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Abstract

We apply nonparametric hierarchical
Bayesian modelling to relational learning. In
a hierarchical Bayesian approach, model pa-
rameters can be “personalized”, i.e., owned
by entities or relationships, and are coupled
via a common prior distribution. Flexibility
is added in a nonparametric hierarchical
Bayesian approach, such that the learned
knowledge can be truthfully represented.
We apply our approach to a medical domain
where we form a nonparametric hierarchical
Bayesian model for relations involving hos-
pitals, patients, procedures and diagnosis.
The experiments show that the additional
flexibility in a nonparametric hierarchical
Bayes approach results in a more accurate
model of the dependencies between proce-
dures and diagnosis and gives significantly
improved estimates of the probabilities of
future procedures.

1. Introduction

Relational modelling has recently received increasing
attention (Dzeroski & Lavrac, 2001; Raedt & Kerst-
ing, 2003) and plays an important role in modern data
mining (Wrobel, 2001). The reason is that relevant in-
formation is not only contained in attributes describ-
ing properties of objects but also in relationships be-
tween objects. Two of the leading frameworks, i.e.
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the probabilistic relational models (PRM) framework
(Friedman et al., 1999) and the directed acyclic proba-
bilistic entity relationship DAPER framework (Hecker-
man et al., 2004), describe relational modelling in the
context of relational data bases. They are motivated
from different database structure representations: the
PRM model is based on the relational model and the
DAPER model is based on the the entity-relationship
model(Ullman & Widom, 1997). The DAPER frame-
work — the focus of this paper— is particularly elegant
in a Bayesian context since it encourages an explicit
representation of parameters and hyperparameters. A
Bayesian approach is well suited for relational mod-
elling. The reason is that parameters, instead of being
global, can be personalized to entities and relation-
ships leading to a hierarchical Bayesian (HB) frame-
work (Gelman et al., 2003).

In an HB approach, the parameterization of the prior
distribution obtains central importance since it must
be able not only to represent ones prior belief but also
must be flexible enough to represent the learned prior,
which might not be in the same family of distributions.
Thus it is advantageous to specify the prior distribu-
tion in a flexible nonparametric form, technically as
a sample from a Dirichlet process (DP). Although we
can still implement our vague prior belief in form of
the base distribution of the DP, the learned prior can
be very rich. Due to the central importance of the
Dirichlet process, the re-parameterization of a prior
distribution in form of a nonparametric highly flexible
representation is sometimes referred to as Dirichlet en-
hancement (Escobar & West, 1998), thus we name the
proposed framework “Dirichlet Enhanced Relational
Learning” (DERL).

We apply our framework in the context of a medical
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data base. The entities in the model are hospitals,
patients, diagnosis and procedures. The existence of a
diagnosis or procedure is dependent on patient features
and hospital features and is modelled as reference un-
certainty, which is a mechanism to represent the uncer-
tainty in the relational structure itself (Getoor et al.,
2003). The prior distributions for the multinomial pa-
rameters describing the reference uncertainties are now
Dirichlet enhanced and are learned via nonparametric
HB. In the learned nonparametric prior distribution,
parameters for diagnosis and procedures are dependent
allowing for inference from diagnosis to procedures and
vice versa. We are investigating the task of predicting
additional procedures and diagnosis based on hospi-
tal and patient attributes, the prime complaint and
on previously administered procedures and diagnosis,
thus emulating the process of a clinical workflow.

The paper is organized as follows. In the next sec-
tion we will review Bayesian and HB modelling. In
Section 3, we discuss relational modelling in the form
of the DAPER model. In Section 4 we will introduce
HB modelling in the context of relational data, and
in Section 5 nonparametric HB modelling and Dirich-
let enhancement. In Section 6 we will introduce effi-
cient approximate learning and inference algorithms.
In Section 7 we will describe the experiments and ex-
perimental results using the data from a medical data
base. Section 8 contains our conclusions.

2. Bayesian and Hierarchical Bayesian
modelling

A Bayesian model suitable for our discussion would
consist of parameter vector θ with a prior probability
distribution P (θ|h) that contains hyperparameters h
with probability distribution P (h). The training data
D are generated following a likelihood model P (D|θ).
In a Bayesian setting, the functional forms of all distri-
butions must be specified a priori. Prior to the arrival
of data, parameters are distributed as

P (θ) =
∫

P (θ|h)P (h)dh

and with known training data D one obtains using
Bayes’ rule

P (θ|D) =

∫
P (D|θ)P (θ|h)P (h)dh∫

P (D|θ)P (θ|h)P (h)dhdθ
.

The posterior parameter distribution P (θ|D) now as-
sumes the role of the new “learned prior”, i.e., the
available knowledge prior to the arrival of additional
data. Note, that with an increasing size of the data
set, the posterior distribution of θ becomes increas-

ingly localized and converges eventually to a point dis-
tribution.

Although any Bayesian approach is essentially hierar-
chical, one speaks of a hierarchical approach in the
narrow sense if data {Di}M

i=1 for related but not iden-
tical scenarios need to be modelled, e.g., outcome data
from different hospitals. A reasonable assumption is
that the data in each scenario Di are generated with a
specific parameter vector θi, but that the θi are gener-
ated from a common prior distribution leading to the
joint model

P (h)

M∏
i=1

P (θi|h)P (Di|θi).

After having observed data from M scenarios, the pa-
rameter distribution for a new scenario M+1 becomes

P (θM+1|{Di}M
i=1) ∝

∫
P (h)P (θM+1|h)×

M∏
i=1

P (θi|h)P (Di|θi)dhdθ1 . . . dθM .

With M → ∞ this distribution will converge to the
actual distribution of the parameters which we will de-
note informally as the learned prior distribution in the
paper.

In hierarchical Bayesian modelling, the prior distribu-
tion must be able to represent the actual distribution
of parameters and not only one’s vague prior belief.
Thus it is very important that the prior distribution is
very flexible. This can be achieved by a nonparametric
representation of the prior distribution as discussed in
Section 5.

3. The DAPER Model

A typical domain of interest might consist of ob-
jects (entities), their attributes and their relationships.
Most machine learning approaches have tried to select
a representation in which a relational representation
could be avoided by constructing appropriate derived
features (propositionalization). Thus, the full informa-
tion contained, for example, in a relational data base,
could not be represented and exploited. Over past
years, a number of approaches have been developed,
which consider relational information in a principled
way. In this paper we assume the representation de-
veloped around the DAPER framework (Heckerman
et al., 2004).

The DAPER model formulates a probabilistic frame-
work for an entity relationship database model (a
commonly used representation for the structure of a
database). DAPER framework makes relationships
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Figure 1. An example over university domain from Heckerman et al. (2004) (a) DAPER model (b) Instantiated entities
and relationships.(c) Ground Bayesian network.

first class objects in the modelling language, and
encourages an explicit representation of conditional
probabilistic distribution. The DAPER model consists
of entity classes, relationship classes, attribute classes
and arc classes, as well as local distribution classes and
constraint classes. Figure 1(a) shows an example of a
DAPER model for a universe of students, courses and
grades. The entity classes specify classes of objects
in the real world, e.g. Student and Course shown as
rectangles in Figure 1(a). The relationship class rep-
resents interaction among entity classes. It is shown
as a diamond-shaped node with dashed lines linked
to the related entity classes. For example, the rela-
tionship, Take(s, c) indicates that a student s takes
a class c. Note, that the DAPER model assigns re-
lationships the same importance as the entities. At-
tribute classes describe properties of entities or rela-
tionships. Attribute classes are connected to the cor-
responding entity/relationship class by a dashed line.
For example, associated with courses is the attribute
class Course.Difficulty and associated with the rela-
tionship class Take is the attribute class Take.Grade.
The attribute class θ in Figure 1(a) represents the pa-
rameters specifying the probability of student’s grade
in different configurations (i.e. course’s difficulty and
student’s IQ). It is denoted a global attribute class
since it is not associated with an entity or relationship.
The arc classes shown as solid arrows from “parent”
to “child” represent probabilistic dependencies among
corresponding attributes. For example, the solid ar-
row from Student.IQ to Course.Grade specifies the
fact that student’s grade probabilistically depends on
student’s IQ. A local distribution class for an attribute
class is a specification from which local distributions
for attributes corresponding to the attribute class can
be constructed. As an example, the probabilistic dis-
tribution of Take.Grade given its parents is specified
by a local distribution class (not shown) based on the
global parameter vector θ.

Based on the DAPER model (e.g. Figure 1(a))
and the instantiated entities and relationships

(e.g.Figure 1(b)), a ground Bayesian network
(e.g.Figure 1(c)) can be generated in which prob-
abilistic inference (e.g., belief propagation) can be
performed. Constraint classes specify how to de-
rive ground Bayesian network from the correspond-
ing DAPER model over the given instantiated do-
main: For example, the constraint course[Diff ] =
course[Grade] indicates that in the ground network
an arc should be introduced between attribute c.Diff
and attribute Takes(s, c′).Grade, only when c = c′. So
it is forbidden to add a solid arrow from CS12.Diff
to Take(Tom,Math5).Grade.

Figure 2. DAPER models with structure uncertainty over
medical domain, which is modelled using the formalism
of Getoor et al. (2003). (a)existence uncertainty mod-
elling. (b)reference uncertainty modelling. The attribute
Take.Select is modelled as a multinomial variable with as
many states as there are procedures. θs|pc is the parame-
ter vector for the multinomial distribution and hpc are the
parameters of the prior distribution.

In some real-world applications, the relational struc-
ture itself, is uncertain. Getoor et al. (2003) pro-
posed two mechanisms to represent this type of un-
certainty: one is existence uncertainty, the other is
reference uncertainty. In existence uncertainty, a rela-
tionship class has a particular binary attribute Exist
such that the probability for the existence of a rela-
tionship can be modelled. In particular, the attribute
Exist has two states, Yes/No, and can be modelled as
binomial. The Figure 2 gives an example in a med-
ical domain. Patient.PrimeComplaint is an attribute
describing the prime complaint of the patient. Proce-
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dure.Id specifies the identifier of the procedure. The
relationship Take(pa, pr) models the fact that a pa-
tient pa receives a procedure pr. In Figure 2(a), the
uncertainty of which procedure is taken by a patient
is modelled as existence uncertainty. The global at-
tribute φe|pc,Id represents the parameters of distribu-
tion of Exist given prime complaint pc and procedure
Id. he

pc,Id are hyperparameters of φe|pc,Id.

Reference uncertainty is used in situations where one
part of a relationship might be certain, but there is
uncertainty about the other part of the relationship.
Illustratively, the relational link of the patient taking
a procedure is known say ”John” with a specific prime
complaint, but the other side, i.e. the procedure, is un-
known. In reference uncertainty, a relationship class
is associated with an additional attribute Select (see
Figure 2(b)) with as many states as there are possible
procedures. The attribute Select is modelled as multi-
nomial variable. The global attribute θs|pc are the pa-
rameters of the distribution of Select given prime com-
plaint pc and hyperparameters hpc. In the paper we
focus on reference uncertainty to model the structural
uncertainty.

4. Hierarchical Bayes for Relational
Models

In the above medical domain example, parameters
and hyperparameters specifying conditional distribu-
tions are explicitly modelled as global attributes. This
has two important implications. First, the probabil-
ity for a procedures is identical for all patients with
the same prime complaint. Secondly, procedures are
modelled as independent such that knowledge about a
prescribed procedure does not influence the selection of
subsequent procedures. Both implications are not real-
istic. Patients are truly unique which might be obvious
to the attending physician but which is impossible to
represent in a probabilistic model, which is always a
simplification. Thus, given a prime complaint, a physi-
cian might select a personalized treatment strategy.
Additionally, the procedures taken by a patient are
related. The prescribed procedures influence the later
procedures, the physician often make decision of the
next procedure based on the previous ones. A prin-
cipled approach to solve these problems is hierarchi-
cal Bayes (discussed in Section 2) where it is assumed
that each patient should be an individual requiring in-
dividual procedure probabilities. In Figure 3(a) the
probability of selecting a procedure is an attribute of
a patient pa reflected by the attribute θs|pc,pa. Natu-
rally, we will almost never have sufficient data to esti-
mate the individual patient parameters; this dilemma
is solved by assuming that all patient models originate
from a common prior distribution which can be learned
and shared between patients: the hyperparameters are
still modelled as global parameters, since it is still
shared by all patients, not individual for each patient.

Thus a common prior distribution can be learned and
a new patient inherits an informed prior distribution
biasing the model in a sensible manner. To fix the

Figure 3. (a)Same as in Figure 2(b), except that the multi-
nomial parameter θs|pc,pa is owned by the patient. This
corresponds to a hierarchical Bayesian model. (b)A non-
parametric hierarchical Bayesian model. The prior distri-
bution Gpc is a sample from a Dirichlet process.

HB model over the medical domain, let’s assume that
the procedure probability is a multinomial distribution
with Dirichlet prior. In particular, for each patient, an
individual parameter vector θs|pc,pa is assumed which
specifies the probability of procedure for the patient
pa with prime complaint pc. The parameter vector
θs|pc,pa is generated from a Dirichlet distribution with
parameters hpc = {τpc, αpc}, which can be written as:

Dir(θ.|pc,pa|τpc, αpc) =
1

C

K∏
k=1

θ
τpcαk,pc−1

k,s|pc,pa . (1)

where C is a normalization constant given by inte-
gration over all possible θ.|pc,pa, K is the total num-
ber of procedures, αpc = {α1,pc, . . . , αK,pc}, αi,pc ≥ 0,∑

i αi,pc = 1, and τpc ≥ 0 named confidence parame-
ters.

In hierarchical Bayes each patient obtains personalized
procedure probabilities and shares a common paramet-
ric prior such that the two unrealistic assumptions are
released. In more cases than not, the real prior dis-
tribution will not fall into the class of belief distri-
butions that can be described by P (.|h) for any h.
One solution to these problems is to assume that the
prior distribution assumes a very flexible nonparamet-
ric form which leads to the framework of nonparamet-
ric Bayesian modelling.

5. Nonparametric Hierarchical Bayes
and Dirichlet Enhancement

Of central importance in nonparametric Bayesian
modelling is the Dirichlet process, which can be
thought of as an infinite-dimensional generalization of
a Dirichlet distribution. In particular, one assumes
that the prior parameter distribution is a sample from
a Dirichlet process (Figure 3(b)) and writes (Escobar



Dirichlet Enhanced Relational Learning

& West, 1998):

Gpc ∼ DP(G0, α0)

where G0 is the base distribution, by which we can
implement our vague prior belief. α0 ≥ 0 is the con-
centration parameter specifying the degree of certainty
in our prior belief. The nice feature of this approach is
that, although we can still implement our vague prior
belief in form of the parameters of the DP, i.e. G0 and
α0, the prior Gpc can be very rich. The multinomial
parameter θs|pc,pa is simply samples from Gpc

θ.|pc,pa ∼ Gpc.

We can explicitly write Gpc in the stick breaking rep-
resentation (for a definition consult Teh et al. (2004)):

Gpc =
∞∑

l=1

πl,pcδθ∗
l,pc

; θ∗l,pc ∼ G0 (2)

π′l,pc ∼ Beta(1, α0); πl,pc = π′l,pc

l−1∏
k=1

(1− π′k,pc) (3)

where θ∗l,pc are samples independently and randomly
selected from the base distribution G0, δθ∗

l,pc
is a dis-

tribution concentrated at a single point θ∗l,pc. πl,pc are
positive weights which sum to one. πl,pc only depend
on the concentration parameter α0 and are generated
using Equation 3. For more information on Dirichlet
processes, please consult Teh et al. (2004) or Tresp
and Yu (2004). Note that despite the continuous na-
ture of the base distribution, a sample from a Dirichlet
process, e.g., Gpc, is discrete in nature.

6. Approximate Inference and Learning

Traditionally, learning in nonparametric Bayesian
modelling is performed via Gibbs sampling. The
most common variations are the Polya urn or Chinese
restaurant sampling approach (Teh et al., 2004; Tresp
& Yu, 2004). These approaches are computationally
quite involved; thus in our paper we focus on a com-
putationally efficient approach described in Yu et al.
(2004).

The goal is to estimate Gpc for each possible pc in the
data base, using the marginal likelihood:

Ĝpc = arg max
G

DP(G|G0, α0)×∏
{pa}pc

∫
Mul({pr}pa|θ.|pc,pa)G(θ.|pc,pa)dθ.|pc,pa

where {pa}pc is the set of patients with the same prime
complaint pc, and {pr}pa is the set of procedures of

patient pa. Unfortunately, calculating the marginal
likelihood is intractable and we rely on a mean field
approximation. The mean field approximation is mo-
tivated by the stick breaking representation of Equa-
tion 2, which can be written as:

Gpc ≈
n∑

pa=1

πpa,pcδθ∗
.|pa,pc

where n = |{pa}pc|, is the number of patients with the
prime complaint pc. The learning process is divided
into two steps: 1) to calculate the location θ∗.|pa,pc

of the concentrated distribution, 2) to estimate the
weight πpa,pc. The location of the discrete term is
approximated by the maximum a posteriori (MAP)
estimates of θ.|pc,pa defined as:

θMAP
.|pc,pa = arg maxP (θ.|pc,pa|{pr}pa)

where the Dirichlet distribution of Equation 1 is used
as prior.

In the second step, to estimate the weight πpa,pc, the
assumption is made that:

P̂ (θ.|pc,pa|{pr}pa) ≈ qpa(θ.|pc,pa) =
∑

{p̃a}pc

ξp̃a,pc,paδθMAP
.|pc,pa

where ξp̃a,pc,pa are the variational parameters with
ξp̃a,pc,pa ≥ 0 and

∑
pa ξp̃a,pc,pa = 1.

We obtain as variational E-step, for t = 1, 2, . . .:

ξt
p̃a,pc,pa =

P ({pr}p̃a|δMAP
θ.|pc,pa

) Ĝ
(t)
pc (δθMAP

.|pc,pa
)∑

p̃a P ({pr}p̃a|δMAP
θ.|pc,pa

) Ĝ
(t)
pc (θMAP

.|pc,pa)
(4)

and with ξpc,pa =
∑

p̃a ξp̃a,pc,pa, the M-step

Ĝ(t+1)
pc (θ.,pc,pa) =

α0G0(θ.,pc,pa) +
∑

{pa}pc
ξpc,paδθMAP

.|pc,pa

α0 + |{pa}pc|
.

(5)

After convergence, the “learned” prior assumes the
form of Equation 5. With α0 → ∞ the learned prior
corresponds to the uninformed prior. With a finite α0

we obtain a nonparametric hierarchical Bayes solution.

7. Experiments

We apply our model in the context of a medical
data base. Its entity-relational model shown in Fig-
ure 4(a). The domain includes four entity classes
(hospitals, patients, diagnoses and procedures) and
three relationship classes (In:patient being in a hospi-
tal, Make:patient making a diagnosis and Take:patient
taking a procedure). A patient pa is in exactly one hos-
pital ho and typically has both multiple procedures
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Figure 4. (a) Medical data base structure represented by entity relational model (b) DERL model (c) PRM model

pr and diagnoses dia. Hospital class has attribute
classes such as hospital bedsize, teaching status (teach-
ing/nonteaching), hospital location (urban/rural), etc.
Patient class has attribute classes including gender,
age, admission source, etc. To reduce complexity of
the Figure 4(a), hospital and patient characteristics
are grouped together as HospitalAttributes and Pa-
tientAttributes respectively (these attributes are not
aggregated in learning and inference). In addition,
patient class has the attribute class PrimeComplaint,
which states the prime complaint of the patient at the
time of admission. For both the hospital character-
istics and patient characteristics we learned multino-
mial mixture models using hidden mixture attributes
Hospital.Hh and Patient.Hpa. Both the relationship
between patients and procedures and the relationships
between patients and diagnoses are modelled as ref-
erence uncertainty. Thus the two relationships have
additional attributes Selectpr and Selectdia, respec-
tively. The states of Selectpr and Selectdia indicate
which procedure, resp. diagnosis is given by the physi-
cian. We used data from 9980 patients for training and
4082 patients for testing. In the data, there were 703
different diagnoses and 367 different procedures. The
system was optimized to have 60 patient clusters and
3 hospital clusters.

The DERL model is shown in Figure 4(b). The pa-
rameters of the multinomial variables Selectpr and
Selectdia are θspr|pc,Hh,pa and φsdia|pc,Hh,pa, which are
individual for each patient. The two parameters share
a common prior Gpc,Hh

, which is a sample from a
Dirichlet process. Note that the base distribution G0
of the Dirichlet process is a product of two indepen-
dent Dirichlet distributions:

G0 = Dir(θ.|pc,Hh,pa|τpr, αpr)×Dir(φ.|pc,Hh,pa|τdia, αdia)

αpr =
1

Npr
(1, 1, 1, . . .)T ; αdia =

1

Ndia
(1, 1, 1, . . .)T

where Npr and Ndia are the number of procedures

and diagnosis, respectively (i.e. 367 and 703 in the
case). The base distribution implies unbiased priors.
τpr, τdia are confidence parameters and were optimized
via cross-validation. Our model implies that a priori,
procedures and diagnosis are modelled as being inde-
pendent1. A posterior the Dirichlet enhanced model
is able to represent dependencies between procedures
and diagnosis. We have to realize separate Dirich-
let processes for each configuration of the states of
the parents of the select variables. This immediately
brings up the issue of overfitting, since for any par-
ticular combination of the states of prime complaint
and Hh, there might be only few or no data in the
training data set. For example, if consider the situ-
ation where there is no patient with the prime com-
plaint circulatory in the hospitals clustered 2 in train-
ing data, then we have Gcirculatory,2 = 0. That means
the probability of any procedure of a new patient with
that configuration is always zero, which is obviously
incorrect. The typical approach to dealing with this
problem is to smooth the probability, assigning pos-
itive value, no matter whether the configuration oc-
curs in the training data. Thus we employ Linear-
interpolation-smoothing from language modelling (Je-
linek, 1997). For the procedure Select spr we obtain

P (spr|Hh, pc) = λ0P (spr) + λ1P (spr|Hh)+

λ2P (spr|pc) + λ3P (spr|Hh, pc)

and a corresponding expression for diagnosis Select
sdiag. The weights λi are estimated using an EM
algorithm. The (conditional) probabilities P (spr),
P (spr|Hh), P (spr|pc), and P (spr|Hh, pc) are all mod-
elled as separate Dirichlet enhancement models. LM-
smoothing can be implemented in the DERL model

1Model selection showed that we obtain a better predic-
tive model by using prime complaint as a parent and not
Hpa
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with an additional hidden variable. Since this would
make the model less readable, we did not draw this
variable in Figure 4(b).

We compare our model with standard PRM (e.g.
Friedman et al. (1999)), which is shown in Figure 4(c).
The difference from our model is that the multinomial
distributions of selection of procedures (and diagnoses)
are global, not individual for each patient.

We test model performances by predicting the appli-
cation of procedures. In the first experiment we pre-
dicted any of the procedures that a patient has re-
ceived given hospital properties, patient properties and
given prime complaint. The corresponding ROC curve
(averaged over all patients) for DERL model is shown
as E2 in Figure 5. In the experiment we selected the
top N procedures recommended by the model. Sensi-
tivity indicates how many percent of the actually be-
ing performed procedures were correctly proposed by
the model. (1-specificity) indicates how many of the
procedures that were not actually performed were rec-
ommended by the model. Along the curves, the N was
varied from left to right as N = 5, 10, . . . , 50. E1 shows
the experimental result of the standard PRM model
(Figure 4(c)) given the same information as E2. It is
essentially identical to the result of E2. The situation
changes when additional information is available such
as past procedures or diagnosis: the standard PRM
model would not change the proposal probabilities. In
the DERL model, in contrast, the prediction of a sub-
sequent procedure is improved if the first diagnosis is
available (E3) or both the the first diagnosis and the
first procedure are available (E4). We can see, for ex-
ample, that if we would propose 15 procedures, after
we know the prime complaint, the first diagnosis, and
the first procedure, we would cover approximately 83%
of the actually prescribed procedures. Figures 6 shows
the corresponding plots for patients with prime com-
plaint respiratory problem exhibiting similar trends.

In the second set of experiments we investigated how
the procedure probabilities sequentially change when
information becomes available. Figure 7 shows the se-
lection probabilities for 20 procedures which are rele-
vant for myocardial infarction. The top ten procedures
are listed in Table 1. The first column indicates the
predicted probabilities for the case that only patient
property and hospital property are available. The sec-
ond column shows the procedure probabilities when,
in addition, the prime complaint circulatory problem
becomes available. The third column shows the situ-
ation when, in addition, the first diagnosis acute my-
ocardial infarction becomes available. The fourth col-
umn shows the situation when, in addition, the proce-

Figure 5. ROC curves for predicting procedures, given
prime complaint and patient and hospital characteristics,
average over all test patients.

Figure 6. ROC curves for predicting procedures, given
prime complaint respiratory problem and patient and hos-
pital characteristics.

dure single vessel percutaneous transluminal coronary
angioplasty has been performed. One sees that the
procedure probabilities for procedures relevant for my-
ocardial infarction increase when prime complaint be-
comes available. The tendency is that if more infor-
mation becomes available, the model becomes more
certain about coming procedures for a patient. Fig-
ure 8 shows that hospital properties are quite relevant
since the proposed procedures for a given patient can
vary greatly between hospitals. We assign hospitals
to the most likely cluster component Hh. Shown are
procedure probabilities for the “diagnosis” single live-
born in hospital. As one can see, the procedures in the
different hospital clusters vary significantly.

8. Conclusions

In this paper we have shown how nonparametric hier-
archical Bayesian modelling can be very useful in re-
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Figure 7. Procedures probabilities (see text).

Table 1. Most frequent procedures for disease No. 410.71.

Rank Code Description
1 88.56 coronary arteriography using two catheters
2 37.22 left heart cardiac catheterization
3 88.53 angiocardiography of left heart structures
4 36.06 insertion of coronary artery stent(s)
5 36.01 single vessel percutaneous transluminal

coronary angioplasty
6 99.20 injection or infusion of platelet inhibitor
7 36.15 single internal mammary-coronary artery

bypass
8 39.61 extracorporeal circulation auxiliary to open

heart surgery
9 88.72 diagnostic ultrasound of heart
10 99.04 transfusion of packed cells

lational learning. Parameters describing dependencies
can be attributes of entities or relationships and can
thus be non-global. The learned distribution can ex-
hibit a rich structure and represent parameter depen-
dencies which are impossible to represent in a paramet-
ric formulation. We demonstrated the advantages of
our approach using data from a medical database. We
used the nonparametric representation to model the
reference uncertainty between patients and diagnosis
and patients and procedures. Despite the fact that the
base distribution exhibited parameter independence,
the learned parameter distribution displayed parame-
ter dependence. As a result the couplings between di-
agnosis and procedures could truthfully be modelled.
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