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Abstract. Kernel-based systems are currently very popular approaches
to supervised learning. Unfortunately, the computational load for train-
ing kernel-based systems increases drastically with the number of train-
ing data points. Recently, a number of approximate methods for scaling
kernel-based systems to large data sets have been introduced. In this
paper we investigate the relationship between three of those approaches
and compare their performances experimentally.

1 Introduction

Kernel-based systems such as the support vector machine (SVM) and Gaussian
processes (GP) are powerful and currently very popular approaches to super-
vised learning. Kernel-based systems have demonstrated very competitive per-
formance on several applications and data sets and have great potential for
KDD-applications since their degrees of freedom grow with training data size
and they are therefore capable of modeling an increasing amount of detail when
appropriately many training data points become available. Unfortunately, there
are at least three problems when one tries to scale up these systems to large
data sets. First, training time increases drastically with the number of train-
ing data points, second, memory requirements increase with data set size and
third, prediction time is proportional to the number of kernels and the latter is
equal to (or at least increases with) the number of training data points. In this
presentation, we will concentrate on Gaussian processes which are the basis for
Gaussian process regression, generalized Gaussian process regression, and the
support vector machine. We analyze and experimentally compare three recently
introduced approaches towards scaling Gaussian processes to large data sets us-
ing finite-dimensional representations, thus obtaining learning rules which scale
linearly in the number of training data points.

The first approach is the subset of representers method (SRM) and can be
found in the work of Wahba [5], in the work on sparse greedy Gaussian process
regression by Smola and Bartlett [2], and in the reduced support vector machine
by Lee and Mangasarian [1]. The SRM is based on a factorization of the kernel



functions. The second variant is a reduced rank approximation (RRA) of the
Gram matrix introduced in the work of Williams and Seeger [6]. The RRA uses
the same decomposition as the SRM but this decomposition is only applied to
the Gram matrix. The third variant is the BCM approximation introduced by
Tresp [3]. Here the starting point is the optimal projection of the data on a set
of base kernels which requires the inversion of a covariance matrix of the size of
the number of training data points. The BCM approximation is achieved by a
block diagonal approximation of this matrix.

In this paper, we analyze the approaches from a common view point and we
will compare the performances of the approximations where we pay particular
attention to the issue of the optimal scale parameter.

The paper is organized as follows. In the next section, we will provide a brief
introduction into Gaussian processes. In the following sections, we describe the
SRM, the RRA and the BCM approximation. Section 6 analyzes the approxima-
tions and provides experimental comparisons. Section 7 contains the conclusions.

2 Gaussian Process Regression (GPR)

In GPR one assumes that a priori a function f(x) is generated from an infinite-
dimensional Gaussian distribution with zero mean and covariance K(xi, xj) =
cov(f(xi), f(xj)) defined at input points xi and xj . Furthermore, we assume a
set of training data D = {(xi, yi)}N

i=1 where targets are generated according to

yi = f(xi) + εi

where εi is independent additive Gaussian noise with variance σ2. The optimal
regression function f̂(x) takes on the form of a weighted combination of kernel
functions

f̂(x) =
N∑

i=1

wiK(x, xi). (1)

Based on our assumptions, the maximum a posterior (MAP) solution for w =
(w1, . . . , wN )′ minimizes the cost function

1
2
w′Σw +

1
2σ2

(Σw − y)′(Σw − y) (2)

where (Σ)i,j = K(xi, xj) is the N ×N Gram matrix. The optimal weight vector
is the solution to a system of linear equation which in matrix form becomes

(Σ + σ2I)w = y. (3)

Here y = (y1, . . . , yN )′ is the vector of targets and I is the N × N -dimensional
unit matrix. The experimenter has to specify the positive definite kernel function.
A common choice is that

K(xi, xj) = A exp(−1/(2γ2)||xi − xj ||2) (4)

which is a Gaussian with positive amplitude A and scale parameter γ. Other
positive definite covariance functions are also used.



3 The Subset of Representers Method (SRM)

Here, one first selects as set of Nb base kernels. These base kernels are typically
either defined at a subset of the training data or of the test data. One can now
approximate the covariance at xi and xj as

cov(f(xi), f(xj)) ≈ (Kb(xi))′(Σb,b)−1Kb(xj). (5)

Here, Σb,b is the covariance matrix for the base kernel points and Kb(xi) is
the vector of covariances between the functional values at xi and the base ker-
nel points. Since Σb,b contains the covariances at the base kernel points, this
approximation is an equality if either xi or xj are elements of the base kernel
points and is an approximation otherwise. Note that using this approximation,
the Gram matrix becomes

Σ ≈ Σm,b(Σb,b)−1(Σm,b)′, (6)

where Σm,b contains the covariance terms between all N training data points and
the base kernel points. With this approximation, the rank of the Gram matrix
Σ cannot be larger than Nb. The regression function is now a superposition

f̂(x) =
Nb∑
i=1

wiK(x, xi) (7)

of only Nb kernel functions and the optimal weight vector minimizes the cost
function

1
2
(wb)′Σb,bwb +

1
2σ2

(Σm,bwb − y)′(Σm,bwb − y), (8)

where wb = (w1, . . . , wNb
)′, and where y is the vector of all training targets.

Note that the number of kernels is now Nb instead of N , hence the name subset
of representers method (SRM). 1

Usually, the base kernels are selected from the training data set either ran-
domly or using a clustering algorithm [5]. Smola and Bartlett [2] select an
(nearly) optimal subset of base kernel points out of the training data set. Their
base kernel point selection procedure does not significantly increase the compu-
tationally complexity of the training procedure.

4 A Reduced Rank Approximation (RRA)

In a paper by Williams and Seeger [6], the authors use the decomposition of
the Gram matrix of Equation 6 for calculating the kernel weights (Equation 3).
Using standard matrix algebra (Woodbury formula), one obtains

wopt ≈ 1
σ2

(
y − Σm,b

[
(Σm,b)′Σm,b + σ2Σb,b

]−1
(Σm,b)′y

)
.

1 Incidentally, the relationship between the full kernel weights and the reduced kernel
weights is given by wb = (Σb,b)−1(Σm,b)′w. Substitution of this identity in the cost
function of Equation 8 and using Equation 5 leads to the cost function of Equation 2.



In the SRM method, the decomposition of Equation 5 changes the covariance
structures of the kernels, whereas here, the covariance structures defining the
kernels are unchanged. The factorization of the Gram matrix is used to obtain
an efficient approximation of the optimal kernel weights. As a result, in the
RRA approximation the number of kernels with nonzero weights is identical to
the number of training data points N (Equation 1), whereas in the SRM method,
the number of kernels with nonzero weights is identical to the number of base
points Nb (Equation 7).

5 BCM Approximation

The Bayesian committee machine (BCM) was introduced by Tresp [3] and was
derived using assumptions about conditional independencies. Here, we will choose
a new approach to derive the BCM approximation. Let

P (f b) = G(f b; 0, Σb,b)

be the Gaussian prior distribution of the unknown functional values at the base
kernel points. Furthermore, let

P (y|f b) = G(y;Σm,bwb, cov(y|f b))

be the conditional density of the training targets given f b. Here, wb is the weights
vector defined on the base kernels, and

cov(y|f b) = σ2I + Σ − Σm,b(Σb,b)−1(Σm,b)′ (9)

is the covariance of the training data given f b.
Note that both equations define a joint probability model and allow the

calculation of many quantities of interest, e.g. E(f b|y). To be able to compare
the BCM and the SRM, we will use the identity

f b = Σb,bwb. (10)

The optimal wb then minimizes the cost function

1
2
(wb)′Σb,bwb +

1
2
(Σm,bwb − y)′ cov(y|f b)−1 (Σm,bwb − y). (11)

Note that the errors in the likelihood term are correlated.
Equations 10 and 11 can be used to calculate the optimal prediction at the

base kernel points but this requires the calculation of the inverse of cov(y|f b)
and the latter has the dimension of N × N . The BCM uses a block diagonal
approximation of cov(y|fq) and the calculation of the weight vector wb requires
the inversion of matrices of only the block size B. The BCM approximation im-
proves if few blocks are used (then a smaller number of elements are set zero) and
when Nb is large, since then the last two terms on the right side of Equation (9)
tend to cancel and cov(y|f b) ≈ σ2I. Note that the BCM approximation becomes



the SRM if we set cov(y|f b) = σ2I. In the latter, the induced correlations are
completely ignored.

With the BCM approximation we obtain

wb
opt ≈

(
Σb,b +

M∑
i=1

(Σm,b
i )′cov(yi|f b)−1Σm,b

i

)−1 M∑
i=1

(Σm,b
i )′cov(yi|f b)−1yi

which is one particular form of the BCM approximation. Here, M is the number
of blocks, yi is the vector of targets of the i-th module, cov(yi|f b) is the i-th
diagonal block of cov(y|f b) and Σm,b

i is the submatrix of Σm,b containing the
covariances between the base kernel points and the training data points in the
i-th partition. The predictions at the base kernel points can be obtained by
substituting wb

opt in Equation 10. The predictions at additional test points can
be calculated by substituting wb

opt in Equation 7.

6 Experimental Comparisons

In the first experiment, the base points were selected out of the test set. This
corresponds to a procedure sometimes referred to as transduction where the user
starts training the system only after the inputs to the test points become avail-
able. The experimental results presented in Figure 1 (A), (B) show that for the
optimal scale parameters, the BCM approximation makes significantly better
predictions at the base kernel points if compared to the SRM. For large scale
parameters, cov(y|fq) is approximately diagonal and both approximations give
comparable results. For smaller scale parameters, the block diagonal approxima-
tion is better than the diagonal approximation and the BCM gives better results
than the SRM. The predictions of the RRA at the base points are identical to the
predictions of the SRM method. Based on the predictions at the base points, one
can calculate prediction at additional test point. The results shown in Figure 1
(C) show that the results of the BCM and the SRM method are comparable,
although the latter gives slightly better results.2 Figure 1 (D) shows the test
set error if the standard procedure is used. Here, the base points are randomly
chosen out of the training data set, weights on the base points in the training
data set are calculated, and these are then used to predict at the test points. As
expected, the results shown in (D) are comparable to the results in (C). For the
experiments in (C) and (D), the results of the RRA (not shown) were consid-
erably worse than the results obtained using the BCM approximation and the
SRM method.

2 Of course one could calculate the BCM approximation again for the additional test
points instead of using Equation 1. This would give better results but would require
another O(Nm2) operations.
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Fig. 1. Test set error is plotted against the scale parameter (width γ) of a Gaussian
kernel for the BCM (continuous) and for the SRM (dashed). For (A), (B), and (C),
the base points were randomly selected out of the test set. (A) and (B) show the
performance at the base points and (C) shows the performance at additional test
points. For the experiment in (D), the base points were randomly selected out of the
training data set and the error on an independent test set is shown. We used 10000
training data points, 1000 base kernel points and 1000 additional test points. The plots
are based on an artificial data set with additive noise with variance σ2 = 0 (A, C, D)
and σ2 = 0.001 (B). The test data are noise free.



7 Conclusions

In this paper, we have compared three approaches for scaling up kernel-based sys-
tems. The computational complexity of the presented methods scales as O(N ×
N2

b ) where N is the number of training data points and Nb is the number of base
kernel points. If training is performed after the test inputs are known (transduc-
tion), the BCM outperforms the other approaches. In the more common setting
where training is done before the inputs to the test set are available (induc-
tion), all three methods perform comparably, although the subset of representers
method seems to have a slight advantage in performance.
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