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Abstract. We present a general and novel framework for predicting
links in multirelational graphs using a set of matrices describing the var-
ious instantiated relations in the knowledge base. We construct matrices
that add information further remote in the knowledge graph by join op-
erations and we describe how unstructured information can be integrated
in the model. We show that efficient learning can be achieved using an
alternating least squares approach exploiting sparse matrix algebra and
low-rank approximations. We discuss the relevance of modeling nonlinear
interactions and add corresponding model components. We also discuss
a kernel solution which is of interest when it is easy to define sensible
kernels. We discuss the relevance of feature selection for the interaction
terms and apply a random search strategy to tune the hyperparameters
in the model. We validate our approach using data sets from the Linked
Open Data (LOD) cloud and from other sources.

1 Introduction

There is a growing amount of data published in multirelational graphs where
information elements are represented as subject-predicate-object (s, p, o) triples.
Entities (i.e., subjects and objects) are represented as nodes and statements are
represented as directed labeled links from subject node to object node. A machine
learning task of some generality is the prediction of links between entities using
patterns in known labeled links in the knowledge base.

We present a general framework for predicting links in multirelational graphs
using a set of matrices describing the various instantiated relations in the knowl-
edge base. We first consider triples in the immediate neighborhood of the triple of
interest and then construct matrices that add information further remote in the
knowledge graph by performing join operations. We also consider the case that
unstructured information is available that can support the link prediction task
and we describe how unstructured information can be integrated in the model.
Examples of unstructured information are textual documents describing the in-
volved entities (e.g., from the entities’ Wikipedia pages). We show that efficient
learning can be achieved using an alternating least squares approach exploiting
sparse matrix algebra and low-rank approximations. We discuss the relevance
of modeling nonlinear interactions and add corresponding model components.
We also discuss a kernel solution which is of interest when it is easy to define
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sensible kernels. We discuss the relevance of feature selection for the interaction
terms and apply a random search strategy to tune the hyperparameters in the
model. We validate our approach using data sets from the Linked Open Data
(LOD) cloud and from other sources.

The paper is organized as follows. The next section discusses related work.
Section 3 describes our basic approach. Section 4 describes the cost function and
the alternating least squares solution for parameter learning. In Section 5 we
discuss aggregation via joint operations, the inclusion of unstructured informa-
tion and interaction terms. Section 6 contains our experimental results. Section 7
presents our conclusions.

2 Related Work

One of the first line of research where matrix representations were used for link
prediction in multirelational graphs is the SUNS framework [10] [5]. A major
extension was the probabilistic extension of the SUNS approach reported in [7].
The same paper also describes how information extraction (IE) can be combined
with deductive reasoning and machine learning for link prediction, where the
combination is implemented as a postprocessing step. The additive approach
presented in this paper is novel and has several advantages. It considers a model
for a complete knowledge-base of triples and considers dependencies on all triples
in the immediate neighborhood of the triple. Whereas in [7], the combination
was a postprocessing step, here we optimize the additive model globally. Also the
discussion on aggregation by joint operations is novel, as well as the application
of alternating least squares for optimizing the penalized cost function.

The winning entries in the Netflix competitions are based on matrix factor-
ization [1]. The main difference is that in those applications unknown ratings
can be treated as missing entries whereas in relational prediction, the topic here,
they are treated as negative evidence.

Multi-relational graphs also map elegantly to a tensor representation. Tensor
models for relational learning have been explored in [9], showing both scalability
and state-of-the-art results on benchmark datasets.

3 Link Prediction in Multi-relational Graphs

3.1 Relational Adjacency Matrices

In this paper we assume that labeled links are represented as triples of the form
(s, p, o) where subject s and object o stand for entities in a domain and where p
is the predicate, i.e. the link label. We define a variable xi,j,k that is associated
with the triple (s = i, p = j, o = k). We set xi,j,k = 1 when the triple is known
to exist, otherwise xi,j,k = 0. In the multirelational graph, the entities form the
nodes and the existing triples form labeled links.

We now consider a domain with N entities and P predicates. For the pred-
icate p= j in the domain we define a relational adjacency matrix Xj ∈ RN×N
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where (Xj)i,k = 1 if xi,j,k = 1 and (Xj)i,k = 0 otherwise. The matrix of con-
catenated relational adjacency matrices X = (X1, . . . XP ) describes all existing
and all potential triples involving all known entities in the knowledge base.

Fig. 1. The figure shows the matrix M and illustrates the terms in Equation 1. We
assume that the goal is to predict the matrix entry x̂i,j,k in matrix Xj indicated by
the small red circle. The terms in the first sum (subject term) are represented by the
upper dashed blue line, the terms in the second sum (object term) are represented
by the lower green dotted line, and the terms in the third sum (subject-object term)
correspond to the small rectangles.

3.2 The Basic Model

In the basic model we assume that the truth value of a triple (s= i, p= j, o= k)
can be estimated as a linear combination of directly related triples, defined as
all triples (s= i, p= j′, o= k′) where i is the subject, all triples (s= i′, p= j′,
o= i) where i is the object, all triples (s= k, p= j′, o= k′) where k is the subject
and all triples (s= i′, p= j′, o= k) where k is the object. Finally we consider
triples with arbitrary predicates but where two entities from the target triple
are involved, i.e., (s= i, p= j′, o= k), and (s= k, p= j′, o= i). If xi,j,k = 0, the
predicted x̂i,j,k ≥ 0 can then be interpreted as a likelihood that the triple is true
based on the immediate context of the triple.

We now form the matrix M = (X,X†) where X† = (XT
1 , . . . X

T
P ) denotes

the in-place matrix transposed of X (Figure 1). Let (M)i,l = mi,l.
Following the discussion we form the model

x̂i,j,k =

2PN∑
l=1

wl,k+(j−1)N mi,l +

2PN∑
l=1

rl,i+(j−1)N mk,l +

2P∑
l=1

hl,j mi,k+N(l−1) (1)

For further reference, we call the first term in the sum in Equation 1 the subject
term, the second one the object term, and the last one the subject-object term.3

The w.,., r.,., and h.,. are model parameters to be estimated.

3 Note that we get nontrivial solutions by using regularized parameter fits with low-
rank constraints, as described in Section 4.



4 Jiang, Tresp, Huang, Nickel

Fig. 2. (a): The goal is to predict the likelihood of the triple (s, p, o). In Equation 1,
the triples attached to s correspond to the subject term, the triples attached to o
correspond to the object term, and the triples linking s and o correspond the subject-
object term. (b): From the triple (u, hasFriend, f) and (f, type, richPerson) we derive
via aggregation (s, hasFriendType, RichPerson) which can be useful to predict (u, type,
richPerson). (c): From (u, hasAge, Young) and (m, type, ActionMovie) we derive (u,
youngAction, m) which is useful for predicting (u, likes, m).

The subject term represents triples where i is the subject, when l = 1, . . . P or
where i is the object, when l = P + 1, . . . 2P . Similar the object term represents
triples where k is the subject, when l = 1, . . . P or where k is the object, when
l = P + 1, . . . 2P . The subject-object term considers all triples that involve both
i and k with any predicate (see Figure 2 (a)).

3.3 Model Discussion

Note that we assume that the rows in M are exchangeable such that the weights
in object term wl,k+(j−1)N are independent of i, and the weights in the subject
term rl,i+(j−1)N are independent of k. The parameters hl,j in the subject-object
term are independent of both i and k.

There are of course also other ways to segment the parameter space. For
example, one might decide that the semantics of the predicate “like” is very
different when subject is a person than if the subject is a dog and the object is
a bone. Technically this could mean that, e.g., we write wl,k+(j−1)N,type(i) and
the model correspondingly would have more parameters.

As a special case, we only have one predicate, i.e. ”like“ and entity types
users and movies. If we apply the learning procedure as described in Section 4
we obtain a solution that only exploit correlations between triples with the same
predicate, i.e., intrarelational correlations. In effect, we obtain a regularized low-
rank approximation of the relational adjacency matrix which is a model often
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used in collaborative filtering applications. Additional relational adjacency ma-
trixes, for example representing user and movie attributes, can then help to
support the prediction of “like”-triples.

One might want to think of the last equation in terms of an if-then-rule
where the right side of the equation describes the condition and the left side
describes the conclusion. In this view the subject ?s and the object ?o would be
variables4 and the subject term describes relations including the first variable,
the object term describes relations including the second variable, and the subject-
object term describes relations including both variables. All these variables are
universally quantified, which means that the expression is valid for all subjects
?s and all objects ?o. We can introduce additional variables in the condition part
for certain aggregation operations, as described in Section 5, and these variables
would be existentially quantified (as in Horn clauses).

4 Cost Function and Parameter Optimization

4.1 Penalized Cost Function

We can write the model of Equation 1 efficiently in matrix form as

X̂ = MW + (MR)† + matrix(N×PN)

(
M̃ H

)
(2)

Here, M̃ = (vect(X1), . . . , vect(XP ), vect(XT
1 ), . . . , vect(XT

P )) is an N2 × 2P
matrix where the column vector vect(.) contains all elements of the corresponding
relational adjacency matrix. Furthermore, W ∈ R2PN×PN , R ∈ R2PN×PN , and
H ∈ R2P×P are parameter matrices. The operation matrix(N×PN)(.) transforms
the result of the matrix product into a N × PN matrix.

We define a penalized least squares cost function as

‖X − X̂‖2F + λW ‖W‖2F + λR‖R‖2F + λH‖H‖2F

where ‖‖F is the Frobenius norm. The last three terms are used to regularize
the solution to avoid overfitting.

4.2 Alternating Least Squares

We optimize the parameter matrices W , R, and H using an alternating least
squares procedure as described in this subsection.

To reduce computation and to further regularize the solution, we first de-
compose using singular value decomposition (SVD)

M = UDV T M̃ = ŨD̃Ṽ T

and only use the leading singular values and corresponding singular vectors in
the model. Another benefit of this low-rank approximation is that we implicitly

4 We use the common notation of indicating a variable by a question mark in front of
a symbol.
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benefit from a sharing of statistical strengths leading to performance improve-
ments, as it is well known from Latent Semantic Analysis (LSA).

We define X̂(−W ) as X minus the estimate in Equation 2 using the parameter
estimates in the current iteration step, except that W = 0, i.e. we remove the
subject term in the sum. Similarly, we define X̂(−R) as X minus the estimate in
Equation 2 using the parameter estimates in the current iteration step, except
that R = 0, i.e. we remove the object term in the sum. Finally, we define X̂(−H)

as X minus the estimate in Equation 2 using the parameter estimates in the
current iteration step, except that H = 0, i.e. we remove the subject-object
term in the sum.

In the alternating least squares steps we iterate until convergence

MW = Ur diag

{
d2i

d2i + λW

}r

i=1

UT
r X̂

(−W ) (3)

MR = Ur diag

{
d2i

d2i + λR

}r

i=1

UT
r

(
X̂(−R)

)†
(4)

M̃H = Ũr̃ diag

{
d̃2i

d̃2i + λ̃H

}r̃

i=1

ŨT
r̃ X̃

(−H) (5)

where in X̃(−H) = matrixN2×PX
(−H) each relational adjacency matrix is

written as a column vector. In particular for the update in Equation 5, a solution
in terms of the V -matrices might be more efficient (see the Appendix).

4.3 Computational Costs

Considering domains with several million entities, the computations seem to be
expensive. Fortunately, in the computations one can explore the extreme sparsity
of all relational adjacency matrices in many domains of interests. For example,
due to type constraints, nonzero elements are often restricted to one or a small
number of blocks in the matrices. For example if entities are users and movies
and X stands for “likes” then only the submatrix with users as rows and movies
as columns contains nonzero elements, reflecting the fact that users like movies
but, e.g., movies do not like users. Also, if one is only interested to predict
entries in one particular relational adjacency matrix, we only need to calculate
the parameters relevant to predicting the entries in that particular matrix.

We also want to point out that one could also apply the SVD to each rela-
tional adjacency matrix separately or to blocks of relational adjacency matrices,
instead of M ; essentially one should make this decision on the expected perfor-
mance benefits of the matrix decompositions and the computational costs.

5 Extensions

5.1 Aggregation by Join Operations

The triples represented in Equation 2 only consider the immediate neighborhood
of the triples (s, p, o) under consideration. It is easy to extend the formalism
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to also consider triples further away in the graph. As an example, consider the
case that the likelihood that a person likes a movie is increased if at least one
friend likes the movie. The latter information can be represented by the matrix,
representing a join operation, formed by XfriendLikesMovie = min (1, XfriendOfXlikes)
where min is applied component wise. Then XfriendLikesMovie (and its transposed)
is simply added as an additional relational adjacency matrix. Now we can model
(via the subject term in Equation 2) that a person might like “Action Hero 3” if
at least one friend likes “Action Hero 3”; the subject-object term in Equation 2
can even model the more general dependency that a person likes any movie if at
least one friend likes that movie.

The general form of an aggregated adjacency matrix is Xa = min (1,
∏

iMi)
where Mi ∈ (X1, . . . XP , X

T
1 , . . . X

T
P ). Naturally, it is not feasible to consider

an infinite set of matrix products. Possible approaches are that the user defines
a small set of interesting candidates or that one applies structural search, e.g.,
by using approaches borrowed from the field of Inductive Logic Programming.
Many more forms of aggregation are possible. For example one might not apply
the min operation and, e.g, count how many friends liked a movie, or what
percentage of friends liked a movie.

Here are two interesting examples involving join operations. First, let’s as-
sume that a person tends to be rich if this person has a rich friend: The triple
of interest is (?u, type, RichPerson). We join (?u, hasFriend, ?f) and (?f, type,
RichPerson) and obtain a matrix that indicates if anybody of a person’s friends
is rich (see Figure 2 (b)). Second, let’s assume that a person often prefers restau-
rants of the nationality of that person: The triple of interest is (?u, likes, ?r).
We join (?u, hasNationality, ?c) and (?r, hasNationality, ?c) and obtain a matrix
that indicates if the user and the restaurant have the same nationality.

5.2 Contextual and Unstructured Data

Sometimes there is contextual information available, often in textual form, that
describe entities and relationships and can be exploited for link prediction [7].
For example, one can use keywords in an entity’s Wikipedia articles as attributes
of that entity. The triples (s, itsWikiPageHasKeyword, Keyword) can simply be
added as an additional relational adjacency matrix in the approach. If a key-
word can be identified as an entity, then this information is even more valuable.
Information extraction (IE) can also be used to extract triples from text and
these triples can then presented in matrix form as well. In the latter case, the
subject-object term in Equation 2 can be expected to be most valuable: if, for
example, the IE system extracts with high confidence that (Jack, knows, Jane)
this could be information for predicting that (Jack, hasFriend, Jane).

5.3 Interaction Terms

In Equation 2 we used a linear system, which is suitable in many high-dimensional
domains. Of course, one can apply more general models such as neural networks
as predictive models. Often this is unsuitable since the computational costs would
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explode. In our approach we stay with a model linear in the parameters but add
nonlinear interaction terms. As an example, assume that young users prefer ac-
tion movies. We define a new triple (?u, YoungAction, ?m) that is true if (?u,
hasAge, Young) is true and (?m, type, ActionMovie) is true (see Figure 2 (c)).
In general, the subject-object term in Equation 1 can be expected to be most
valuable here as well. To keep the number of these interaction terms small, we
apply a feature selection procedure, as described in Section 6.

5.4 Kernel Formulation

So far our discussion focussed on a representation in feature space. Here we
discuss a representation in kernel space. A kernel formulation is appropriate for
data in a multirelational graph and suitable kernels are described in [11,4,3,8].

From Equation 2 one can see that two kernels are involved in our approach,
the first one k(., .) involving two entities, either two subjects k(s, s′) or two
objects k(o, o′). The second kernel k̃((s, o), (s′, o′)) involves two subject-object
pairs. Given the corresponding kernel matrices K and K̃ we can decompose using
a singular value decomposition

K = UDDTUT K̃ = ŨD̃D̃T ŨT

and use the resulting terms in the update Equations 3 to 5.

6 Experiments

6.1 Tuning of Hyperparameters

We have several hyperparameters that need to be tuned (rank of approximations;
regularization parameters). We follow the approach described in [2] and perform
a random search for the best hyperparameters using cross-validation sets (i.e.
they are not tuned on the test set).

6.2 Synthetic Data

The synthetic data has been generated according to our modeling assumptions.
We define a target predicate of interest and call the triples involving the target
predicate the target triples. In addition we have triples related to the subject, i.e.,
describing subject attributes, and triples related to the object, i.e., describing ob-
ject attributes. In addition we use interaction triples generated by conjunctions
on subject and object triples.

Figure 3 shows the results of using different relational adjacency matrices.
The proposed model that uses all sources of information (Mglobal) performs best.
Also if we only exploit subject attributes and object attributes (Fall) we obtain
significant predictive power. A model only using intrarelational information MCF

is quite strong. The reason is that, if sufficient amount of target triples are known
to be true, the information on subject and object attributes is implicitly modeled
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in MCF as well. This is a result also confirmed in the remaining experiments: if
MCF is quite strong, adding subject and object information does not improve the
model further, even when the latter might have predictive power. The proposed
model (Mglobal) is significantly better than the reference model (MHBS) described
in [7] that used a hierarchical Bayesian combination scheme.

Fig. 3. Test results on synthetic data. For each subject entity in the data set, we ran-
domly selected one true relation to be treated as unknown (test statement). In the
test phase we then predicted all unknown relations for the entity, including the entry
for the test statement. The test statement should obtain a high likelihood value, if
compared to the other unknown entries. The normalized discounted cumulative gain
(nDCG@all) [6] is a measure to evaluate a predicted ranking. We see that the proposed
method (Mglobal) is significantly better than the model that only relies on intrarela-
tional correlations (MCF). The reference model (MHBS) does not significantly improve
w.r.t. MCF. Predictions only based on subject attributes FY |A only based on object
attributes FY |B , and only based on interaction terms FY |INTER are much better than
random. Fall uses subject attributes, object attributes and interaction terms, but not
intrarelational correlations in the target triples.

6.3 Associating Diseases with Genes

The task here is to predict diseases that are likely associated with a gene based
on knowledge about gene and disease attributes and about known gene-disease
patterns. In our experiments we extracted information on known relationships
between genes and diseases from the LOD cloud, in particular from Linked Life
Data and Bio2RDF, forming the triples (Gene, related to, Disease). In total,
we considered 2462 genes and 331 diseases. We retrieved textual information
describing genes and diseases from corresponding text fields in Linked Life Data
and Bio2RDF.
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We have 49801621 potential interaction terms which we reduced to 1132
by using a fast feature selection procedure evaluating the Pearson correlation
between targets and interaction term.

Figure 4 (left) shows the results for predicting diseases for genes. Our pro-
posed model gives very good results, although the reference model is slightly
stronger. Figure 4 (right) shows the results for predicting genes for diseases. Due
to sparsity, this task is more difficult and our proposed model performs best.

Fig. 4. The goal is to predict the relationship between genes and diseases. On the
left we ranked recommended diseases for genes and on the right we ranked genes for
diseases. In the left experiment, the subject attributes of the genes FY |AG, and of
the object attributes of the diseases FY |AD are comparable in strength. Fall that uses
gene attributes, disease attributes and interaction terms in combination gives strong
results. Our proposed model (Mglobal) can exploit both contextual information and
intrarelational correlations. The reference model (MHBS) is slightly stronger than our
proposed model. The right plot shows results from the second experiment where we
rank genes for diseases. This task is more difficult due to the large number of genes
and our proposed system gives best results.

6.4 Modeling MovieLens Data

We used 943 users and 1600 movies from the MovieLens data set5 and evaluated
if a user has seen a movie or not. 99 user attributes were derived from age (5
classes), gender (2 classes), occupation (21 classes), and the first two digits of
the ZIP code. The 89 movie attributes were derived from genre, release month
and release year. Figure 5 (left) shows the results. Although the attribute infor-
mation on the movies and the users have predictive power (significantly above
random), a model exploiting intrarelational correlations (MCF) gives very good
performance and the proposed model and the reference model cannot improve
beyond the performance of MCF. As in the experiment on the synthetic data,

5 http://www.grouplens.org/node/73
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Fig. 5. Left: Experiments on movielens data. FY |AM describes the modeling perfor-
mance using only the attribute information on the movies and FY |AU describes the
modeling performance using only the attribute information on the users. Although the
attribute information on the movies and the users have predictive power (significantly
above random), a model exploiting intrarelational correlations (MCF) gives very good
performance and the proposed model and the reference model cannot significantly im-
prove beyond the performance of MCF. As in the experiment on the synthetic data,
there is information in the attribute data but this information is also represented in
MCF. Right: Experiments on the book-crossing data set. We see the same trends as in
the movielens experiments although the proposed approach seems to improve on the
model MCF, which only exploits intrarelational correlations.

there is information in the contextual data but this information is also repre-
sented in MCF. We have 8811 potential interaction terms which we reduced to
200 by using a fast feature selection procedure evaluating the Pearson correlation
between targets and interaction term.

6.5 Modeling Book Preferences

We used the BookCrossing data set6 to predict if a user rated a book. The
data set consisted of 105283 users and 340554 books. A user is described by
5849 attributes (derived from age and city, province and country) and a book is
described by 24508 attributes (authors, publication year, publisher). The goal is
to predict if a user would rate (i.e., read) a book. The results in Figure 5 (right)
show that the proposed modeling approach gives best results.

7 Conclusions

We have presented a general framework for predicting links in multirelational
graphs. We showed that efficient learning can be achieved using an alternating
least squares approach.

6 http://www.bookcrossing.com
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The approach can be extended in several directions. First, for the entries in
the relational adjacency matrices one can use real numbers, e.g., between zero
and one, and the user can represent the certainty that a triple is true [7]. Second,
we can exploit deductive reasoning by calculating the deductive closure prior
to learning [7]. Third, the prediction in Equation 1 can be applied recursively
permitting global information flow through the relational graph. Finally, we can
easily generalize to entities not in the training set, either by using Equations 3
to 5 directly or by transforming these equations into appropriate equivalent
forms.
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8 Appendix

We only derive Equation 3. The derivations for Equations 4 and 5 are equivalent. We
start with the regularizes least squares solution for estimating X̂(−W ) based on M

MW = M(MTM + λW I)−1MT X̂(−W )

If we use the low-rank approximation M ≈ UrDrV
T
r , where Dr = diag {di}ri=1, we get

MW = UrDrV
T
r (VrDrU

T
r UrDrV

T
r + λW I)−1VrDrU

T
r X̂

(−W )

= Ur diag

{
d2i

d2i + λW

}r

i=1

UT
r X̂

(−W ) = MVr diag

{
1

d2i + λW

}r

i=1

V T
r M

T X̂(−W )


