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Abstract

In this article, we present a novel approach to solving the localization
problem in cellular networks. The goal is to estimate a mobile user’s
position, based on measurements of the signal strengths received from
network base stations. Our solution works by building Gaussian process
models for the distribution of signal strengths, as obtained in a series
of calibration measurements. In the localization stage, the user’s posi-
tion can be estimated by maximizing the likelihood of received signal
strengths with respect to the position. We investigate the accuracy of
the proposed approach on data obtained within a large indoor cellular
network.

1 Introduction

Cellular networks form the basis of modern wireless communication infrastructure. Ex-
amples include GSM and UMTS networks for mobile phones, wireless LAN (WLAN) for
computer networks, and DECT for cordless phones. Within these networks, location-based
services (services that are tailored specifically to the current position of the mobile user)
have great potential. Examples of such services are guiding the user through a building
or city, delivering the time-table of buses at the nearest bus stop, or simply answering the
user’s query “Where am I?”. All such services crucially depend on methods to accurately
estimate the position of the mobile user within the network (“localization”, “positioning”).

In this article, we present a novel approach to obtain position estimates for the mobile user.
Most importantly, this method is based solely on infrastructure that is already present in
a typical cellular network, and thus leads to minimal extra cost. Furthermore, we focus
on indoor networks, where a number of specific problems needs to be addressed. Since
our approach relies heavily on Gaussian process models, we call it the “Gaussian process
positioning system” (GPPS).

We proceed by introducing the localization problem in detail in Sec. 1.1, and by giving a
brief overview of previous approaches. Sec. 2 follows with a description of the Gaussian
process positioning system (GPPS). Sec. 3 shows how the required calibration stage of
the system can be performed in an optimal manner. Sec. 4 presents an evaluation of the
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GPPS in a DECT network environment. We show that the GPPS gives accurate location
estimates, in particular when only very few calibration measurements are available.

1.1 Problem Description

Our overall goal is to develop a localization system for indoor cellular networks, that is (in
order to minimize cost) based solely on existing standard networking hardware. Location
estimates can be based on different characteristics of the radio signal received at the mobile
station (i.e., the laptop in a WLAN network, or the phone in a DECT network). Yet,
in most hardware, the only available information about the radio signal is the received
signal strength. Information like phase or propagation time from the base station requires
additional hardware, and can thus not be used.

In general, estimating the user’s position based only on measurements of the signal strength
is known to be a very challenging task [7], in particular in indoor networks. Due to re-
flections, refraction, and scattering of the electromagnetic waves along structures of the
building, the received signal is only a distorted version of the transmitted signal. Noise
and co-channel interference further corrupt the signals [4]. Furthermore, when using stan-
dard hardware, we must expect a high level of measurement noise for the signal strength.
Changes in the environment can also have a strong impact on signal propagation. For ex-
ample, in a WLAN environment [1], it has been noted that shielding by a single person can
attenuate the signal by up to−3.5 dBm. Also, the localization system ought to be robust,
since base stations may fail, be switched off, or may be temporarily shielded for unknown
reasons. In these cases, a sensible localization system should not draw the conclusion that
the user is far from the respective base station.

Due to the complex signal propagation behaviour, almost all previous approaches to indoor
localization use an initial calibration stage. Calibration here means that signal strengths
received from the network base stations are measured at a number of points inside the
building. Systems differ in their ways of using this calibration data. In principle, two
basic approaches can be used here. In a “forward modelling” approach, a model of signal
strength as a function of position is built first. The localization procedure then tries to
find the location which best agrees with the measured signal strengths. Alternatively, the
mapping from signal strengths to position can be modelled directly (“inverse modelling”).

The RADAR system [1], one of the first indoor localization systems, is an inverse mod-
elling approach using a nearest neighbor technique. [7] build simple probabilistic models
from the calibration data (forward modelling), in conjunction with maximum likelihood
position estimation. Bayesian networks have been considered by [2], with states of node
corresponding to different locations (using coarse discretization). Discrete locations, yet
with a finer grid, are also considered in [5], in an approach inspired by robot navigation.

2 The Gaussian Process Positioning System

The difficulties of indoor localization, as mentioned in Sec. 1.1, call for a probabilistic
method for localization. The key idea of the Gaussian process positioning system (GPPS)
is to use Gaussian process models for the signal strength received from each base station,
and to obtain position estimates via maximum likelihood, i.e. by searching for the position
which best fits the measured signal strengths.

Consider a cellular network with a total ofB base stations. Assume that, for each of base
stations, we have a probabilistic model that describes the distribution of received signal
strength. More formally, we denote byp j(sj | t) the likelihood of receiving a signal strength
sj from the j-th base station on positiont.



With the modelsp j(sj | t), j = 1, . . . ,B given, localization can be done in a straight-forward
way. The user reports a vectors (of lengthB) of signal strength measurements for all base
stations. It may occur that no signal is received from some base stations (indicated by
sj = /0), e.g., because the user is too far from this base station, or due to hardware failure.
In the GPPS, the estimated positiont̂ is computed by maximizing the joint likelihood1 with
respect to the unknown position,

t̂ = argmax
t

∏
j:sj 6= /0

p j(sj | t). (1)

In the above equation, we only use the likelihood contributions of those base stations that
are actually received. Alternatively, one could use a very low signal strength as a default
value for each base station that is not received [7]. We found that this can give high errors
if a base station close to the user fails, since now the low default value indicates that one
should expect the user to be far from the base station. Thus, by using the above expression,
we also obtain a certain degree of robustness with respect to hardware failures or other
unexpected effects.

Yet, we still need to define and build suitable base station modelsp j(sj | t), j = 1, . . . ,B.
In the GPPS, we use Gaussian process (GP) models for this task, where each base station
model is estimated from the calibration data. Gaussian processes are particularly useful
here for several reasons. Firstly, one obtains a full predictive distribution, as opposed to the
point estimate output by other regression approaches. Secondly, GPs are a nonparametric
method that can flexibly adapt to the complex signal propagation behaviour observed in
indoor cellular networks.

Mind that this approach opens a wide range of possibilities for further extensions. Due
to particular project requirements, we currently only use the maximum likelihood position
estimate in Eq. (1) (“one-shot localization” without error estimates). Instead of the implic-
itly assumed uninformative prior in Eq. (1), one could, for example, specify an informative
prior based on known previous positions of the user, in conjunction with a motion model.
Subsequently, the complete posterior distributionp(t |s) can be evaluated for localization.

In the following sections, we will describe the GP models in more detail, and also discuss
the choice of kernel function, which is of great importance in order to build an accurate
localization system.

2.1 Gaussian Process Models for Signal Strengths

In the GPPS, a Gaussian process (GP) approach is used for the modelsp j(sj | t) that de-
scribe the signal strength received from a single base stationj. Details on GP models can
be found, for example, in [6]; we only give a brief summary here.

Recall from Sec. 1.1 that the proposed GPPS is based on a set calibration measurements,
where the signal strength is measured at a number of points spread over the area to be
covered. Consider now the calibration data for a single base stationj. We denote this cali-
bration data byD j = {(xi ,yi)}Ni=1, meaning that a signal strength ofyi has been measured
on pointxi , with a total ofN calibration measurements.

For simplicity of computation, we use a GP model with Gaussian noise, i.e., the measured
signal strengthyi is composed of a “true” signal strengths(xi) plus independent Gaus-
sian (measurement) noiseei of varianceσ2, with yi = s(xi) + ei . The Gaussian process
assumption for the true signals implies that the true signal strengths for all calibration

1Assuming independence of the individual measurements. One could also use a solution inspired
from co-kriging, that takes into account the full dependence between signals received from different
base stations. We did not consider this solution for reasons of efficiency.



points(s(x1), . . . ,s(xN)) are jointly Gaussian distributed, with zero mean and covariance
matrix K. K itself is given by the kernel (covariance) functionk, with Kmn = k(xm,xn),
m,n = 1, . . . ,N.

Given the calibration dataD j , the predictive distribution for the signal strengthsj received
on some arbitrary pointt turns out to be Gaussian. Withv(t) = (k(t,x1), . . . ,k(t,xN))>,
y = (y1, . . . ,yN)> andQ = K + σ2I , mean and variance of the prediction are

E(sj |D j , t) = v(t)>Q−1y (2)

var(sj |D j , t) = k(t, t)−v(t)>Q−1v(t) (3)

Using these expressions for the predictive distribution (a univariate Gaussian) in Eq. (1)
becomes straight forward. Also, gradients of the likelihood with respect to the positiont
can be derived easily [8]. Thus, the position estimate, Eq. (1), can be computed easily using
either some standard optimization routine, or by evaluating the likelihood grid-based in the
area of interest.

An important issue is also the choice of noise varianceσ2 and the parametersθ of the kernel
functionk (which we have not explicitly denoted above) . We set them by maximizing the
marginal likelihood of the calibration data with respect to the model parameters, which
turns out to be [6]

(σ̂2, θ̂) = argmax
σ2,θ

(
− logdetQ−y>Q−1y

)
. (4)

The model parameters(σ̂2, θ̂) are set individually for each base station.

2.2 The Matérn Kernel Function

In our GPPS application, with a 2-dimensional input space for the GP models, the choice
of an appropriate kernel function is a more critical issue if compared to typical machine
learning applications with many input dimensions. For the commonly used squared expo-
nential kernel,k(x,x′) = exp(−w‖x− x′‖2), it has been argued [9] that sample paths of
such GP models are “infinitely smooth”, thus often leading to unreasonably low predictive
variance. In GPPS, we instead use the Matérn class of kernel functions [9], which allows a
continuous parameterization of the smoothness of the sample paths via its parameterν. Its
functional form is

k(x,x′) = Mν(z) =
2
(√

νz
)ν

Γ(ν)
Kν(2
√

νz) (5)

whereΓ(ν) is the Gamma function andKν(r) is the modified Bessel function of the second
kind of degreeν. The parameterν determines the smoothness (fractal dimension) of the
sample paths and can be estimated from the data using Eq. (4). We use an isotropic kernel
function with length scalew, thusz2 = w‖x−x′‖2.

2.3 Learning GP Models with Matérn Kernel

For efficient solutions of Eq. (4), we require derivatives of the Matérn kernel function
Eq. (5) with respect to all its parametersν,w. Numerical gradients, as used for example by
[9], require a large number of evaluations of the Bessel functions and thus lead to a huge
computational overhead. To compute the derivatives analytically, we use

∂Γ(ν)
∂ν

= Γ(ν)Ψ(ν) and
∂Kν(z)

∂z
=−1

2
(Kν−1(z)+Kν+1(z)) (6)

whereΨ(ν) is the Polygamma function of order 0. To the best of our knowledge, there is
no closed form expression for the derivative of the Bessel functionKν(z) with respect to its



degreeν. We approximate this by∂Kν(z)
∂ν = DKν(z) ≈ ε−1(Kν+ε(z)−Kν(z)). Using these

identities, we find for the gradients of the Matérn function, Eq. (5),

∂Mν(z)
∂z

=
ν
z

Mν(z)−
2
√

ν
(√

νz
)ν

Γ(ν)
(
Kν−1(2

√
νz)+Kν+1(2

√
νz)
)

∂Mν(z)
∂ν

= Mν(z)
(

1
2

+ log
(√

νz
)
−Ψ(ν)

)
+

2
(√

νz
)ν

Γ(ν)

(
− z

2
√

ν
(
Kν−1(2

√
νz)+Kν+1(2

√
νz)
)

+DKν(2
√

νz)
)
.

(7)

Based on the above equations, derivatives of Eq. (4) with respect to the model parameters
σ2,ν,w can be computed using standard matrix algebra, see [6].

3 Optimal Calibration and Model Building

In order to make the GPPS, as presented in Sec. 2, a practical system, two further is-
sues need to be solved. Firstly, it must be noted that taking calibration measurements is
a very time-consuming (thus, expensive) task. The number of calibration data must thus
be kept as low as possible, while retaining high localization accuracy. This question has
been addressed in the literature under the name optimal design. [3] showed that—in a
2-dimensional space—hexagonal sampling design yields optimal results in terms of inte-
gral mean square error when the covariance structure of the underlying Gaussian process
is unknown. We also adopt this optimal design for the GPPS system when evaluating it in
Sec. 4.

Secondly, we assumed a GP model with zero mean in Sec. 2.1, which clearly does not fit
the propagation law of radio signals. In the actual GPPS, the GP mean is a linear function
of the distance to the base station (when signal strength is given on a logarithmic scale).

The overall process of building the GPPS is summarized is follows. Starting point is the
calibration data, with a total ofC measurements. On calibration pointxi , i ∈ {1, . . . ,C}, we
receive a signal strength ofci j from base stationj, j ∈ {1, . . . ,B}, or ci j = /0 if base station
j has not been received atxi (for example, due to signal obstruction). Signal strength is
measured in dB, all model fitting is thus done on a logarithmic scale.

The calibration data is then split into subsetsD j containing those points where base station
j has actually been received, i.e.,D j = {(xi ,ci j ) : ci j 6= /0}, corresponding toD j introduced
in Sec. 2.1. For each base station, that is, for each dataD j , we proceed as follows:

1. Often, the exact position of base stationj is not known.2 In this case, we use a
simple estimate for the base station position, that is the average of the 3 calibration
pointsxi with maximum signal strengthyi . This estimate is rather crude, yet we
found it to give sensible results in all of the configurations we have considered. In
particular with sparse calibration measurements, more sophisticated estimates for
the base station position are difficult to come up with.

2. Compute the distance of each calibration point to the base station (using either
the exact or the estimated position obtained in step 1). As the mean function of
the GP model, we fit a linear model3 to the received signal strength as a function
of distance to the base station. Subtract the value of the mean function from the

2When setting up the network, or after modifying the network by moving base stations, the base
station positions are often not recorded.

3Alternatively, one could also use a procedure similar to universal kriging, and combine fitting of
the mean function with learning the parameters of the kernel function, see Eq. (4).



original measurements, and use the modified values in the subsequent GP model
fitting procedure.

3. Use Eq. (4) to find optimal parameters for the GP model, which are the noise
varianceσ2, the Mat́ern smoothness parameterν and the input length scalew.

4 Evaluation in a DECT Network

We tested the accuracy of the GPPS in a large DECT cellular network. In a large assem-
bly hall of 250×180 meters, measurements of signal strengths received from DECT base
stations were made on 650 points spread over the hall. In this environment, moving robots,
metal constructions, corridors, office cubicles, etc., are all affecting the signal propagation.
We observed a very high fluctuation of received signals (up to±10 dB when repeating mea-
surements, while the total signal range is only−30 to−90 dB), both due to measurement
noise, and due to dynamical changes of the environment.

We compare the GPPS with a nearest neighbor based localization system (abbreviated by
NNLoc in the following), that is quite similar to the RADAR [1] approach.4 This system
finds the calibration measurements that best match the signal strength received at test stage.
The best matches are used in a weighted triangulation scheme to compute the location
estimate. This method requires careful fine tuning of parameters, and we have to omit
details for brevity here.

Dense Calibration Points In a first experiment, we investigate the achievable precision
of location estimates when using the full set of calibration measurements. We evaluate both
the GPPS and the nearest neighbor based method in a 5fold cross validation scheme. The
total set of measurements is split up into five equally sized parts, where four of these parts
were used as the calibration set. The resulting positioning system is tested on the fifth part
left out. This is repeated five times, so that each point is being used as the test point exactly
once. We found that, in this setting, the nearest neighbor based method NNLoc works very
fine, and provides an average localization error of 7 meters. The GPPS performs slightly
worse, with an average error of 7.5 meters. With the GPPS, localization is typically based
on around 15 base stations, that is, 15 likelihood terms contributing to Eq. (1).

Unfortunately, such a high number of calibration measurements is unlikely to be available
in practice. Taking calibration measurements is a very costly process, in particular if larger
areas need to be covered. Thus, one is very much interested in keeping the number of
calibration points as low as possible.

Experiments with Sparse Calibration Points In the second experimental setup, we aim
at building the positioning system with only a minimal number of calibration points. Again,
5fold cross validation was performed. After splitting the data into five parts, we select
subsets ofC̃ = 100,50,25,12 points, either at random or simulating the optimal design,
from the union of four of these parts. The localization system is built based on these
C̃ points and evaluated on the fifth part of the data. In order to simulate a near-optimal
design (see Sec. 3), we superimpose a hexagonal grid withC̃ points on the area under
consideration. Out of the given calibration measurements, we select thoseC̃ points that are
closest (in terms of Euclidean distance) to the grid points.

In Fig. 1 we plot the localization accuracy, averaged over the 5fold cross validation,
of the GPPS and the nearest neighbor based system built on onlyC̃ calibration points,

4We also investigated localization using Eq. (1) with a simplistic propagation model, where the
expected signal (on log scale) is a linear function of the distance to the base station. Yet, this approach
lead to very poor localization accuracy, and is thus not considered in more detail here.



Figure 1: Mean localization error of the GPPS and the NNLoc method, as a function of
the number of calibration points used. Vertical bars indicate±1 standard deviation of the
mean localization error. The calibration points are either selected at random, or according
to an optimal design criterion

C̃∈ {100,50,25,12} calibration measurement. It can be clearly seen that the GPPS system
(with optimal design) achieves a high precision for its location estimates, even when using
only a minimal number of calibration measurements. With only 12 calibration measure-
ments, GPPS achieves an average error of around 17 meters, while the competing method
reaches only 29 meters at best. In this setting, the average distance in between calibration
measurements is around 75 meters. Both the NNLoc system and the GPPS system show
large improvements of performance when selecting the calibration points according to the
optimal design, instead of a purely random fashion. Also, note that the localization error
of the GPPS system degrades only slowly when the number of calibration measurements
is reduced. In contrast, the curves for the nearest neighbor based method show a sharper
increase of positioning error.

It is worth noticing that the choice of kernel functions has a strong impact on the local-
ization accuracy of the GPPS. In Fig. 2(a), we also plot a comparison of the GPPS with
either the Mat́ern kernel, Eq. (5), or an RBF kernel of the formk(x,x′) = exp(−w‖x−x′‖).
GP models with RBF kernels tend to be over-optimistic [9] about the predictive variance,
Eq. (3), which in turn leads to overly tight position estimates. Thus, the accuracy of GPPS
with RBF kernel is clearly inferior to that of GPPS with Matérn kernel. It is also inter-
esting to consider different methods for selecting the calibration points. Fig. 2(b) plots
the accuracy obtained with GPPS, when calibration points are either placed randomly, on a
hexagonal grid (the theoretically optimal procedure) or on a square grid. Somehow counter-
intuitively, a square grid for calibration gives a performance that is just as good or even
worse than a random grid. In contrast, localization with NNLoc performs about the same
with either hexagonal or square grid (this is not plotted in the figure).

5 Conclusions

In this article, we presented a novel approach to solving the localization problem in indoor
cellular network networks. Gaussian process (GP) models with the Matérn kernel function
were used as models for individual base stations, so that location estimates could be com-
puted using maximum likelihood. We showed that this new Gaussian process positioning
system (GPPS) can provide sufficiently high accuracy when used within a DECT network.



(a) GPPS using either the Matérn or the
RBF kernel function

(b) GPPS with calibration measurements
placed either randomly, on a square grid, or
on a hexagonal grid (optimal design)

Figure 2: Average localization error of the GPPS method with different kernel function
(left) and different methods for placing calibration points (right)

A particular advantage of the GPPS system is that it can be based on only a small num-
ber of calibration measurements, and yet retain high accuracy. Furthermore, we showed
how calibration points can be optimally chosen in order to provide high accuracy position
estimates.
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