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Abstract. In the form of the support vector machine and Gaussian processes,
kernel-based systems are currently very popular approaches to supervised learning.
Unfortunately, the computational load for training kernel-based systems increases
drastically with the size of the training data set, such that these systems are not
ideal candidates for applications with large data sets. Nevertheless, research in this
direction is very active. In this paper, I review some of the current approaches toward
scaling kernel-based systems to large data sets.
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1. Introduction

Kernel-based systems such as the support vector machine (SVM) and
Gaussian processes (GP) are powerful and currently very popular ap-
proaches to supervised learning. Kernel-based systems have demon-
strated very competitive performance on several applications and data
sets. Kernel-based systems also have great potential for KDD appli-
cations, since their degrees of freedom grow with training data size,
and they are therefore capable of modeling an increasing amount of
detail with increasing data set size. Unfortunately, there are at least
three problems when one tries to scale up these systems to large data
sets. First, training time increases dramatically with the size of the
training data set; second, memory requirements increase with data;
and third, prediction time is proportional to the number of kernels,
which is equal to (or at least increases with) the size of the training
data set. A number of researchers have approached these issues and
have developed solutions for scaling kernel-based systems to large data
sets. I will review these approaches in this paper, where focus will be
on the computational complexity of training.

The paper is organized as follows. Section 2 is a brief introduction
to kernel-based systems and implementation issues. Section 3 presents
various approaches to scaling kernel-based systems to large data sets.
First, in Section 3.1, I will present approaches based on the idea of com-
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2 Volker Tresp

mittee machines. Section 3.2 covers data compression approaches. Here,
the kernel systems are applied to compressed or sub-sampled versions
of the original training data set. Section 3.3 discusses efficient methods
for the linear SVM based on modifications of the optimization problem
to be solved. Some training regimes for kernel-based systems require
the solution of a system of linear equations the size of the training data
set. Section 3.4 presents various approaches to efficiently solving this
system of equations. In Section 3.5, projection methods are discussed.
The solutions here are based on a finite-dimensional approximation to
the kernel system. Section 4 provides conclusions.

2. Kernel-Based Systems for Supervised Learning

2.1. Kernel-based System

In kernel-based systems, the response f̂(x) to an input x is calculated
as a superposition of kernel functions K(x, xi) as

f̂(x) =
∑

xi∈Dx

wiK(x, xi). (1)

Here, wi is the weight on the i-th kernel. Kernels are either defined for
all input patterns Dx = {xi}N

i=1 or for a subset of the training data, as
in the case of the SVM. Sometimes a bias term b is included, and

f̂ b(x) =
∑

xi∈Dx

wiK(x, xi) + b. (2)

In regression, f̂(x) (respectively f̂ b(x)) corresponds to an estimate of
the regression function, and in (binary) SVM classification, the esti-
mated class label is the sign of f̂(x) (respectively f̂ b(x)). In some cases,
the kernel functions K(x, xi) are required to be positive definite func-
tions. Typical examples are linear kernels K(x, xi) = x′xi, polynomial
kernels K(x, xi) = (1 + x′xi)q with positive integer q, and Gaussian
kernels K(x, xi) = exp(− 1

2s2 ||x − xi||2) with scale parameter s. Linear
kernels are a special case, since here the equivalent linear representation

f̂ b(x) = v′x + b (3)

with weight vector v = A′w is computationally more efficient if the
input dimension is smaller than the size of the training data set. The
rows of the design matrix A are the input vectors of the training data
set. Kernel-based systems differ in how the weights wi are determined
based on the training data.
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2.2. Gaussian Process Regression (GPR)

In GPR, one assumes a priori that a function f(x) is generated from an
infinite-dimensional Gaussian distribution with zero mean and covari-
ance cov(f(xi), f(xj)) defined at input points xi and xj . Furthermore,
we assume a set of training data D = {(xi, yi)}N

i=1 where targets are
generated according to

yi = f(xi) + εi

where εi is independent additive Gaussian noise with variance σ2. The
optimal regression function f̂(x) takes on the form of Equation 1, where
the kernel

K(x, xi) ≡ cov(f(x), f(xi))

is determined by the covariance function. Based on our assumptions,
the maximum a posterior (MAP) solution for w = (w1, . . . , wN )′ mini-
mizes the cost function

1
2
w′Σw +

1
2σ2

(Σw − y)′(Σw − y) (4)

where Σ, with (Σ)i,j = cov(f(xi), f(xj)) is the N × N Gram ma-
trix.1 The optimal weight vector is the solution to a system of linear
equations, which in matrix form becomes

(Σ + σ2I)w = y. (5)

Here y = (y1, . . . , yN )′ is the vector of targets and I is the N ×
N -dimensional unit matrix. MacKay (1997) provides an excellent in-
troduction to Gaussian processes.

2.3. Generalized Gaussian Process Regression (GGPR)

Gaussian processes can find a wider range of applications by permitting
a more flexible measurement process. In particular, we might assume
that yi ∈ {0, 1} is the class label of the i-th pattern and that

P (Yi = 1|xi) =
1

1 + exp(−f(xi))

is the posterior probability for Class 1. The corresponding cost function
is

1
2
w′Σw −

N∑
i=1

log P (Yi = yi|xi).

1 Let fm = Σw be the the values of f at the location of the training data. Using
this identity, the cost function can also be written as

1

2
(fm)′Σ−1fm +

1

2σ2
(fm − y)′(fm − y).
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In this case, the optimal weights are found iteratively using an iterated
re-weighted least squares algorithm. The approach can be generalized
to any density from the exponential family of distributions. Discussion
of GGPR can be found in Tresp (2000b), Williams and Barber (1998),
and Fahrmeir and Tutz (1994).

2.4. Support Vector Machine (SVM)

The SVM classifies a pattern according to the sign of Equation 2. The
most commonly used SVM cost function is

1
2
w′Σw + Ce′(e − D(Σw + be))+. (6)

Here, D is an N ×N -dimensional diagonal matrix with ones and minus
ones on the diagonal (corresponding to the class label of the respective
patterns), e is an N -dimensional vector of ones, C ≥ 0 is a constant
and ()+ sets all negative components of the vector within the bracket
to zero. Note the similarity between the SVM and the GGPR cost
function. The difference is that the measurement process for the SVM
is not derived from the exponential family of distributions as it is for
the GGPR.

More common is the following equivalent definition with a differen-
tiable cost function and constraints. The weights in the SVM minimize
the cost function

1
2
w′Σw + Ce′ξ

where ξ = (ξ1, . . . , ξN )′ are the slack variables with ξi ≥ 0 subject to
the constraint that

D(Σw + be) ≥ e − ξ.

Here and in the rest of the paper ≥ is meant to be applied component-
wise. By introducing an N -dimensional vector of Lagrange multipliers
α for enforcing the constraints, one obtains the dual problem:
Maximize

W (α) = e′α − 1
2
α′DΣDα

with the constraints

0 ≤ α ≤ C α′y = 0.

The weights w and the Lagrange multipliers α are related via w = Dα.
The optimal weight vector is sparse — that is the weight wi for

many kernels is zero after training. The remaining kernels with nonzero
weights define the support vectors. It can be shown that the solution
minimizes a bound on the generalization error (Vapnik, 1998). Vapnik
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(1998), Schölkopf, Burges and Smola (1999), Christianini and Shawe-
Taylor (2000), and Müller, Mika, Rätsch, Tsuda, and Schölkopf (2001)
are excellent sources of information about the SVM.

2.5. Training

Solving the system of linear equations (Equation 5) for GPR requires
O(N3) operations. The iterated re-weighted least squares algorithm
used for training the GGPR typically requires that systems of similar
linear equations must be solved repeatedly.

For the support vector machine, the dual optimization problem re-
quires the solution of a quadratic programming (QP) problem with lin-
ear constraints. Due to the large dimension of the optimization problem,
general QP routines are unsuitable even for relatively small problems (a
few hundred data points): the common interior point methods require
repeated solution of linear equations with the dimensionality of the
number of variables.

To solve the high-dimensional QP problems for the SVM, special
algorithms have been developed. The most important ones are chunk-
ing, decomposition, and sequential minimal optimization (SMO). All
methods iteratively solve smaller QP problems. Both chunking and
decomposition require a QP solver in their inner loops. Decomposition
scales better with the size of the training data set since the dimensional-
ity of the QP problem is fixed, whereas for the chunking algorithm, this
dimensionality increases until it reaches the number of support vectors.
Chunking was one of the earliest approaches used for optimizing the
SVM machine. Decomposition was introduced by Osuna, Freund, and
Girosi (1997) and further developed by Joachims (1998). The SMO is
an extreme case of a decomposition algorithm since only two variables
(Lagrange multipliers) are optimized at a time. This can be done ana-
lytically, so that the SMO does not require a QP optimizer in its inner
loop. Decomposition and the SMO are in general faster than chunking.
Experimental evidence suggests that the computational complexity for
both decomposition and the SMO scales approximately to the square
of size of the training data set.

As an alternative to QP, several gradient optimization routines have
been developed. In addition, Pérez-Cruz, Alarcón-Diana, Navia-Vázquez,
and Artés-Rodŕiguez (2001) used a fast iterated re-weighted least squares
procedure recently to train the SVM.
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2.6. More Kernels: Regularization Networks, Smoothing

Splines, the Relevance Vector Machine and Kernel

Fisher Discriminant

It is not possible to discuss all currently popular kernel-based learning
systems in detail in the limited space allowed here. The regulariza-
tion networks of Poggio and Girosi (1990) are essentially identical to
GPR. Here, the kernels are Green’s functions derived from the appro-
priate regularization problem. Similarly, smoothing splines are closely
related (Wahba, 1990). The relevance vector machine (Tipping, 2000)
achieves sparseness by pruning away dimensions of the weight vector
using an evidence framework. Finally, the kernel Fisher discriminant is
the well-known linear Fisher discriminant approach transformed into a
high-dimensional feature space by means of kernel functions (Müller et
al., 2001).

3. Scaling Kernel-Based Systems to Large Data Sets

This section is the heart of the paper. In it, I discuss various approaches
toward scaling kernel-based systems to large data sets.

3.1. Committee Machines

3.1.1. Introduction
In committee machines, different data sets are assigned to different
committee members (i.e., kernel systems) for training, and the predic-
tions of the committee members are combined to form the prediction of
the committee. Here, I want to discuss two committee approaches that
are particularly suitable for (and have been applied to) kernel-based
systems.

3.1.2. A Bayesian Committee Machine (BCM)
In the BCM approach (Tresp, 2000a), the data are partitioned into
M data sets D = {D1, . . . ,DM} (of approximately same size) and M
learning systems are trained on their respective training data set. The
BCM calculates the unknown responses at a number of test points at
the same time. Let f q = (f q

1 , . . . , f q
NQ

) be the vector of these response
variables at the NQ test points.

The underlying assumption of the BCM is that

P (Di|f q,D \ Di) ≈ P (Di|f q) i = 1, . . . , M. (7)

Under this assumption, data sets are independent given f q. This is a
good assumption if f q contains many points, since these points define
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the map and make all data independent. The approximation also im-
proves if the number of data in each set Di is large, which increases
their independence from the other data sets on average.

Based on the assumption, one obtains

P (f q|D) ≈ P (f q)
∏M

i=1 P (Di|f q)
P (D)

.

A practical algorithm is obtained if we assume that all probability
distributions are approximately Gaussian. Then P (f q|D) is also ap-
proximately Gaussian with

Ê(f q|D) = C−1
M∑
i=1

cov(f q|Di)−1E(f q|Di) (8)

and

C = ĉov(f q|D)−1 = −(M − 1)(Σqq)−1 +
M∑
i=1

cov(f q|Di)−1. (9)

Here, Σqq is the NQ × NQ prior covariance matrix at the test points.
Equation 8 has the form of a committee machine where the predictions
of the committee members at all NQ inputs are used to form the predic-
tion of the committee at those inputs. The prediction of each module
i is weighted by the inverse covariance of its prediction. An intuitive
appealing effect is that by weighting the predictions of the committee
members by the inverse covariance, modules that are uncertain about
their predictions are automatically weighted less than modules that are
certain about their predictions.

I applied the BCM to GPR in Tresp (2000). For GPR, the mean and
the covariance of the posterior Gaussian densities are readily computed.
Subsequently, the BCM was applied to GGPR (Tresp, 2000b) and to
the SVM (Schwaighofer and Tresp, 2001). For both the GGPR and
the SVM, the posterior distributions are only approximately Gaussian.
In Tresp (2000), it was shown that NQ, the dimension of f q, should
be at least as large as the effective number of parameters.2 If this
is the case, the BCM and its generalizations give excellent results.
Furthermore, it is possible to derive online Kalman filter versions of
the BCM, which only require one pass through the data set and the
storage of a matrix of the dimension of the number of test points (Tresp,
2000a). After training, the prediction at additional test points requires
resources dependent on the number of test points but is independent

2 Since the latter is closely related to the kernel bandwidth, there is also a close
connection between the kernel bandwidth and NQ.
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of the size of the training data set. On several data sets I found no
difference in performance between the BCM approximation and the
optimal GPR prediction based on the inversion of the full covariance
matrix. The BCM was applied to training data sets of size N = 60, 000,
where the full inversion is clearly unfeasible.

3.1.3. Boosting
In boosting, committee members are trained sequentially and the train-
ing of a particular committee member is dependent on the training and
the performance of previously trained members. Boosting can reduce
both variance and bias in the prediction. The reason is that in training
a committee member, more weight is put on data that are misclassified
by previously trained committee members.

Schapire (1990) developed the original boosting approach, boosting
by filtering. Here, three learning systems are used and the existence
of an oracle that can produce an arbitrary quantity of training data
is assumed. The first learning system is trained on K training data.
Then the second learning system is trained on the same quantity of
data but these training data are generated so that half of them are
classified correctly and half of them are classified incorrectly by the
first learning system. The third learning system is trained only on data
about which learning systems one and two disagreed. A majority vote
of the three learning systems determines the classification. Note that
the second learning system obtains 50% of patterns for training that
are difficult for the first learning system, and that the third learning
system only obtains critical patterns in the sense that learning the first
and second learning systems disagree on those patterns. This original
boosting algorithm is particularly useful for large data sets, since a
large number of training data are filtered out and are not directly used
for training. In recent years, the focus of interest has shifted toward
boosting algorithms that can also be applied to smaller data sets:
boosting by resampling and boosting by reweighting. Recently, Pavlov,
Mao, and Dom (2000) used a form of boosting by resampling, Boost-
SMO, in the context of training the SVM with large data sets. They
used a small fraction of data (2 – 4%) to train a committee member
using the SMO algorithm. To train a subsequent committee member,
they chose those data with a higher probability which were difficult for
the previous committee member to classify. In this way, only a portion
of the complete training data set is used for training. The overall predic-
tion is then a weighted combination of the predictions of the committee
members. In some experiments, Boost-SMO was faster by a factor of 10
than SMO while providing essentially the same prediction accuracy. In
their implementation, the probability of the data are reweighted prior
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to the training of a new committee member, so multiple passes through
the data are required. Nevertheless, online versions of this approach are
also conceivable.

3.2. Data Compression

Data compression is a generally applicable solution to dealing with large
data sets. The idea is to train the learning system on a smaller data set
that is either generated by subsampling or by preclustering the data.
In the latter case, the cluster centers are used as training patterns. The
idea of preclustering data has been extended in an interesting direction
by applying the concept of squashing to training a linear SVM (Pavlov,
Chudova, and Smyth, 2000). For training, the SMO algorithm is used.
Clustering is performed using a metric derived from the likelihood pro-
file of the data. First, a small percentage of the original training data
set are randomly chosen as cluster centers. Then, for a linear SVM,
L (typically 50–100) random weights v and an offset b are generated
following their prior distributions (a probabilistic version of the SVM
is used). For each data point the log-likelihood for each weight vector is
calculated, producing an L-dimensional vector (likelihood profile) for
each data point. A data point is then assigned to the cluster center
with the closest likelihood profile. Finally, the weight for each cluster
center is proportional to the number of data assigned to a cluster. This
procedure leads to a considerable reduction in training data by taking
into account the statistical properties of the data. The training time
using the SMO with squashing was comparable to the training time of
Boost-SMO (see previous section) by providing a comparable prediction
accuracy.

3.3. Fast Algorithms for Linear SVMs

The SVM was originally formulated as a linear classifier; kernels were
introduced in order to be able to obtain nonlinear classification bound-
aries. Training the linear SVM is considerably faster than training the
kernel SVM. The following section discusses approaches that lead to
even faster training algorithms for the linear SVM by modifying the
cost function.

3.3.1. Active Support Vector Machine (ASVM)
The ASVM was developed by Mangasarian and Musicant (2001). Here,
the optimization problem of the SVM is reformulated. The modified
cost function is

1
2
(v′v + b2) + Cξ′ξ
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10 Volker Tresp

with constraints
D(Av − be) ≥ e − ξ

where A is the design matrix. In the design matrix, the input vectors
of the training data set are represented as rows. Note that the cost
function contains the square of the bias b such that the margins with
respect to both orientation v and location relative to the origin b are
maximized. Furthermore, the 2-norm of the slack vector is minimized.
Based on these modifications, a dual problem is formulated that con-
tains non-negativity constraints but no equality constraints. Due to
these modifications, a very simple iterative optimization algorithm was
derived. At each iteration step, a system of linear equations the size
of the input dimension plus one needs to be solved. The number of
iteration steps is finite. As an example, a data set with 7 million points
required only 5 iterations and needed 95 CPU minutes.

3.3.2. Lagrange Support Vector Machine (LSVM)
A variation on the ASVM is the LSVM (Mangasarian and Musicant,
2000). It is based on the same reformulation of the optimization prob-
lem and leads to the same dual problem. The difference is that the
LSVM works directly with the Karush-Kuhn-Tucker necessary and
sufficient optimality condition for the dual problem. The algorithm re-
quires, prior to the optimization iterations, the inversion of one matrix
Q of the size of the input dimension plus one. The iteration has the
simple form

αi+1 = Q−1(e + ((Qαi − e) − βαi)+)

where αi is the vector of Lagrange multipliers at step i, and β is a
positive constant.

The LSVM and the ASVM are comparable in speed although the
ASVM is faster on some problems. The great advantage of the LSVM
is definitely the simplicity of the algorithm. The LSVM can also be
applied to nonlinear kernels, but a matrix of the size of the number
of data points needs to be inverted. For more examples of fast linear
SVM-variants, see Mangasarian and Musicant (1999).

3.4. Approximate Solutions to Systems of Linear Equations

Gaussian processes and some variants of the SVM (see Section 3.3.2)
require the solution of a large system of linear equations.
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3.4.1. Method by Skilling
For Gaussian processes and also for some variants of the SVM, it is
necessary to solve a linear system of equation of the form

Mw = y

with some matrix M . The solution to this linear set of equations is
identical to the minimum of

w′y − 1
2
w′Mw.

This cost function is minimized iteratively using the conjugate gradient
method in O(k × N2) steps where k is the number of iterations of the
conjugate gradient procedure. Often k can be set to be much smaller
than N without a significant loss in performance, particularly when M
has a large number of small eigenvalues. This approach is due to Skilling
and was one of the earliest approaches to speeding up the training of
GPR systems (Gibbs and MacKay, 1997). Note that the computational
complexity of this approach is quadratic in the size of training data set
and this approach is therefore not well suited for massive data sets.

3.4.2. The Nyström Method
The Nyström method was introduced by Williams and Seeger (2001),
and it is applicable in particular to GPR. Let’s assume a decomposition
of the Gram matrix of the form Σ = UΛU ′ where Λ is a diagonal matrix
and U is an N × m matrix with typically m << N . In this case, we
can solve the system of linear equations (see Equation 5) using the
Woodbury formula (Press, Teukolsky, Vetterling, and Flannery, 1992)
and obtain

w =
1
σ2

y − 1
σ2

U(σ2Λ−1 + U ′U)−1U ′y.

In this form, only a matrix of size m × m needs to be inverted, and w
still has the dimension of the number of training data N .

An example of an appropriate decomposition of the Gram matrix
would be an eigenvalue decomposition. The computational complexity
of a full eigenvalue decomposition scales as O(N3), so not much is
gained unless the Gram matrix has a large number of small eigenvalues.
A particularly interesting approximation was introduced by (Williams
and Seeger, 2001). They performed an eigendecomposition of a (ran-
domly chosen) m × m submatrix of Σ. Based on p eigenvectors and
eigenvalues of the decomposition of the smaller matrix, the correspond-
ing decomposition of the larger matrix can be approximated using the
Nyström method. The Nyström method is a method for numerically
solving integral equations. The computational complexity of this ap-
proach is O(m2N) such that this approach scales linear in N . The
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authors verified the excellent quality of this approximate method us-
ing a training set size of 7291 and obtained very good results with
m = p = 256. The approach is applicable to both regression and
classification.

3.5. Projection Methods Leading to a Finite-Dimensional

Representation

In general, the degrees of freedom of a kernel system grow with the
number of kernels (i.e., data points). The approaches discussed in this
section project the basically infinite-dimensional problem on a finite-
dimensional representation. The problem then reduces to estimating
the parameters in this finite-dimensional problem. In all approaches,
the solution assumes the form of a system with fixed basis functions.
The BCM approach in Section 3.1.2 can also be considered to be a
specific projection approach in which the basis functions are the kernels
defined by the test points.

3.5.1. Optimal Projections
The problem formulation is: Given that both the input data distribu-
tions P (x) and the size of training data N are known, what is the
best linear combination of an m-dimensional set of basis functions that
provides the best approximation to a GPR kernel-based system. In
projected Bayes regression (Zhu, Williams, Rohwer, Morciniec, 1998),
this problem is solved based on an infinite-dimensional principle com-
ponent analysis for N → ∞. The result is that one should use the first
m eigenfunctions of the covariance function describing the Gaussian
process asymptotically. The computational complexity is O(Nm2).

Trecate, Williams, and Opper (1998) described an improved varia-
tional approximation for finite data size. Their approach has a smaller
test set error if compared to projected Bayes regression, and the com-
putational complexity scales as O(N2m). This approach is quadratic
in N , whereas projected Bayes regression is linear in N , because the
representation increases with data size. Csató and Opper (2001) pre-
sented an online variant based on these ideas, which leads to a sparse
representation by limiting the representation to a small number of well
chosen kernel functions.

3.5.2. Projection on a Subset of Kernels
Let’s select a subset of the training data set of size m < N and let Σm,m

denote the corresponding kernel matrix. We can now approximate

cov(f(xi), f(xj)) ≈ (Km(xi))′(Σm,m)−1Km(xj)
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where Km(xi) is the vector of covariances between the functional values
at xi and the data in the subset. This approximation is an equality
if either xi or xj are elements of the subset and is an approxima-
tion otherwise. With this approximation, the regression function is a
superposition

f̂(x) =
m∑

i=1

wiK(x, xi) (10)

of only m kernel functions and the optimal weight vector minimizes the
cost function

1
2
w′Σm,mw +

1
2σ2

(ΣN,mw − y)′(ΣN,mw − y)

where ΣN,m contains the covariance terms between all N training data
and the subset of data chosen to be kernel functions.

Although we only used a fixed number of kernels, all training data
contributed to determine the weight vector w. The methods described
in the following subsections are based on this decomposition. The con-
nection between the decomposition of the Gram matrix in this section
and the BCM approximation is discussed in the Appendix.

3.5.3. Reduced Support Vector Machines (RSVM)
The RSVM (Lee and Mangasarian, 2000) uses a nonstandard SVM cost
function of the form

1
2
(w′w + b2) + Cg′g.

If we compare this equation with the original SVM cost function of
Equation 6, we notice that the cost term for the weights is simplified.
As in the previous section, w denotes the kernel weights for m randomly
selected kernels and, as in the case of the ASVM (Section 3.3.1), the
square of the bias b is included. Here, the 2-norm of a transformed slack
variable is included with

g = g(e − D(ΣN,mw − be)),

where ΣN,m is defined as in the previous subsection and where g(x) =
x+ 1

γ log(1+exp(−γx)) is applied component-wise. The function g() is
a “soft” twice-differentiable version of ()+ where γ is typically a large
positive number. The advantages of these modifications are that (a)
no constraints are needed (as in the formulation in Equation 6); (b)
due to the modifications of the cost function, a quadratically converg-
ing Newton algorithm can be used for training; and (c) due to the
projection on the finite number of kernels, the time complexity of the
optimization routine scales linearly in the number of data points. In an
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experiment using the adult data set3 with N=32600 training data and
m = N/100 = 326, the RSVM needed 16 minutes, whereas the SMO
algorithm needed more than two hours. Surprisingly, on some smaller
data sets the RSVM performed even better than the full SVM. This
was explained by a smaller tendency toward overfitting of the RSVM.
Experimental results showed that the random selection of the training
data did not significantly increase the variance in the prediction.

3.5.4. Sparse Greedy Matrix Approximation
In the previous two subsections an expansion in terms of a finite number
of kernels defined at a random subset of the training data was sought. In
contrast, in the BCM approximation the kernels are defined by the test
points. In Smola and Schölkopf (2000), the expansion is based on a sub-
set of the training data, but here, the kernels are not selected randomly:
The goal is to find the m kernels that can best represent the N kernels
of all training data where proximity is defined in the Reproducing Ker-
nel Hilbert Space (i.e., the feature space). This simplifies calculations
drastically since the inner product of two kernels defined for xi and
xj is simply equal to K(xi, xj). The authors describe a “greedy” algo-
rithm in which at each step the best kernel out of randomly selected
L candidate kernels is added to the set of already selected kernels.
The computational cost of this version is O(L × m × N2), where N
is the total number of training data and m is the size of the selected
subset of training data. In Smola and Schölkopf’s paper, L = 59 was
motivated by theoretical considerations. The authors showed that the
approximation based on m kernels is very close to the approximation
based on the optimal m basis vectors. The optimal m should also be
closely related to the effective number of parameters, as discussed in
Section 3.1.2, and is therefore dependent on the kernel bandwidth. A
variant of this approach applicable to GPR is described in Smola and
Bartlett (2001). In their paper, they derived a stopping criterion and
bounds on the approximation error. Using a training data set of size
N = 4, 000 the authors demonstrated that, with less than 10% of the
training data used as kernels, they obtained statistically insignificant
differences in performance between GPR based on the inversion of the
full covariance matrix and their approximation.

4. Conclusions

I have summarized the most important approaches for scaling up kernel-
based systems to large data sets. For nonlinear kernels, various authors

3 Retrievable from: http://www.ics.uci.edu/ mlearn.

kdd_journal2.tex; 3/08/2001; 15:14; p.14



Scaling Kernel-Based Systems 15

have achieved a considerable reduction in training time which makes
nonlinear kernel systems applicable to data sets of maybe a few 100,000
data points. All approaches assume that a representation based on a
finite subset of the training data (respectively the kernels) is sufficient
which is a reasonable assumption if the kernel bandwidth is low. Nev-
ertheless, the goal stated in the introduction, of being able to model an
increasing amount of detail when sufficient data become available would
require that the kernel bandwidth be scaled up with increasing data
size, thus increasing the degrees of freedom appropriately. This is only
possible to a limited degree with the methods presented. Combining
kernel-based systems with a hierarchical partitioning of the map or
local algorithms might be an interesting direction for future research.

Finally, for kernel systems using linear kernels, training time is con-
siderably faster than for kernel systems using nonlinear kernels. Here,
systems with more than a few million data points have been trained
witin a reasonable time.

Appendix

Let’s assume that one is interested in the prediction at a set of query
points, defined as a subset of the training data as in Section 3.5.2 or as
the test data, as in Section 3.1.2. Let f q denote the unknown functional
values at those query points. Let f q = Σq,qw be the expansion in terms
of the kernel functions defined at the query points. Here, Σq,q is the
covariance matrix defined for this subset of points. Then, the weight
vector w, which leads to the optimal predictions at the subset of points
minimizes

1
2
w′Σq,qw +

1
2
(ΣN,qw − y)′ cov(y|f q)−1 (ΣN,qw − y)

Here,
cov(y|f q) = σ2I + ΣN,N − ΣN,q(Σq,q)−1(ΣN,q)′ (11)

is the covariance of the training data given f q. Also, ΣN,q is the covari-
ance between the training data and the query points and ΣN,N is the
covariance matrix defined for the training data.

Note that the inverse of cov(y|f q) needs to be calculated which is
an N × N matrix. The approximation used in Section 3.5.2 simply
sets cov(y|f q) = σ2I where I is the unit matrix. The BCM uses a block
diagonal approximation of cov(y|f q), and the calculation of the optimal
weight vector w requires the inversion of matrices of the block size. The
BCM approximation improves if few blocks are used (then a smaller
number of elements are set zero) and when the dimension of f q is large,
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since then the two terms on the right side of Equation 11 cancel and
cov(y|f q) = σ2I. A more detailed discussion can be found in Tresp and
Schwaighofer (2001).
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