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Abstract

Estimating individual treatment effects from
data of randomized experiments is a criti-
cal task in causal inference. The Stable Unit
Treatment Value Assumption (SUTVA) is usu-
ally made in causal inference. However, inter-
ference can introduce bias when the assigned
treatment on one unit affects the potential out-
comes of the neighboring units. This interfer-
ence phenomenon is known as spillover effect
in economics or peer effect in social science.
Usually, in randomized experiments, or ob-
servational studies with interconnected units,
one can only observe treatment responses un-
der interference. Hence, the issue of how to
estimate the superimposed causal effect and
recover the individual treatment effect in the
presence of interference becomes a challeng-
ing task. In this work, we study causal effect
estimation under general network interference
using Graph Neural Networks, which are pow-
erful tools for capturing node and link de-
pendencies in graphs. After deriving causal
effect estimators, we further study interven-
tion policy improvement on the graph under
capacity constraint. We give policy regret
bounds under network interference and treat-
ment capacity constraint.

1 Introduction

In causal inference one commonly makes the consistency
and the interference-free assumptions, i.e., the Stable
Unit Treatment Value Assumption (SUTVA) (Rubin,
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1980), under which the individual treatment response
is consistently defined and unaffected by variations in
other individuals. However, this assumption is prob-
lematic under a social network setting since peers are
not independent; “no man is an island,” as written by
the poet John Donne.

Interference occurs when the treatment response of an
individual is influenced through the exposure to its so-
cial contacts’ treatments or affected by its social neigh-
bors’ outcomes through peer effects (Bowers et al., 2013;
Toulis and Kao, 2013). For instance, the treatment
effect of an individual under a vaccination against an
infectious disease might influence the health conditions
of its surrounding individuals; or a personalized online
advertisement might affect other individuals’ purchase
of the advertised item through opinion propagation in
social networks. Separating individual treatment effect
and peer effect in causal inference becomes a difficult
problem under interference since, in randomized exper-
iments or observational studies, one can only observe
the superposition of both effects. In this work we study
the issue of how to estimate causal responses and make
optimal policies on the network.

One of the main objectives of treatment effect estima-
tion is to derive optimal treatment decision rules for in-
dividuals according to their characteristics. Population-
averaged utility functions have been studied in (Manski,
2009; Athey and Wager, 2017; Kallus, 2018; Kallus and
Zhou, 2018). In those publications, a policy learner
can adapt and improve its decision rules through the
utility function. However, interactions among units are
always ignored. On the other hand, a policy learner
usually faces a capacity or budget constraint, as stud-
ied in (Kitagawa and Tetenov, 2017). In this work,
we develop a new type of utility function defined on
interconnected units and investigate provable policy
improvement with budget constraints.
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1.1 Related Work

Causal inference with interference was studied in (Hud-
gens and Halloran, 2008; Tchetgen and VanderWeele,
2012; Liu and Hudgens, 2014). However, the assump-
tion of group-level interference, having partial inter-
ference within the groups and independence across
different groups, is often invalid. Hence, several works
focus on unit-level causal effects under cross-unit in-
terference and arbitrary treatment assignments, such
as (Aronow et al., 2017; Forastiere et al., 2016; Ogburn
et al., 2017; Viviano, 2019). Other approaches for esti-
mating causal effects on networks use graphical models,
which are studied in (Arbour et al., 2016; Tchetgen
et al., 2017).

1.2 Notations and Previous Approaches

Let G = (N , E , A) denote a directed graph with a node
set N of size n, an edge set E , and an adjacency matrix
A ∈ {0, 1}n×n. For a node, or unit, i ∈ N , let Ni
indicate the set of neighboring nodes with Aij = 1
excluding the node i itself, and let Xi denote a vector
of covariates for node i which is defined in some space χ.
Let’s first focus on the Neyman–Rubin causal inference
model (Rubin, 1974; Splawa-Neyman et al., 1990). Let
Ti be a binary variable with Ti = 1 indicating that node
i is in the treatment group, and Ti = 0 if i is in the
control group. Moreover, let Yi be the outcome variable
with Yi(Ti = 1) indicating the potential outcome of i
under treatment Ti = 1 and Yi(Ti = 0) the potential
outcome under control Ti = 0. Moreover, we use TNi
and YNi to represent the treatment assignments and
potential outcomes of neighboring nodes Ni, and T the
entire treatment assignments vector.

In the SUTVA assumption, the individual treatment ef-
fect on node i is defined as the difference between
outcomes under treatment and under control, i.e.,
τ(Xi) := E[Yi(Ti = 1) − Yi(Ti = 0)|Xi]. To estimate
treatment effects under network interference, an expo-
sure variable G is proposed in (Toulis and Kao, 2013;
Bowers et al., 2013; Aronow et al., 2017). The expo-
sure variable Gi is a summary function of neighboring
treatments TNi .

Under the assumption that the outcome only depends
on the individual treatment and neighborhood treat-
ments, (Forastiere et al., 2016) defines an individual
treatment effect under the exposure Gi = g as

τ(Xi, Gi = g) := E[Yi(Ti = 1, Gi = g)

− Yi(Ti = 0, Gi = g)|Xi]. (1)

Moreover, the spillover effect under the treatment
Ti = t and the exposure Gi = g is defined as
δ(Xi, Ti = t, Gi = g) := E[Yi(Ti = t, Gi = g)− Yi(Ti =

t, Gi = 0)|Xi]. Treatment and spillover effects are then
estimated using generalized propensity score (GPS)
weighted estimators.

In general, the outcome model can be more complicated,
depending on network topology and covariates of neigh-
boring units. (Ogburn et al., 2017) investigates more
general causal structural equations under dimension-
reducing assumption, and the potential outcome reads
Yi,t := fY (Xi, sX({Xj |j ∈ Ni}), Ti, sT ({Tj |j ∈ Ni})),
where sX and sT are summary functions of neighbor-
hood covariates and treatment, e.g., they could be
the summation or average of neighboring treatment
assignments and covariates, respectively. In this work,
we incorporate Graph Neural Network (GNN)-based
causal estimators with appropriate covariates and treat-
ment aggregation functions as inputs. GNNs can learn
and aggregate feature information from distant neigh-
bors, which makes it a right candidate for capturing
the spillover effect given by the neighboring units.

Contributions This work has the following major
contributions. First, we propose GNN-based causal es-
timators for causal effect prediction and to recover the
direct treatment effect under interference (Section 2).
Second, we define a novel utility function for policy op-
timization on a network and derive a graph-dependent
policy regret bound (Section 3). Third, we provide
policy regret bounds for GNN-based causal estimators
(Section 3 and Appendix I and J). Last, we conduct
extensive experiments to verify the superiority of GNN-
based causal estimators and show that the accuracy
of a causal estimator is crucial for finding the optimal
policy (Section 4).

2 GNN-based Causal Estimators

In this section, we introduce our Graph Neural Network-
based causal effect estimators under general network
interference.

2.1 Structural Equation Model

Given the graph G, the covariates of all units in the
graph X, and the entire treatment assignments vec-
tor T, the structural equation model describing the
considered data generation process is given as follows

Ti = fT (Xi)

Yi = fY (Ti,X,T,G) + εYi , (2)

for units i = 1, . . . , n. This structural equation model
encodes both the observational studies and the random-
ized experiments setting. In observational studies, e.g.,
on the Amazon dataset (see Section 4.1), the treatment
Ti depends on the covariate Xi and the unknown spec-
ification of fT , or even on the neighboring units under
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network interference. In the setting of the randomized
experiment, e.g., experiments on Wave1 and Pokec
datasets, the treatment assignment function is specified
as fT = Bern(p), where p represents predefined treat-
ment probability. Function fY characterizes the causal
response, which, in addition to Xi and Ti, depends on
the graph and neighboring covariates and treatment
assignments. If only influences from first-order neigh-
bors are considered, the response generation can be
specified as Yi = fY (Ti,XNi ,TNi ,G) + εYi . When the
graph structure is given and fixed, we leave out G in
the notation.

2.2 Distribution Discrepancy Penalty

Even without network interference, a covariate shift
problem of counterfactual inference is commonly ob-
served, namely the factual distribution Pr(X, T ) differs
from the counterfactual distribution Pr(X, 1− T ). To
avoid biased inference, (Johansson et al., 2016; Shalit
et al., 2017) propose a balancing counterfactual in-
ference using domain-adapted representation learning.
Covariate vectors are first mapped to a feature space
via a feature map Φ. In the feature space, treated
and control populations are balanced by penalizing the
distribution discrepancy between Pr(Φ(X)|T = 0) and
Pr(Φ(X)|T = 1) using the Integral Probability Met-
ric. This approach is equivalent to finding a feature
space such that the treatment assignment T and rep-
resentation Φ(X) become approximately disentangled,
namely Pr(Φ(X), T ) ≈ Pr(Φ(X)) Pr(T ). We use the
Hilbert-Schmidt Independence Criterion (HSIC) as the
dependence test in the feature space, whose form is
provided in Appendix A. We observe that incorporat-
ing the feature map and the representation balancing
penalty is important to tackle the imbalanced assign-
ments in observational studies, e.g., on the Amazon
dataset (see Section 4.1).

2.3 Graph Neural Networks

Different GNNs are employed and compared in our
model, and we briefly provide a review.

Graph Convolutional Network (GCN) (Kipf and
Welling, 2017) The graph convolutional layer in GCN
is one special realization of GNNs, which is defined as

X(l+1) = σ
(
D̂−1/2ÂD̂−1/2X(l)W(l)

)
, where X(l+1)

is the hidden output from the l-th layer with X(0)

being the input features matrix, and σ is the activation
function, e.g., ReLU. The modified adjacency Â with
inserted self-connections is defined as Â := A + I, and
D̂ denotes the node degree matrix of Â.

GraphSAGE GraphSAGE (Hamilton et al., 2017)
is an inductive framework for calculating node em-

beddings and aggregating neighbor information. The
mean aggregation operator of the GraphSAGE in this

work reads X
(l+1)
i = norm

(
meanj∈Ni∪{i}X

(l)
j W(l)

)
,

with norm being the normalization operator. Tradi-
tional GCN algorithms perform spectral convolution
via eigen-decomposition of the full graph Laplacian. In
contrast, GraphSAGE computes a localized convolu-
tion by aggregating the neighborhood around a node,
which resembles the simulation protocol of linear treat-
ment response with spillover effect for semi-synthetic
experiments (see Section 4.1). Due to the resemblance,
a better causal estimator is expected when using Graph-
SAGE as the aggregation function (see the beginning
of Appendix H for more heuristic motivations.).

1-GNN 1-GNN (Morris et al., 2019) is a variation
of GraphSAGE, which performs separate transforma-
tions of node features and aggregated neighborhood
features. Since the features of the considered unit
and its neighbors contribute differently to the su-
perimposed outcome, it is expected that the 1-GNN
is more expressive than GraphSAGE. The convolu-

tional operator of 1-GNN has the form X
(l+1)
i =

σ
(
X

(l)
i W

(l)
1 + meanj∈NiXjW

(l)
2

)
.

Figure 1: Treated and control populations have dif-
ferent distributions in the covariate vectors space.
Through a map Φ and distribution discrepancy term
HSIC, features and treatment assignments become dis-
entangled in the feature space. On top of Φ, we apply
GNNs, where Φ and GNNs have 2 or 3 hidden layers, de-
pending on the dataset. After applying GNNs, for each
node i, the concatenation [Φ(Xi),GNN(Φ(X),T)i, Gi]
is fed into outcome prediction network h1 or h0 depend-
ing on the treatment assignment. The loss function
combines outcome prediction error and distribution
discrepancy in the feature space.

2.4 GNN-based Causal Estimators

We use the random variable Gi :=
∑
j∈Ni

Tj

|Ni| that in-

dicates the level of exposure to the treated neighbors
as the treatment summary function, and the output
of GNNs as the covariate aggregation function. The
concatenation [Φ(Xi),GNN(Φ(X),T)i, Gi] of node i is
then fed into the outcome prediction network h1 or h0,
depending on Ti, where h1 and h0 are neural networks
with a scalar output. Note that GNN(Φ(X),T)i indi-
cates that the treatment vector T is also a GNNs’ input.
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During the implementation, the treatment assignment
vector masks the covariates, and GNN models use the
masked covariates TiXi, for i = 1, . . . , n, as inputs. In
summary, given (Φ(X)i, Ti, Gi, Yi) and graph G, the
loss function for GNN-based estimators is defined as
Lest :=MSE (hTi([Φ(Xi), GNN(Φ(X),T)i, Gi]), Yi)+
κ ˆHSICKσ , where κ and σ are tunable hyperparame-
ters. Our model is illustrated in Fig. 1. During the
implementation, we incorporate two types of empir-
ical representation balancing: balancing the outputs
of representation network Φ to tackle imbalanced as-

signments, denoted as ˆHSIC
Φ

, and balancing the out-
puts of the GNN representations to tackle imbalanced

spillover exposure, denoted as ˆHSIC
GNN

.

It is necessary to emphasize that only the causal re-
sponses of a fractional of units in the graph G can be
observed by the models. GNN-based causal estimators
use this part of causal responses, the network structure
G, and covariates X as input, and predict the super-
imposed causal effects of the remaining units. Note
that for GNN-based models, the identifiability of causal
response is guaranteed under reasonable assumptions
similar to those given in Section 3.2 of (Ogburn et al.,
2017). The proof is relegated to Appendix B.

We briefly discuss an error bound that can be derived
for GNN-based causal estimators to estimate the su-
perimposed causal effects. Especially, in the following
claim, we provide evidence about the dependency of
the error bound on the maximal node degree through
network interference.

Claim 1. GNN-based causal estimators restricted to a
particular class for predicting the superimposed causal

effects have an error bound O(
√

D3
max lnDmax

n ), where

Dmax := 1 + dmax + d2
max, and dmax is the maximal

node degree in the graph.

The above claim indicates that an accurate and consis-
tent causal estimator is difficult to achieve with large
network interference. In the worst case is that the
O(
√

1/n) convergence rate, or sample dependency, be-
comes unreachable when the maximal node degree
increases with the number of nodes of the network,
namely dmax(n). The exact convergence rate of causal
estimators is difficult to derive since it depends on the
topology of the network, and it beyond the theoreti-
cal scope of this work. The derivation of Claim 1 is
relegated to Appendix H.

Notice that the outcome prediction networks h0 and h1

(see Fig. 1) are trained to estimate the superposition of
individual treatment effect and spillover effect. Still, af-
ter fitting the observed outcomes, we expect to extract
the non-interfered individual treatment effect from the
causal estimators by assuming that the considered unit

is isolated. An individual treatment effect estimator
can be defined similarly to Eq. 1. To be more specific,
the individual treatment effect of unit i is expected to
be extracted from GNN-based estimators by setting its
exposure to Gi = 0 and its neighbors’ covariates to 0,
namely

τ̂(Xi) = h1([Φ(Xi),0, 0])− h0([Φ(Xi),0, 0]). (3)

3 Intervention Policy on Graph

After obtaining the treatment effect estimator, we de-
velop an algorithm for learning intervention assign-
ments to maximize the utility on the entire graph;
the learned rule for assignment is called a policy. As
suggested in (Athey and Wager, 2017), without in-
terference a utility function is defined as A(π) =
E[(2π(Xi)−1)(Yi(Ti = 1)−Yi(Ti = 0))] = E[(2π(Xi)−
1)τ(Xi)]. An optimal policy π̂n is obtained by maximiz-
ing the n-sample empirical utility function Âτn(π) :=
1
n

∑n
i=1(2π(Xi) − 1)τ̂(Xi) given the individual treat-

ment response estimator τ̂ , i.e., π̂n ∈ argmaxπ∈ΠÂ
τ
n(π),

where Π indicates the policy function class. Notably,
π̂n tends to assign treatment to units with positive
treatment effect and control to units with negative
responses.

Now, consider the outcome variable Yi under network
interference. For notational simplicity and clarity of
the later proof, we assume first-order interference from
nearest neighboring units, hence the outcome variable
can be written as Yi(Ti,XNi , TNi). Inspired by the
definition of A(π), the utility function of a policy π
under interference is defined as

S(π) := E[(2π(Xi)− 1)(Yi(Ti = 1,XNi , TNi = π(XNi))

− Yi(Ti = 0,G = ∅))], (4)

where Yi(Ti = 0,G = ∅) with an empty graph repre-
sents the individual outcome under control without
any network influence 1. After some manipulations,
S(π) equals the sum of individual treatment effect and
spillover effect, i.e., S(π) = E[(2π(Xi)− 1)(τi + δi(π))],
where τi := E[Yi(Ti = 1,G = ∅)−Yi(Ti = 0,G = ∅)|Xi]
and δi(π) := E[Yi(Ti = 1,XNi , TNi = π(XNi)) −
Yi(Ti = 1,G = ∅)|Xi,XNi ]. To be more specific, τi
is the conventional individual treatment effect, while
δi(π) represents the spillover effect under the policy π
and when Ti = 1. Due to the network-dependency in
the spillover effect, an optimal policy will not merely
treat units with positive individual treatment effect
but also adjust its intervention on the entire graph to
maximize the spillover effects.

Next, we introduce the regret of learned intervention
policy. Let τ̂i and δ̂i(π) denote the estimator of τi and

1Hence XNi and TNi are omitted in the expression.
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δi(π), respectively. Given the true models τi and δi(π),
let Sπ,δn (π) := 1

n

∑n
i=1(2π(Xi)− 1)(τi + δi(π)) be the

empirical analogue of S(π), and let

Ŝπ,δn (π) :=
1

n

n∑
i=1

(2π(Xi)− 1)(τ̂i + δ̂i(π)) (5)

be the empirical utility with estimators plugged in. Us-
ing learned causal estimators, an optimal intervention
policy from the empirical utility perspective can be
obtained from π̂n ∈ argmaxπ∈ΠŜ

π,δ
n (π). Moreover, the

best possible intervention policy from the functional
class Π with respect to the utility S(π) is written as
π? := argmaxπ∈ΠS(π), and the policy regret between
π? and π̂n is defined as R(π̂n) := S(π?)− S(π̂n).

We briefly mention the dependency of the policy re-
gret bound on the network structure. Throughout the
estimation of policy regret, we maintain the following
assumptions.

Assumption 1.
(BO) Bounded treatment and spillover effects: There
exist 0 < M1,M2 < ∞ such that the individual treat-
ment effect satisfies |τi| ≤M1 and the spillover effect
satisfies ∀π ∈ Π, |δi(π)| ≤M2.
(WI) Weak independence assumption: For any node
indices i and j, the weak independence assumption as-
sumes that Xi⊥Xj if Aij = 0, or @k with Aik = Akj =
1.
(LIP) Lipschitz continuity of the spillover effect w.r.t.
policy: Given two treatment policies π1 and π2, for any
node i the spillover effect satisfies |δi(π1) − δi(π2)| ≤
L||π1 − π2||∞, where the Lipschitz constant satisfies
L > 0 and ||π1 − π2||∞ := supX∈χ |π1(X)− π2(X)|.
(ES) Uniformly consistency: after fitting experimental
or observational data on G, individual treatment effect
estimator satisfies

1

n

n∑
i=1

|τi − τ̂i| <
ατ
nζτ

,

and spillover estimator satisfies

∀π ∈ Π,
1

n

n∑
i=1

|δi(π)− δ̂i(π)| < αδ
nζδ

(6)

where ατ > 0 and αδ > 0 are scaling factors that char-
acterize the errors of estimators. ζτ and ζδ control the
convergence rate of estimators for individual treatment
effect and spillover effect, respectively, which satisfy
0 < ζτ , ζδ < 1.

Note that the (ES) assumption corresponds to Claim 1.
It assumes a more general convergence rate than 1√

n

when dmax(n) depends on the number of units. There-
fore, we use the coefficients ζτ and ζδ to characterize

the convergence rates, which is in line with the assump-
tion made in Athey and Wager (2017) (see Assumption
2 of Athey and Wager (2017)).

Besides, (LIP) assumes that the change of received
spillover effect is bounded after modifying the treat-
ment assignments of one unit’s neighbors. We will use
hypergraph techniques, instead of chromatic number
arguments, to give a tighter bound of policy regrets.
Another advantage is that the weak independence (WI)
assumption can be relaxed to support longer depen-
dencies on the network. However, by relaxing (WI),
the power of dmax in Theorem 1 and the following
Theorem 2 needs to be modified correspondingly. For
example, if we assume a next-nearest neighbors depen-

dency of covariates, i.e., Xi ⊥ Xj for j 6∈ i∪Ni ∪N (2)
i ,

then the term d2
max in Theorem 1 and 2 needs to be

modified to d4
max.

Under Assumption 1, we can derive the following
bound.

Theorem 1. By Assumption 1, for any
small ε > 0, the policy regret is bounded by
R(π̂n) ≤ 2

(
ατ
nζτ

+ αδ
nζδ

)
+ 2ε with probability at least

1−N
(

Π, ε
4(2M1+2M2+L)

)
exp

(
− nε2

32(d2
max+1)(M1+M2)2

)
,

where N
(

Π, ε
4(2M1+2M2+L)

)
indicates the cover-

ing number on the functional class Π with radius
ε

4(2M1+2M2+L) , and dmax is the maximal node degree

in the graph G.

Proof. Under (WI) and (BO), we can use concentration
inequalities of networked random variables defined on a
hypergraph, which is derived from graph G to bound the
convergence rate. Moreover, the Lipschitz assumption
(LIP) allows an estimation of the covering number of
the policy functional class Π. Detailed derivations of
policy regret bound is relegated to Appendix I.

Suppose that the policy functional class Π is finite
and its capacity is bounded by |Π|. According to The-
orem 1, with probability at least 1 − δ, the policy
regret is bounded by R(π̂n) ≤ 2

(
ατ
nζτ

+ αδ
nζδ

)
+ 8(M1 +

M2)

√
2(d2

max+1)
n log |Π|δ ≈ 2

(
ατ
nζτ

+ αδ
nζδ

)
+ 8dmax(M1 +

M2)
√

2
n log |Π|δ . It indicates that optimal policies are

more difficult to find in a dense graph even under weak
interactions between neighboring nodes.

In a real-world setting, treatments could be expen-
sive. So the policymaker usually encounters a bud-
get or capacity constraints, e.g., the proportion of pa-
tients receiving treatment is limited, and to decide
who should be treated under constraints is a challeng-
ing problem (Kitagawa and Tetenov, 2017). Through
the interference-free welfare function A(π), a policy
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is trained to make treatment choices using only each
individual’s features. In contrast, under interference,
a smart policy should maximize the utility function
Eq. (4) by deciding whether to treat an individual or
expose it under neighboring treatment effects such that
a required constraint can be satisfied. Therefore, in
the second part of the experiments, after fitting causal
estimators, we investigate policy networks that maxi-
mize the utility function S(π) on the graph and satisfy
a treatment proportion constraint.

To be more specific, we consider the constraint where
only pt percentage of the population can be assigned
to treatment 2. The corresponding sample-averaged
loss function for a policy network π under capac-
ity constraint is defined as Lpol(π) := −Ŝτ,δn (π) +
γ( 1

n

∑n
i=1 π(Xi) − pt), where γ is a hyperparameter

for the constraint. The optimal policy under capacity
constraint is obtained by π̂ptn ∈ minπ∈Π Lpol(π).

Let R(π̂ptn ) denote the capacity-constrained policy re-
gret with pre-assigned treatment percentage pt. The
upper bound of R(π̂ptn ) is provided in Theorem 2
and proved in Appendix J. It indicates that if, in
the constraint, pt is small, then the optimal capacity-
constrained policy will be challenging to find. Increas-
ing the treatment probability cannot guarantee the
improvement of the group’s interest due to the non-
linear network effect. Therefore, finding the balance
between optimal treatment probability, treatment as-
signment, and group’s welfare is a provocative question
in social science.

Theorem 2. By Assumption 1, for any small ε > 0,
the policy regret under the capacity constraint pt is
bounded by R(π̂ptn ) ≤ 2

(
ατ
nζτ

+ αδ
nζδ

)
+ 2ε with probabil-

ity at least 1 − N exp
(
− nε2

32(d2
max+1)(M1+M2)2

)
, where

N := N
(

Π, ε
8[(M1+M2+L)+ 1

pt
(M1+M2)]

)
indicates the

covering number on the functional class Π with ra-
dius ε

8[(M1+M2+L)+ 1
pt

(M1+M2)]
, and dmax is the maxi-

mal node degree in the graph G.

4 Experiments

4.1 Datasets

The difficulties of evaluating the performance of the
proposed estimators lie in the broad set of missing out-
comes under counterfactual inference. Therefore, we
conduct randomized experiments on two semi-synthetic
datasets with ground-truth response generation func-
tions, and observational studies on one real dataset

2Note that here pt differs from the treatment probabil-
ity p from causal structural equations in the randomized
experiment setting.

with unknown treatment assignment and response gen-
eration functions. Notably, in the randomized experi-
ment setting, we consider a linear response generation
function inspired by Eq. 5 of (Toulis and Kao, 2013),
G0 : Yi = Yi(Ti = 0,G = ∅)+Tiτ(Xi)+δi(X,T,G)+εYi ,
where Yi(Ti = 0,G = ∅) is the outcome under control
and without network interference, and εYi represents
Gaussian noise. τ(Xi) and δi(X,T,G) represent indi-
vidual treatment effect and spillover effect, respectively,
whose forms are dataset-dependent and discussed be-
low.

To further investigate the superiority of the GNN-based
causal estimators on nonlinear causal responses, we also
consider nonlinear data generation functions inspired by
Section 4.2 of (Toulis and Kao, 2013). For instance, a
generation approach G1 contains the quadratic spillover
effect δ2

i (X,T,G), or a more complicated approach G2

with an additional interaction term between individual
treatment and spillover effect, namely τ(Xi)δi(X,T,G).
Detailed expressions of approaches G1 and G2 can be
fund in Appendix E.

Wave1 Wave1 is an in-school questionnaire data col-
lected through the National Longitudinal Study of
Adolescent Health project (Chantala and Tabor, 1999).
The questionnaire contains questions such as age, grade,
health insurance, etc. Due to the anonymity of Wave1,
we use the symmetrized k-NN graph derived from
the questionnaire data as the friendship network. In
our experiments, we choose k = 10, and the result-
ing friendship network has 5, 578 nodes and 100, 158
links. We assume a randomized experiment conducted
on the friendship network which describes students’
improvements of performance through assigning to a
tutoring program or through the peer effect. Hence
Yi(Ti = 0,G = ∅) represents the overall performance of
student i before assignment to a tutoring program and
before being exposed to peer influences, τ(Xi) the sim-
ulated performance difference after an assignment, and
δi(X,T,G) the synthetic peer effect. Exact forms of
Yi(Ti = 0,G = ∅) and τ(Xi) depend nonlinearly on the
features of each student. Moreover, the first-order peer
effect is simulated as δi(X,T,G) := α 1

|Ni|
∑
j∈Ni

Tjτ(Xj),

where the decay parameter α characterizes the decay
of influence. For randomized experiments presented
here, we randomly assign 10% of the population to
the treatment, creating an under-treated population.
Details of the generating process and more experiment
results with different settings are relegated to Appendix
C and G.

Pokec The friendship network derived from the
Wave1 questionnaire data may violate the power-law
degree distribution of real networks. Hence, we fur-
ther conduct experiments on the real social network
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Wave1 Pokec√
MSE εPEHE

√
MSE εPEHE

DA GB 0.721± 0.054 0.289± 0.061 0.713± 0.016 0.321± 0.057
DA RF 1.037± 0.122 0.790± 0.215 0.749± 0.023 0.840± 0.087
DR GB 0.831± 0.109 0.499± 0.185 0.686± 0.020 0.275± 0.051
DR EN 0.929± 0.091 0.733± 0.135 0.695± 0.019 0.247± 0.060

GPS 0.238± 0.012 0.150± 0.047 0.329± 0.010 0.147± 0.010

GCN + ˆHSIC
Φ/GNN

0.192± 0.019 0.047± 0.018 0.305± 0.011 0.136± 0.009

GraphSAGE + ˆHSIC
Φ/GNN

0.181± 0.016 0.042± 0.020 0.303± 0.008 0.123± 0.003

1-GNN + ˆHSIC
Φ/GNN

0.176± 0.011 0.035± 0.011 0.302± 0.004 0.130± 0.006
Improve 26.1% 76.7% 8.2% 16.3%

Table 1: Experimental results of randomized experiments on the Wave1 and Pokec datasets using linear response
generation function G0. For Wave1, we set (node degree) k = 10, (decay parameter)α = 0.5, and (treatment
probability) p = 0.1, and for Pokec p = 0.1. Improvements are obtained by comparing with the best baselines.

Pokec (Takac and Zabovsky, 2012) with generated
responses. Pokec is an online social network in Slo-
vakia with profile data, including age, gender, edu-
cation, etc. We consider randomized experiments on
the Pokec social network, in which personalized ad-
vertisements of a new health medicine are pushed
to some users. We assume that the response of ex-
posed users to the advertisement only depends on a
few properties, such as age, weight, smoking status,
etc. We keep profiles with complete information on
these properties, and the resulting Pokec social net-
work contains 11, 623 nodes and 76, 752 links. Let
Yi(Ti = 0,G = ∅) represent the purchase of this new
health medicine without external influence on the de-
cision, τ(Xi) the purchase difference after seeing the
advertisement, δi(X,T,G) the purchase difference due
to social influences. For randomized experiments on
the Pokec social network, we also consider peer effects
from next-nearest neighbors by defining δi(X,T,G) :=
α 1
|Ni|

∑
j∈Ni

Tjτ(Xj) + α2 1

|N (2)
i |

∑
k∈N (2)

i

Tkτ(Xk), where

the decay parameter α characterizes the decay of in-
fluence. Details and more experimental results with
different hyperparameter settings are given in Appendix
D and G.

Amazon The co-purchase dataset from Amazon con-
tains product details, review information, and a list of
similar products. Therefore, there is a directed network
of products that describes whether a substitutable or
complementary product is getting co-purchased with
another product (Leskovec et al., 2007). To study
the causal effect of reviews on the sales of products,
(Rakesh et al., 2018) generates a dataset containing
products with only positive reviews from the Amazon
co-purchase dataset, named as pos Amazon, and Ama-
zon for short. In this dataset, all items have positive
reviews, i.e., the average rating is larger than 3, and one
item is considered to be treated if there are more than
three reviews under this item; otherwise, an item is in
the control group. In this setting, pos Amazon is an
over-treated dataset with more than 70% of products

being in the treatment group. Word2vec embedding
of an item’s review serves as the feature vector of this
item. Moreover, the individual treatment effect of an
item is approximated by matching it to other items
having similar features and under minimal exposure to
neighboring nodes’ treatments.

4.2 Results of Causal Estimators

Evaluation Metrics One evaluation metric is the
square root of MSE for the prediction of the observed
outcomes on the test dataset UT , which is defined

as
√
MSE :=

√
1
|UT |

∑
i∈UT (Yi − hTi)2, where hTi de-

notes the output of the outcome prediction network (see
h0 and h1 in Fig. 1). This metric reflects how well an es-
timator can predict the superimposed individual treat-
ment and spillover effects on a network. Another evalu-
ation metric that quantifies the quality of extracted in-
dividual treatment effect is the Precision in Estimation
of Heterogeneous Effect studied in (Hill, 2011), which
is defined as εPEHE := 1

|UT |
∑
i∈UT (τ(Xi) − τ̂(Xi))

2,

where τ̂(Xi) is defined in Eq. (3).

Baselines Baseline models are domain adaption
method (Künzel et al., 2019) with gradient boosting
regression (DA GB), with random forest regression
(DA RF), doubly-robust estimator (Funk et al., 2011)
with gradient boosting regression (DR GB), and elas-
tic net regression (DR EN). They are implemented
via EconML (Research, 2019) with grid-searched hy-
perparameters. These baselines incorporate the feature
vectors as inputs and exposure as the control variable
into the model. For randomized experiments on Wave1
and Pokec, the predefined treatment probability p is
provided, while for the observational studies on the
Amazon dataset, the covariate-dependent treatment
probability is estimated. Moreover, the generalized
propensity score (GPS) method is reproduced and en-
hanced for a fair comparison, equipped with the same
feature map Φ function. More details of baselines, the
sketch of the training procedure, and hyperparameters



Causal Inference under Networked Interference and Intervention Policy Enhancement

are relegated to Appendix G.

√
MSE εPEHE

DA GB 0.601± 0.007 1.370± 0.016
DA RF 0.604± 0.019 1.398± 0.013
DR GB 0.615± 0.022 1.222± 0.020
DR EN 1.104± 0.001 1.929± 0.003

GPS 0.399± 0.003 1.968± 0.025
GCN 0.312± 0.002 2.400± 0.201

GCN + ˆHSIC
GNN

0.303± 0.006 1.881± 0.076

GCN + ˆHSIC
Φ

0.301± 0.002 1.531± 0.024
GraphSAGE 0.305± 0.001 1.984± 0.026

GraphSAGE + ˆHSIC
GNN

0.296± 0.002 1.567± 0.051

GraphSAGE + ˆHSIC
Φ

0.300± 0.002 1.358± 0.025
1-GNN 0.279± 0.000 1.512± 0.111

1-GNN + ˆHSIC
GNN

0.276± 0.002 1.434± 0.030

1-GNN + ˆHSIC
Φ

0.277± 0.002 1.098± 0.031
Improve 30.8% 10.1%

Table 2: Experimental result on the pos Amazon
dataset without representation balancing and under
different imbalance penalties.

Experiments We use partial outcomes, both in the
randomized experiments and observational settings, to
train the GNN-based causal estimators. We investigate
the effect of penalizing representation imbalance in the
observational studies on the Amazon dataset. The en-
tire data points (Xi, Ti, Gi, Yi) are randomly divided
into training (80%), validation (5%), and test (15%)
sets. Note that the entire network G and the covariates
of all units X are given during the training and test,
while only the causal responses of units in the training
set are provided in the training phase. For the random-
ized experiments using the Wave1 and Pokec datasets,
we repeat the experiments 3 times and use different
random parameters in the response generation process
each time.

Experimental results on the Wave1 and Pokec data
generated via linear model G0 are presented in Table 1.

Both representation balancing ˆHSIC
Φ

and ˆHSIC
GNN

are deployed in the GNN-based estimators for search-
ing for the best performance. GNN-based estimators,
especially the 1-GNN estimator, are superior for super-
imposed causal effects prediction. One can observe a
26.1% improvement of the

√
MSE metric on the Wave1

dataset when comparing the 1-GNN estimator with
the enhanced GPS method and a 8.2% improvement
on the Pokec dataset. The covariates of neighboring
units in the Pokec dataset actually have strong co-
sine similarity, hence the improvement on the Pokec
dataset is not significant, and the network effect can
be approximately captured from the exposure variable.
Table 2 shows the experimental results on the pos Ama-
zon dataset in the observational study. In particular,
we demonstrate the effects of without representation
penalty, and with different penalties. It shows that
representation penalties can significantly improve the
individual treatment effect recovery, serving as a regu-

larization to avoid over-fitting the network interference.

Furthermore, GNN-based estimators using ˆHSIC
GNN

penalty are slightly better than those using ˆHSIC
Φ

penalty; however, by sacrificing the metric εPEHE .

The performance of GNN-based causal estimators on
nonlinear response models generated by G1 and G2

with different hyperparameters are reported in Ap-
pendix E. In general, for the

√
MSE metric, GNN-

based estimators outperform the best baseline GPS
dramatically, showing the effectiveness of predicting
the superimposed causal responses even under nonlin-
ear generation mechanisms. Moreover, a significant
performance improvement on the εPEHE metric with
the Wave1 and Pokec datasets shows that setting an
empty graph, i.e., G = ∅, in the GNN-based estima-
tors according to Eq. 3 is an appropriate approach for
disentangling and extracting individual causal effects
from interfered causal responses (see Table 8 and 9 in
Appendix E.).

4.3 Results on Improved Intervention Policy

Experiment Settings After obtaining the optimal
causal effect estimators and feature map Φ (see Fig. 1),
we subsequently optimize intervention policy on the
same graph. A neural network having two hidden lay-
ers, with ReLU activation between hidden layers and
sigmoid activation at the end, is employed as the pol-
icy network. The output of the policy network lies
in [0, 1], and it is interpreted as the probability of
treating a node. The real intervention choice is then
sampled from this probability via the Gumbel-softmax
trick (Jang et al., 2017) such that gradients can be
back-propagated. Sampled treatment choices along
with corresponding node features are then fed into the
feature map Φ and subsequent causal estimators to
evaluate the utility function under network interference
defined in Eq. (4). Each experiment setting is repeated
5 times until convergence. The hyperparameter γ in
Lpol is tuned such that the constraint for the percent-
age pt is satisfied within the tolerance ±0.01. More
details of experiment settings and hyperparameters are
relegated to Appendix G.3 and F.

To quantify the optimized policy π̂ptn , we evaluate the
difference

∆Ŝ(π̂ptn ) := Ŝτ,δn (π̂ptn )− Ŝτ,δn (πptR ),

where πptR represents a randomized intervention un-
derlying the same capacity constraint. The difference
∆Ŝ(π̂ptn ) indicates how a learned policy can outper-
form a randomized policy with the same constraint
evaluated via learned causal effect estimators. How-
ever, from its definition, it is concerned that the policy
improvement π̂ptn may be very biased, such that any
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Wave1 Pokec

∆Ŝ(π̂ptn ) ∆S(π̂ptn ) ∆Ŝ(π̂ptn ) ∆S(π̂ptn )
DA GB 0.276± 0.033 0.002± 0.025 0.231± 0.051 0.001± 0.036
DA RF 0.302± 0.029 0.003± 0.021 0.198± 0.080 0.001± 0.057
DR GB 0.322± 0.023 0.002± 0.019 0.338± 0.060 0.002± 0.046
DR EN 0.311± 0.019 0.001± 0.018 0.329± 0.028 0.001± 0.026

GPS 0.235± 0.042 0.004± 0.032 0.362± 0.069 0.001± 0.053
GCN 0.260± 0.024 0.163± 0.020 0.270± 0.007 0.190± 0.012

GraphSAGE 0.283± 0.031 0.176± 0.025 0.376± 0.049 0.211± 0.034
1-GNN 0.327± 0.038 0.208± 0.026 0.377± 0.041 0.225± 0.031

Table 3: Intervention policy improvements on the Wave1 and Pokec semi-synthetic datasets under treatment
capacity constraint with pt = 0.3. ∆Ŝ(π̂ptn ) and ∆S(π̂ptn ) represent utility differences evaluated from learned
estimators and ground truth, respectively. Note that only ∆S(π̂ptn ) reflects the real policy improvement.

DA GB DA RF GPS GCN GraphSAGE 1-GNN

∆Ŝ(π̂ptn ) 38.9± 1.1 84.1± 2.3 98.6± 10.8 80.7± 0.9 86.0± 0.9 84.1± 1.3

Table 4: Intervention policy improvements on the pos Amazon dataset under treatment capacity constraint with
pt = 0.5. Only domain adaption methods and GPS are compared since they are the best baseline estimators
according to Table 2.

“expected improvement” may come from the inaccurate
causal estimators. Hence, for the Wave1 and Pokec
datasets, knowing the generating process of treatment
and spillover effects, we also compare the actual utility
difference

∆S(π̂ptn ) := Sτ,δn (π̂ptn )− Sτ,δn (πptR ).

Table 3 displays policy optimization results on the
under-treated Wave1 and Pokec simulation datasets,
where initially only 10% of nodes are randomly as-
signed to treatment. It shows that an optimized policy
network cannot even outperform a randomized policy
in ground truth when the causal estimators perform
poorly. Hence, policy networks learned from the util-
ity function with plugged in doubly-robust or domain
adaption estimators are not reliable. By contrast, the
small difference between genuine utility improvement
∆S(π̂ptn ) and estimated improvement ∆Ŝ(π̂ptn ) for the
GNN-based causal estimators indicates the reliability of
the optimized policy. Moreover, comparing the ground-
truth utility improvement on GPS and GCN-based
estimator shows that the policy network sensitively
relies on the accuracy of the employed causal estimator.
Furthermore, one might argue that through baseline
estimators, a simple policy network cannot adjust its
treatment choice according to neighboring nodes’ fea-
tures and responses, unlike through GNN-based esti-
mators. For a fair comparison, in Appendix F, we also
provide experimental results using a GNN-based policy
network. However, we still cannot observe genuine
utility improvements on ∆S(π̂ptn ) when using baseline
models as causal estimators.

Next, we conduct experiments for intervention policy
learning on the over-treated pos Amazon dataset under
treatment capacity constraint. Since we do not have
access to the ground truth of the pos Amazon dataset,

Table 4 shows the utility difference under treatment
capacity constraint with pt = 0.5 evaluated only from
learned causal estimators. Although the optimized
utility improvement ∆Ŝ(π̂ptn ) achieves the best result
via the GPS causal estimator, it might be unreliable
compared to the ground truth. A reliable policy im-
provement having comparable utility improvement via
a GNN-based causal estimator is expected.

5 Conclusion

In this work, we first introduced the task of causal
inference under general network interference and pro-
posed causal effect estimators using GNNs of various
types. We also defined a novel utility function for pol-
icy optimization on interconnected nodes, of which a
graph-dependent policy regret bound can be derived.
We conduct experiments on semi-synthetic simulation
and real datasets. Experiment results show that GNN-
based causal effect estimators with an HSIC discrep-
ancy penalty, are superior in superimposed causal effect
prediction, and the individual treatment effect can be
recovered reasonably well. Subsequent experiments of
intervention policy optimization under capacity con-
straint further confirm the importance of employing
an optimal and reliable causal estimator for policy im-
provement. In future works, we will consider causal
effects on partially observable and dynamic networks.
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