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ABSTRACT
Image segmentation is a ubiquitous step in almost any med-
ical image study. Deep learning-based approaches achieve
state-of-the-art in the majority of image segmentation bench-
marks. However, end-to-end training of such models re-
quires sufficient annotation. In this paper, we propose a
method based on conditional Generative Adversarial Net-
work (cGAN) to address segmentation in semi-supervised
setup and in a human-in-the-loop fashion. More specifically,
we use the generator in the GAN to synthesize segmentations
on unlabeled data and use the discriminator to identify un-
reliable slices for which expert annotation is required. The
quantitative results on a conventional standard benchmark
show that our method is comparable with the state-of-the-art
fully supervised methods in slice-level evaluation, despite of
requiring far less annotated data.

Index Terms— GANs, Human-Machine Collaboration

1. INTRODUCTION

Image segmentation, notably semantic segmentation that
aims at assigning a class label to each pixel in the image, is
one of the main applications in medical image processing.
In this regard, deep learning techniques lately have achieved
exceptional results in this domain, while constantly push-
ing the limits of what is possible. The recent advances can
be attributed to improvements to algorithms and model ar-
chitectures along with ever increasing computational power,
and availability of big data. However, the big data assump-
tion, which is key for deep learning applications, is at the
same time the limiting factor. For many supervised learning
approaches, particular in the medical domain, it is often too
expensive or even impossible to acquire large amounts of high
quality annotations in order to learn a deep learning model at
sufficient accuracy. In such cases, semi-supervised learning
is a viable solution. In this setting, a large dataset of images
is available, however, pixel-level labels only for a fraction
of the data. Therefore, semi-supervised and self-supervised
learning can be very beneficial in cases where data annotation
is immensely difficult and costly, which is often the case in
the medical domain [1, 2].
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Among the semi-supervised learning approaches, one of
the most prominent solutions proposed in literature is based
on an iterative, Multiple Instance Learning (MIL) framework.
In this context, an initial model is trained on the small super-
vised subset of the data. This model is then used to predict
the segmentation for the large unsupervised subset, which is
treated as pseudo ground truth in the next training iteration.
However, the reliability of the predicted pseudo ground truth
is subject to quality fluctuations, depending largely on the la-
beled subset. Therefore, one of the drawbacks of MIL frame-
works is their proneness to process drift, which usually results
in many false positives in the training dataset. Furthermore, it
has been shown that the performance of simple baselines un-
der semi-supervised setup droops dramatically, when a large
amount of unlabeled data contains examples with significant
distribution mismatch [3]. To alleviate this problem, we pro-
pose a training protocol based on the human-machine collab-
orative learning paradigm [4,5]. The main idea is to automat-
ically select a subset of more reliable predictions and actively
collect annotations for the samples with associated unreli-
able pseudo ground truth (out-of-distribution samples). This
is conducted in a human-in-the-loop fashion, such that the
model can be re-trained with more accurate examples, avoid-
ing the risk of drift. The proposed approach involves estimat-
ing the uncertainty of the predictions, for which we propose
the use of the adversarial discriminator in a GAN. Specifi-
cally, we use a cGAN to train G and D using supervised data.
On the one hand, G learns how to generate segmentations by
conditioning on images. On the other hand, the discriminator
D is used for plausibility purposes, assessing the uncertainty
of the segmentations with respect to the conditioned image.
The intuition behind using GANs is their intrinsic potential to
capture the data distribution and uncertainty estimation [6,7].
It has been shown that the discriminator is useful to measure
the quality of cross-modal generation tasks [8–10] as well as
detecting the outlier samples [11–13]. Since discriminator is
tailored to detect out-of-distribution samples and therefore in-
herently associates uncertainty with the loss.

Related work: There is a wealth of literature on semantic
segmentation, but here we only discuss the most related ones
to our work, and refer the reader to the recent surveys by [14].
Pathak et al. [15] propose a weakly supervised semantic seg-
mentation algorithm subject to linear constraints on the out-
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Fig. 1: Learning interactive cGAN in a loop: (a) training a base model to generate segments from a small set of annotated
data, (b) G generates segment predictions from input images, which are sequentially ranked by D. In (c), stacking the easy
predictions with the annotation collected from user on the difficult cases and utilize it to continue the training procedure.

put space. Pathak et al. [16] use multiple instance learning
(MIL) to generate latent segmentation label maps for super-
vised training. Wang et al. [17] propose image-specific fine-
tuning in order to make a deep neural net adaptive to each spe-
cific test image. Gorriz et al. [18] propose an active learning
framework with Monte Carlo sampling to model the pixel-
wise uncertainty. Ronneberger et al. [19] propose ”U-Net”, a
network connecting opposed layers that in particular is used
for semantic segmentation. Attracted by their success in the
medical image domain, we also used this kind of generator
in our GAN framework. Most related to our paper is the
work by Luc et al. [20] and Souly et al. [21]. Like us, they
propose to use GANs for semantic segmentation. The for-
mer propose to use GANs for semantic segmentation through
correcting higher-order inconsistencies, and the latter for im-
proved semi-supervised semantic segmentation. Our efforts,
however, differ in some substantial ways. First, we propose to
directly use an adversarial discriminator for uncertainty mod-
eling in an end-to-end fashion. Second, we augment samples
by collecting annotations for low-quality predictions in inter-
action with a user.
Contributions: The contributions of the proposed paper are
two-fold: (i) We introduce an iterative human-machine col-
laborative algorithm which uses a GAN framework to apply
semi-supervised learning in a human in the loop fashion. (ii)
To best of our knowledge, it is the first time that the adver-
sarial discriminators are used to estimate the uncertainty of a
prediction. Our study opens up avenues for exploiting new in-
expensive interactive solutions to achieve a performance gain
in medical image segmentation and other disciplines.

2. PROPOSED FRAMEWORK

Semi-Supervised Conditional GAN: Recently, GANs were
introduced as a method for training generative models [22].

It consists of two adversarial agents that compete with each
other during a Minimax game until reaching a Nash equilib-
rium at convergence of the training phase. Specifically, it de-
composes into two main components: a generative model G
trying to produce fake data resembling real data and a second
agent, a discriminative model D that learns whether a seg-
mentation Sj is consistent with the training dataset.

cGANs [23] constitute an extension of the standard GAN,
where the input of the generator as well as discriminator are
further tied to a conditional variable. In the following, we
assume the conditional variable to be an image Ij ∈ I and
the target variable a segmentation Sj ∈ S . Here I and S
denote the image space and segmentation space, respectively.
Thus, G seeks to learn a mapping I → S . In contrast, D :
(I,S) → [0, 1] tries to distinguish between original samples
and those generated by G. In the following we denote the
training set consisting of n labeled samples as [Ilab, Slab] =
{(Ij , Sj)}nj=1. With slight abuse of the notation, the cGAN
parameters are obtained by optimization of the loss function
L (.),

L(D,G | [Ilab, Slab]) =
∑

(I,S)∈[Ilab,Slab]

[logD(I, S)]+

∑
I∈Ilab

Ez[log(1−D(I,G(z, I)))],
(1)

where Ilab and Slab denote the set of labeled images and
segmentation maps, respectively.

In the semi-supervised setting, there exists an addi-
tional set of training data consisting of m samples for
which no ground truth labels exist, which is denoted by
Iunl = {Ij}n+m

j=n+1. In order to obtain a fully labeled set, G
can be employed to produce pseudo ground truth S̃ = {S̃j =

G (Ij) : ∀Ij ∈ Iunl}, yielding [Iunl, S̃] = {(Ij , S̃j)}n+m
j=n+1.

Interactive Conditional GAN: The prediction in the semi-



supervised setting is not always reliable and subject to noise.
Essentially, pseudo ground truth generated from images
that are very different from the annotated data distribution,
e.g. out-of-distribution samples, expectedly have high un-
certainty. However, estimating to what degree a sample is
in-distribution or out-of-distribution is not straightforward.

Our method handles two issues simultaneously: (1) ab-
sence of annotation for the unlabeled data, (2) finding the op-
timal query to annotate. We view segmentation maps of the
unlabeled data as latent variable and propose to integrate it
out. For the optimal query given a budget K, we propose to
solve the following optimization:

max
G,α

min
D
L(D,G | [Ilab, Slab])+∑

I∈Iunl

αIES∼q(S)[logD(I, S)],
(2)

subject to: 0 ≤ αI ≤ 1,
∑

I∈Iunl
αI ≤ K, where

L(D,G | [Ilab, Slab]) is the cGAN over labeled data as in
Eq. 1. q(S) is the approximate posterior for the latent seg-
mentation mask, and αI is a soft selector for the unlabeled
image I in the set of unlabeled images (i.e., I ∈ Iunl). Since
each αI is a selector for the unlabeled data to be annotated,K
specifies the budget. Note that the second term in Eq. 1 is not
a function of S, hence it does not show up in the Eq. 2. Also,
we provided the set of selectors to the generator meaning that
G can select images to be labeled. Furthermore, if we assume
q(S) = δ(S∗), where S∗ is the Maximum A Posterior for S,
one can easily find a closed form solution for αI selectors.
Specifically, the generator finds the instances with maximum
values of D up to K (top K easy cases), whereas the difficult
cases are requested to be annotated by the expert.
Human-Machine Collaborative Learning with GAN: The
proposed approach leverages conditional GAN (cGAN) for
facilitating the human-machine collaboration for segmenta-
tion. To that end, the generator G is trained to produce accu-
rate label maps corresponding to the conditioned image, while
the discriminator D attempts to recognize whether a given
segmentation is in accordance with the input image. What is
more, D can be used to estimate model uncertainty for un-
seen images. Specifically, D is used for ranking the predicted
segmentations referred to as pseudo ground truth, such that
annotations querying is restricted to low-confidence (difficult
cases) items. Thus expert annotations are obtained in an ac-
tive learning fashion for high uncertainty samples only, there-
fore incurring minimal cost.

3. EXPERIMENTS

Experimental setup and dataset: For the evaluation, we
used the data of the HVSMR 2016 challenge [24]. The dataset
consists of 10 3D volumes of cardiovascular magnetic reso-
nance images along with annotations of the ventricular My-
ocardium and blood pool. To simplify the experiments, the
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Fig. 2: The average dice score of the different partitions:
Samples are first sorted by the scores ofD in ascending order.
The average dice score is then computed for each partition.

ground truth segmentations are used to simulate the user in-
teraction. In our experiments we employed a GAN imple-
mentation as proposed in [25]. The generator network is a
“U-Net” with skip connections, and for the discriminator a
PatchGAN [26] network is utilized.
Discriminator scores analysis: As discussed in Sec. 2, the
discriminator scores are used to rank the segments predicted
by G. In order to study the importance of discriminator
scores, we designed a set of experiments. First, an initial
model (base) is trained using only a single volume (sin-
gle patient) of supervised data. Next, this model is used to
predict the labels of the semi-supervised set (the excluded
volumes from the training). Then the predicted segments are
ranked based on the obtained score of D. This is followed
by incremental addition of samples from the ranked list to
the portion of data, and the calculation of an accumulated
average dice score for each portion. The result is presented
in Fig. 2, which clearly suggests a correlation between the
quality of the predictions (represented by dice score values)
and the obtained scores ofD. In other words, this observation
shows that the high-ranked predicted segmentations contain
information that can be used for training a new adversarial
net. To ensure consistency between the scores of D and dice
scores, we conducted an agreement study, finding that the
Pearson correlation is strong and significant (r = 0.98, p-value
< 0.001) as shown in figure 2.
Analysis of cGAN performance: In this experiments we
show the effect of varying amounts of supervised data on the
behavior of different cGANs, with results presented in Fig. 3.
Specifically, we compare the performance of a ranked semi-
supervised cGAN, random semi-supervised cGAN and inter-
active cGAN with respect to increasing the used percentage
of data for training. The upper bound, shown by the dashed
line, is the maximum accuracy (dice scores) obtained from a
supervised cGAN model trained on the entire training set.

10% 20% 30% 40% 50% 60% 70% 80% 90%

Myocardium 0.41 0.45 0.53 0.57 0.62 0.67 0.71 0.75 0.73
Blood Pool 0.86 0.88 0.89 0.90 0.91 0.92 0.92 0.94 0.95

Average 0.64 0.66 0.71 0.74 0.77 0.80 0.82 0.85 0.84

Table 1: Dice scores for different amounts of supervised data
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Fig. 3: Dice scores for different amounts of supervised data.
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Fig. 4: Qualitative results: Original image I, ground truth
segmentation S , predicted segmentation S̃ and discriminator
score for predicted segmentation D(I, S̃).

The ranked/random semi-supervised cGAN, and interac-
tive cGAN are trained using only a single volume of super-
vised data for learning the base model. However, in case
of two semi-supervised cGAN models, the rest of training
data is collected from predictions, and incrementally added
to the training set for fine-tuning the base model. The only
difference between the ranked semi-supervised cGAN, and
random semi-supervised cGAN is that the latter model ran-
domly selects the samples to increase the training data, while
the ranked model adds data based on the ranked list obtained
from D scores. The predictions are added to the training
set in descending order (from the easy cases to the difficult
ones), which suggests enhanced stability in comparison with
the chaotic behavior of the random model. For fine-tuning the
interactive cGAN, not only the predictions for easy samples
are used, but also a set of ground truth annotations is collected
for difficult cases through user interaction. This model out-
performs the preceding variants. As shown in Fig. 3 and Tab.
1, increasing the amount of supervised data (user annotation)
leads to a constant improvement, until the model reaches the
upper bound. In our studies the interactive cGAN achieved
almost the upper bound using only 80% of supervised data.
Quantitative results: In Tab. 2 a comparative result of dice
scores for Myocardium and Blood pool is reported. In case of
semi-supervised cGAN models (ranked and random) the av-
erage accuracy is reported, while for interactive cGANs dif-
ferent levels of supervisions are reported: low (30%), medium

Dices
Model Myocardium Blood pool Mean

Mukhopadhyay [27] 0.495 0.794 0.645
Tziritas [28] 0.612 0.867 0.740
Shahzad et al. [29] 0.747 0.885 0.816
DenseVoxNet [30] 0.821 0.931 0.876

Fully-Supervised cGAN 0.770 0.943 0.856
Semi-Supervised (Ranked) 0.688 0.887 0.689
Semi-Supervised (Random) 0.456 0.871 0.663
I-cGAN by ranking (30%) 0.528 0.888 0.708
I-cGAN by ranking (60%) 0.674 0.918 0.796
I-cGAN by ranking (80%) 0.750 0.941 0.846

Table 2: Comparing with state-of-the-art methods. For I-
cGAN the percentages of supervised data is indicated

(60%) and high-percentage (80%).
Qualitative results: Slices from HVSMR dataset are shown
in Fig. 4. The figure shows the pixel-level uncertainty mod-
eling using the D score maps in PatchGAN fashion. The first
and second columns show the original input I, and original
segments S, respectively. The last two columns illustrate
the predicted segments S̃ and corresponding D score maps
D(I, S̃), respectively. The figure shows the low-quality areas
of predicted segments obtaining lower score in the D(I, S̃)
(red). This indicates, in the heat-maps the patch with the low-
est value of D, correspond to the patch with maximum uncer-
tainty or wrong segmentation, while the high-scored patches
(blue) represent the high quality segments. The figure fur-
ther shows that the score of D can successfully detect wrong
segments predicted by G.

4. CONCLUSION

The proposed approach shows that combining the notions of
human machine collaborative learning with GANs is viable,
and D can be used as a measure of uncertainty. Altogether,
this allows for obtaining high accuracy segmentations under
much more restricted data assumptions. This is achieved by
an iterative and selective update of pseudo ground truth data,
keeping the human in the loop, where it promises to be most
useful, simultaneously keeping interaction at a minimum.
Future work will entail performing the uncertainty computa-
tion at finer granularity, e.g. patch-wise, which promises to
boost the performance of the approach. Furthermore, future
research will also deal with more in-depth study of D as a
measure of uncertainty, to consider diversity into ranking. Se-
lection of more diverse samples incorporate in the patch-wise
uncertainty measurement comes with potential further boost-
ing in the performance.
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“Cost-effective active learning for melanoma segmenta-
tion,” CoRR, vol. abs/1711.09168, 2017.

[19] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convo-
lutional networks for biomedical image segmentation,”
in MICCAI, 2015.

[20] P. Luc, C. Couprie, S. Chintala, and J. Verbeek, “Seman-
tic segmentation using adversarial networks,” CoRR,
vol. abs/1611.08408, 2016.

[21] N. Souly, C. Spampinato, and M. Shah, “Semi super-
vised semantic segmentation using generative adversar-
ial network,” in ICCV, 2017.

[22] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,
“Generative adversarial nets,” in NIPS. 2014.

[23] M. Mirza and S. Osindero, “Conditional generative ad-
versarial nets,” CoRR, vol. abs/1411.1784, 2014.

[24] D. F. Pace, A. Dalca, T. Geva, A. Powell, M. Moghari,
and P. Golland, “Interactive whole-heart segmentation
in congenital heart disease,” in MICCAI, 2015.

[25] P. Isola, J. Zhu, T. Zhou, and A. Efros, “Image-to-image
translation with adversarial networks,” in CVPR, 2017.

[26] C. Li and M. Wand, “Precomputed real-time texture
synthesis with markovian generative adversarial net-
works,” in ECCV, 2016.

[27] A. Mukhopadhyay, “Total variation random forest:
Fully automatic mri segmentation in congenital heart
diseases,” in Reconstruction, Segmentation, and Analy-
sis of Medical Images. 2016.

[28] G. Tziritas, “Fully-automatic segmentation of cardiac
images using 3-d mrf model optimization and substruc-
tures tracking,” in Reconstruction, Segmentation, and
Analysis of Medical Images. 2016.

[29] R. Shahzad, S. Gao, Q. Tao, O. Dzyubachyk, and
R. van der Geest, “Automated cardiovascular segmen-
tation in patients with congenital heart disease from 3d
cmr scans: combining multi-atlases and level-sets,” in
Reconstruction, Segmentation, and Analysis of Medical
Images. 2016.

[30] L. Yu, J. Cheng, Q. Dou, X. Yang, H. Chen, J. Qin, and
P. Heng, “Automatic 3d cardiovascular mr segmentation
with densely-connected volumetric convnets,” in MIC-
CAI, 2017.


