model). Here, exogenous variables such as income, gender and social status
might be useful quantities to modify those dependencies.

The paper is organized as follows. In the next section we brie¤y review Gaussian processes
and their application to regression. In Section 3 we discuss generalizations of the simple
GPR model. In Section 4 we introduce the MGP model and present experimental results.
In Section 5 we discuss Gaussian processes in context with graphical models. In Section 6
we present conclusions.

2 Gaussian Processes

In Gaussian Process Regression (GPR) one assumes thata priori a functionf(x) is gen-
erated from an in£nite-dimensional Gaussian distribution with zero mean and covariance
K(x, xk) = cov(f(x), f(xk)) whereK(x, xk) are positive de£nite kernel functions. In
this paper we will only use Gaussian kernel functions of the form

K(x, xk) = A exp
(
−||x − xk||2

2s2

)

with scale parameters and amplitudeA. Furthermore, we assume a set ofN training
dataD = {(xk, yk)}N

k=1 where targets are generated following a normal distribution with
varianceσ2 such that

P (y|f(x)) ∝ exp
(
− 1

2σ2
(f(x) − y)2

)
. (1)

The expected valuêf(x) to an inputx given the training data is a superposition of the
kernel functions of the form

f̂(x) =
N∑

k=1

wkK(x, xk). (2)

Here, wk is the weight on thek-th kernel. LetK be theN × N Gram matrix with
(K)k,j = cov(f(xk), f(xj)). Then we have the relationfm = Kw where the compo-
nents offm = (f(x1), . . . , f(xN ))′ are the values off at the location of the training data
andw = (w1, . . . , wN )′. As a result of this relationship we can either calculate the opti-
malw or we can calculate the optimalfm and then deduce the correspondingw-vector by
matrix inversion. The latter approach is taken in this paper. Following the assumptions, the
optimalfm minimizes the cost function

1
2
(fm)′K−1fm +

1
2σ2

(fm − y)′(fm − y) (3)

such that
f̂m = K(K + σ2I)−1y.

Herey = (y1, . . . , yN )′ is the vector of targets andI is theN -dimensional unit matrix.

3 Generalized Gaussian Processes and the Support Vector Machine

In generalized Gaussian processes the Gaussian prior assumption is maintained but the
likelihood model is now derived from the exponential family of distributions. The most



important special cases are two-class classi£cation

P (y = 1|f(x)) =
1

1 + exp(−f(x))

and multiple-class classi£cation. Here,y is a discrete variable withC states and

P (y = i|f1(x), . . . , fC(x)) =
exp (fi(x))∑C

j=1 exp (fj(x))
. (4)

Note, that for multiple-class classi£cationC Gaussian processesf1(x), . . . , fC(x) are
used. Generalized Gaussian processes are discusses in Tresp (2000). The special case
of classi£cation was discussed by Williams and Barber (1998) from a Bayesian perspec-
tive. The related smoothing splines approaches are discussed in Fahrmeir and Tutz (1994).
For generalized Gaussian processes, the optimization of the cost function is based on an
iterative Fisher scoring procedure.

Incidentally, the support vector machine (SVM) can also be considered to be a generalized
Gaussian process model with

P (y|f(x)) ∝ exp (−const(1 − yf(x))+) .

Here,y ∈ {−1, 1}, the operation()+ sets all negative values equal to zero andconst is
a constant (Sollich (2000)).1 The SVM cost function is particularly interesting since due
to its discontinuous £rst derivative, many components of the optimal weight vectorw are
zero, i.e. we obtain sparse solutions.

4 Mixtures of Gaussian Processes

GPR employs a global scale parameters. In many applications it might be more desirable
to permit an input-dependent scale parameter: the complexity of the map might be input de-
pendent or the input data density might be nonuniform. In the latter case one might want to
use a smaller scale parameter in regions with high data density. This is the main motivation
for introducing another generalization of the simple GPR model, the mixture of Gaussian
processes (MGP) model, which is a variant of the mixture of experts model of Jacobset al.
(1991). Here, a set of GPR models with different scale parameters is used and the system
can autonomously decide which GPR model is appropriate for a particular region of input
space. LetFµ(x) = {fµ

1 (x), . . . , fµ
M (x)} denote this set ofM GPR models. The state of a

discreteM -state variablez determines which of the GPR models is active for a given input
x. The state ofz is estimated by anM -class classi£cation Gaussian process model with

P (z = i|F z(x)) =
exp (fz

i (x))∑M
j=1 exp

(
fz

j (x)
)

whereF z(x) = {fz
1 (x), . . . , fz

M (x)} denotes a second set ofM Gaussian processes. Fi-
nally, we use a set ofM Gaussian processesFσ(x) = {fσ

1 (x), . . . , fσ
M (x)} to model the

input-dependent noise variance of the GPR models. The likelihood model given the state
of z

P (y|z, Fµ(x), Fσ(x)) = G (y; fµ
z (x), exp(2fσ

z (x)))

is a Gaussian centered atfµ
z (x) and with variance(exp(2fσ

z (x))). The exponential is used
to ensure positivity. Note thatG(a; b, c) is our notation for a Gaussian density with mean
b, variancec, evaluated ata. In the remaining parts of the paper we will not denote the

1Properly normalizing the conditional probability density is somewhat tricky and is discussed in
detail in Sollich (2000).



dependency on the Gaussian processes explicitely, e.g we will writeP (y|z, x) instead of
P (y|z, Fµ(x), Fσ(x)). Sincez is a latent variable we obtain with

P (y|x) =
M∑
i=1

P (z = i|x) G (y; fµ
i (x), exp(2fσ

i (x))) E(y|x) =
M∑
i=1

P (z = i|x) fµ
i (x)

the well known mixture of experts network of Jacobset al (1991) where thefµ
i (x) are the

(Gaussian process) experts andP (z = i|x) is the gating network. Figure 2 (left) illustrates
the dependencies in the GPR model.

4.1 EM Fisher Scoring Learning Rules

Althougha priori the functionsf are Gaussian distributed, this is not necessarily true –in
contrast to simple GPR in Section 2– for the posterior distribution due to the nonlinear
nature of the model. Therefore one is typically interested in the minimum of the negative
logarithm of the posterior density

−
N∑

k=1

log
M∑
i=1

P (z = i|xk) G (yk; fµ
i (xk), exp(2fσ

i (xk)))

+
1
2

M∑
i=1

(fz,m
i )′(Σz,m

i )−1fz,m
i +

1
2

M∑
i=1

(fµ,m
i )′(Σµ,m

i )−1fµ,m
i +

1
2

M∑
i=1

(fσ,m
i )′(Σσ,m

i )−1fσ,m
i .

The superscriptm denotes the vectors and matrices de£ned at the measurement point, e.g.
fµ,m

i = (fµ
i (x1), . . . , f

µ
i (xN ))′. In the E-step, based on the current estimates of the Gaus-

sian processes at the data points, the state of the latent variable is estimated as

P̂ (z = i|xk, yk) =
P̂ (z = i|xk) G

(
yk; f̂µ

i (xk), exp(2f̂σ
i (xk))

)
∑M

j=1 P̂ (z = j|xk) G
(
yk; f̂µ

j (xk), exp(2f̂σ
j (xk))

) .

In the M-step, based on the E-step, the Gaussian processes at the data points are updated.
We obtain

f̂µ,m
i = Σµ,m

i (Σµ,m
i + Ψµ,m

i )−1
ym

whereΨµ,m
i is a diagonal matrix with entries

(Ψµ,m
i )kk = exp(2f̂σ

i (xk))/P̂ (z = i|xk, yk).

Note, that data with a small̂P (z = i|xk, yk) obtain a small weight. To update the other
Gaussian processes iterative Fisher scoring steps have to be used as shown in the appendix.

There is a serious problem with overtraining in the MGP approach. The reason is that the
GPR model with the highest bandwidth tends to obtain the highest weight in the E-step
since it provides the best £t to the data. There is an easy £x for the MGP: For calculating
the responses of the Gaussian processes atxk in the E-step we use all training dataexcept
(xk, yk). Fortunately, this calculation is very cheap in the case of Gaussian processes since
for example

f̃µ
i (xk) = yk − yk − f̂µ

i (xk)
1 − Si,kk

wheref̃µ
i (xk) denotes the estimates at the training data pointxk not using(xk, yk). Here,

Si,kk is thek-th diagonal element ofSi = Σµ,m
i (Σµ,m

i + Ψµ,m
i )−1.2

2See Hofmann (2000) for a discussion of the convergence of this type of algorithms.
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Figure 1: The input data are generated from a Gaussian distribution with unit variance and mean
0. The output data are generated from a step function (o, bottom right). The top left plot shows the
map formed by three GPR models with different bandwidths. As can be seen no individual model
achieves a good map. Then a MGP model was trained using the three GPR models. The top right
plot shows the GPR models after convergence. The bottom left plot showsP (z = i|x). The GPR
model with the highest bandwidth models the transition at zero, the GPR model with an intermediate
bandwidth models the intermediate region and the GPR model with the lowest bandwidth models the
extreme regions. The bottom right plot shows the datao and the £t obtained by the complete MGP
model which is better than the map formed by any of the individual GPR models.

4.2 Experiments

Figure 1 illustrates how the MGP divides up a complex task into subtasks modeled by
the individual GPR models (see caption). By dividing up the task, the MGP model can
potentially achieve a performance which is better than the performance of any individual
model. Table 1 shows results from arti£cial data sets and real world data sets. In all cases,
the performance of the MGP is better than the mean performance of the GPR models and
also better than the performance of the mean (obtained by averaging the predictions of all
GPR models).

5 Gaussian Processes for Graphical Models

Gaussian processes can be useful models for quantifying the dependencies in Bayesian net-
works and dependency networks (the latter were introduced in Hofmann and Tresp, 1998,
Heckermanet al., 2000), in particular when parent variables are continuous quantities. If
the child variable is discrete, Gaussian process classi£cation or the SVM are appropriate
models whereas when the child variable is continuous, the MGP model can be employed
as a general conditional density estimator. Typically one would require that the continu-
ous input variables to the Gaussian process systemsx are known. It might therefore be



Table 1: The table shows results using arti£cial and real data sets of sizeN = 100 using
M = 10 GPR models. The data set ART is generated by adding Gaussian noise with a
standard deviation of0.2 to a map de£ned by 5 normalized Gaussian bumps.numin is
the number of inputs. The bandwidths was generated randomly between0 and max.s.
Furthermore,mean perf.is the mean squared test set error of all GPR networks andperf. of
meanis the mean squared test set error achieved by simple averaging the predictions. The
last column shows the performance of the MGP.

Data numin max.s mean perf. perf. of mean MGP
ART 1 1 0.0167 0.0080 0.0054
ART 2 3 0.0573 0.0345 0.0239
ART 5 6 0.1994 0.1383 0.0808
ART 10 10 0.1670 0.1135 0.0739
ART 20 20 0.1716 0.1203 0.0662
HOUSING 13 10 0.4677 0.3568 0.2634
BUPA 6 20 0.9654 0.9067 0.8804
DIABETES 8 40 0.8230 0.7660 0.7275
WAVEFORM 21 40 0.6295 0.5979 0.4453

useful to consider those as exogenous variables which modify the dependencies in a graph-
ical model ofy-variables as shown in Figure 2 (right). As an example consider a medical
domain in which a Bayesian network of discrete variablesy models the dependencies be-
tween diseases and symptoms and where these dependencies are modi£ed by exogenous
(often continuous) variablesx representing quantities such as the patient’s age, weight or
blood pressure. Another example would be collaborative £ltering wherey might represent
a set of goods and the correlation between customer preferences is modeled by a depen-
dency network as in Heckermanet al. (2000). Here, exogenous variables such as income,
gender and social status might be useful quantities to modify those correlations. Note, that
the GPR model itself can also be considered to be a graphical model with dependencies
modeled as Gaussian processes (compare Figure 2).

Readers might also be interested in the related and independent paper by Friedman and
Nachman (2000) in which those authors used GPR systems (not in form of the MGP) to
perform structural learning in Bayesian networks of continuous variables.

6 Conclusions

We demonstrated that Gaussian processes can be useful building blocks for forming com-
plex probabilistic models. In particular we introduced the MGP model and demonstrated
how Gaussian processes can model the dependencies in graphical models.

7 Appendix

Forfz andfσ the mode estimates are found by iterating Newton-Raphson equationsf̂ (l+1) = f̂ (l)−
H̃−1(l)J(l) whereJ(l) is the Jacobian and̃H(l) the Hessian matrix for which certain interactions
are ignored. One obtains for (l = 1, 2, . . .) the following update equations.

f̂
z,m,(l+1)
i = Σz,m

i

(
Σz,m

i + Ψ
z,m,(l)
i

)−1 (
Ψ

z,m,(l)
i d

z,m,(l)
i + f̂

z,m,(l)
i

)
where

d
z,m,(l)
i =

(
P̂ (z = i|xk, yk) − P̂ (l)(z = i|xk)

)N

k=1
,

Ψ
z,m,(l)
i = diag

(
[P̂ (l)(z = i|xk)(1 − P̂ (l)(z = i|xk))]−1

)N

k=1
.
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Figure 2: Left: The graphical structure of an MGP model consisting of the discrete latent variable
z, the continuous variabley and input variablex. The probability density ofz is dependent on the
Gaussian processesF z. The probability distribution ofy is dependent on the state ofz and of the
Gaussian processesF µ, F σ. Right: An example of a Bayesian network which contains the variables
y1, y2, y3, y4. Some of the dependencies are modi£ed byx via Gaussian processesf1, f2, f3.

Similarly,

f̂
σ,m,(l+1)
i = Σσ,m

i

(
Σσ,m

i + ∆
σ,m,(l)
i

)−1 (
1

2
e − ψ

σ,m,(l)
i + f̂

σ,m,(l)
i

)
wheree is anN -dimensional vector of ones and

ψ
σ,m,(l)
i =

(
exp(2f̂

σ,(l)
i (xk))

2(f̂µ
i (xk) − yk)2

)N

k=1

∆
σ,m,(l)
i = diag

(
exp(2f̂

σ,(l)
i (xk))

2P (z = i|xk, yk)(f̂µ
i (xk) − yk)2

)N

k=1

.
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