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Abstract

We present Monte-Carlo generalized EM equations for learning in non-
linear state space models. The dif£culties lie in the Monte-Carlo E-step
which consists of sampling from the posterior distribution of the hidden
variables given the observations. The new idea presented in this paper is
to generate samples from a Gaussian approximation to the true posterior
from which it is easy to obtain independent samples. The parameters of
the Gaussian approximation are either derived from the extended Kalman
£lter or the Fisher scoring algorithm. In case the posterior density is mul-
timodal we propose to approximate the posterior by a sum of Gaussians
(mixture of modes approach). We show that sampling from the approxi-
mate posterior densities obtained by the above algorithms leads to better
models than using point estimates for the hidden states. In our exper-
iment, the Fisher scoring algorithm obtained a better approximation of
the posterior mode than the EKF. For a multimodal distribution, the mix-
ture of modes approach gave superior results.

1 INTRODUCTION

Nonlinear state space models (NSSM) are a general framework for representing nonlinear
time series. In particular, any NARMAX model (nonlinear auto-regressive moving average
model with external inputs) can be translated into an equivalent NSSM. Mathematically, a
NSSM is described by the system equation

xt = fw(xt−1, ut) + εt (1)

wherext denotes a hidden state variable,εt denotes zero-mean uncorrelated Gaussian noise
with covarianceQt andut is an exogenous (deterministic) input vector. The time-series
measurementsyt are related to the unobserved hidden statesxt through the observation
equation

yt = gv(xt, ut) + vt (2)
wherevt is uncorrelated Gaussian noise with covarianceVt. In the following we assume
that the nonlinear mappingsfw(.) andgv(.) are neural networks with weight vectorsw



andv, respectively. The initial statex0 is assumed to be Gaussian distributed with mean
a0 and covarianceQ0. All variables are in general multidimensional. The two challenges
in NSSMs are the interrelated tasks of inference and learning. In inference we try to es-
timate the states of unknown variablesxs given some measurementsy1, . . . , yt (typically
the states of past(s < t), present(s = t) or future(s > t) values ofxt) and in learning we
want to adapt some unknown parameters in the model (i.e. neural network weight vectors
w andv) given a set of measurements.1 In the special case of linear state space models
with Gaussian noise, ef£cient algorithms for inference and maximum likelihood learning
exist. The latter can be implemented using EM update equations in which the E-step is
implemented using forward-backward Kalman £ltering (Shumway & Stoffer, 1982). If
the system is nonlinear, however, the problem of inference and learning leads to complex
integrals which are usually considered intractable (Anderson & Moore, 1979). A useful
approximation is presented in section 3 where we show how the learning equations for
NSSMs can be implemented using two steps which are repeated until convergence. First in
the (Monte-Carlo) E-step, random samples are generated from the unknown variables (e.g.
the hidden variablesxt) given the measurements. In the second step (a generalized M-step)
those samples are treated as real data and are used to adaptfw(.) andgv(.) using some
version of the backpropagation algorithm. The problem lies in the £rst step, since it is dif-
£cult to generate independent samples from a general multidimensional distribution. Since
it is dif£cult to generate samples from theproperdistribution the next best thing might be
to generate samples using anapproximationto the proper distribution which is the idea
pursued in this paper. The £rst thing which might come to mind is to approximate the
posterior distribution of the hidden variables by a multidimensional Gaussian distribution
since generating samples from such a distribution is simple. In the £rst approach we use the
extended Kalman £lter and smoother to obtain mode and covariance of this Gaussian.2 Al-
ternatively, we estimate the mode and the covariance of the posterior distribution using an
ef£cient implementation of Fisher scoring derived by Fahrmeir and Kaufmann (1991) and
use those as parameters of the Gaussian. In some cases the approximation of the posterior
mode by a single Gaussian might be considered too crude. Therefore, as a third solution,
we approximate the posterior distribution by a sum of Gaussians (mixture of modes ap-
proach). Modes and covariances of those Gaussians are obtained using the Fisher scoring
algorithm. The weights of the Gaussians are derived from the likelihood of the observed
data given the individual Gaussian. In the following section we derive the gradient of the
log-likelihood with respect to the weights infw(.) andgv(.). In section 3, we show that
the network weights can be updated using a Monte-Carlo E-step and a generalized M-step.
Furthermore, we derive the different Gaussian approximations to the posterior distribution
and introduce the mixture of modes approach. In section 4 we validate our algorithms using
a standard nonlinear stochastic time-series model. In section 5 we present conclusions.

2 THE GRADIENTS FOR NONLINEAR STATE SPACE MODELS
Given our assumptions we can write the joint probability of the complete data fort =
1, . . . , T as3

p(XT , YT , UT ) = p(UT ) p(x0)
T∏

t=1

p(xt|xt−1, ut)
T∏

t=1

p(yt|xt, ut) (3)

1In this paper we focus on the cases ≤ t (smoothing and of¤ine learning, respectively).
2Independently from our work, a single Gaussian approximation to the E-step using the EKFS

has been proposed by Ghahramani & Roweis (1998) for the special case of a RBF network. They
show that one obtains a closed form M-step when just adapting thelinear parameters by holding
the nonlinear parameters £xed. Although avoiding sampling, the computational load of their M-step
seems to be signi£cant.

3In the following, each probability density is conditioned on the current model. For notational
convenience, we do not indicate this fact explicitly.



whereUT = {u1, . . . , uT } is a set ofknowninputs which means thatp(UT ) is irrelevant
in the following. Since onlyYT = {y1, . . . , yT } andUT are observed, the log-likelihood
of the model is

log L = log
∫

p(XT , YT |UT )p(UT ) dXT ∝ log
∫

p(XT , YT |UT ) dXT (4)

with XT = {x0, . . . , xT }. By inserting the Gaussian noise assumptions we obtain the
gradients of the log-likelihood with respect to the neural network weight vectorsw andv,
respectively (Tresp & Hofmann, 1995)

∂ log L
∂w

∝
T∑

t=1

∫∫
∂fw(xt−1, ut)

∂w

(
xt − fw(xt−1, ut)

)
p(xt, xt−1|YT , UT ) dxt−1 dxt

∂ log L
∂v

∝
T∑

t=1

∫
∂gv(xt, ut)

∂v

(
yt − gv(xt, ut)

)
p(xt|YT , UT ) dxt. (5)

3 APPROXIMATIONS TO THE E-STEP
3.1 Monte-Carlo Generalized EM Learning

The integrals in the previous equations can be solved using Monte-Carlo integration which
leads to the following learning algorithm.

1. GenerateS samples{x̂s
0, . . . , x̂

s
T }S

s=1 from p(XT |YT , UT ) assuming the current
model is correct (Monte-Carlo E-Step).

2. Treat those samples as real data and updatewnew = wold + η ∂ log L
∂w andvnew =

vold + η ∂ log L
∂v with stepsizeη and

∂ log L
∂w

∝ 1
S

T∑
t=1

S∑
s=1

∂fw(xt−1, ut)
∂w

∣∣∣
xt−1=x̂s

t−1

(
x̂s

t − fw(x̂s
t−1, ut)

)
(6)

∂ log L
∂v

∝ 1
S

T∑
t=1

S∑
s=1

∂gv(xt, ut)
∂v

∣∣∣
xt=x̂s

t

(
yt − gv(x̂s

t , ut)
)

(7)

(generalized M-step). Go back to step one.

The second step is simply a stochastic gradient step. The computational dif£culties lie
in the £rst step. Methods which produce samples from multivariate distributions such as
Gibbs sampling and other Markov chain Monte-Carlo methods have (at least) two prob-
lems. First, the sampling process has to “forget” its initial condition which means that the
£rst samples have to be discarded and there are no simple analytical tools available to de-
termine how many samples must be discarded. Secondly, subsequent samples are highly
correlated which means that many samples have to be generated before a suf£cient amount
of independent samples is available. Since it is so dif£cult to sample from the correct
posterior distributionp(XT |YT , UT ) the idea in this paper is to generate samples from an
approximate distribution from which it is easy to draw samples. In the next sections we
present approximations using a multivariate Gaussian and a mixture of Gaussians.

3.2 Approximate Mode Estimation Using the Extended Kalman Filter

Whereas the Kalman £lter is an optimal state estimator for linear state space models the
extended Kalman £lter is a suboptimal state estimator for NSSMs based on local lineariza-
tions of the nonlinearities.4 Theextended Kalman £lter and smoother(EKFS) algorithm is

4Note that we do not include the parameters in the NSSM as additional states to be estimated as
done by other authors, e.g. Puskorius & Feldkamp (1994).



a forward-backward algorithm and can be derived as an approximation to posterior mode
estimation for Gaussian error sequences (Sage & Melsa, 1971). Its application to our frame-
work amounts to approximatingxmode

t ≈ x̂EKFS
t wherex̂EKFS

t is the smoothed estimate
of xt obtained from forward-backward extended Kalman £ltering over the set of measure-
mentsYT andxmode

t is the mode of the posterior distributionp(xt|YT , UT ). We usêxEKFS
t

as the center of the approximating Gaussian. The EKFS also provides an estimate of the
error covariance of the state vector at each time stept which can be used to form the covari-
ance matrix of the approximating Gaussian. The EKFS equations can be found in Anderson
& Moore (1979). To generate samples we recursively apply the following algorithm. Given
x̂s

t−1 is a sample from the Gaussian approximation ofp(xt−1|YT , UT ) at timet − 1 draw
a samplêxs

t from p(xt|xt−1 = x̂s
t−1, YT , UT ). The last conditional density is Gaussian

with mean and covariance calculated from the EKFS approximation and the lag-one error
covariances derived in Shumway & Stoffer (1982), respectively.

3.3 Exact Mode Estimation Using the Fisher Scoring Algorithm

If the system is highly nonlinear, however, the EKFS can perform badly in £nding the
posterior mode due to the fact that it uses a £rst order Taylor series expansion of the non-
linearitiesfw(.) andgv(.) (for an illustration, see Figure 1). A useful – and computationally
tractable – alternative to the EKFS is to compute the ”exact” posterior mode by maximizing
log p(XT |YT , UT ) with respect toXT . A suitable way to determine a stationary point of
the log posterior, or equivalently, ofp(XT , YT |UT ) (derived from (3) by droppingp(UT ))
is to applyFisher scoring. With the current estimateXFS,old

T we get a better estimate
XFS,new

T = XFS,old
T + η δ for the unknown state sequenceXT whereδ is the solution of

S(XFS,old
T ) δ = s(XFS,old

T ) (8)

with the score functions(XT ) = ∂ log p(XT ,YT |UT )
∂XT

and the expected information matrix

S(XT ) = E
[−∂2 log p(XT ,YT |UT )

∂XT ∂X>
T

]
.5 By extending the arguments given in Fahrmeir &

Kaufmann (1991) to nonlinear state space models it turns out that solving equation (8) –
e.g. to compute the inverse of the expected information matrix – can be performed by
Cholesky decomposition in one forward and backward pass.6 The forward-backward steps
can be implemented as a fast EKFS-like algorithm which has to be iterated to obtain the
maximum posterior estimatesxmode

t = x̂FS
t (see Appendix). Figure 1 shows the estimate

obtained by the Fisher scoring procedure for a bimodal posterior density. Fisher scoring
is successful in £nding the ”exact” mode, the EKFS algorithm is not. Samples of the
approximating Gaussian are generated in the same way as in the last section.

3.4 The Mixture of Modes Approach

The previous two approaches to posterior mode smoothing can be viewed as single Gaus-
sian approximations of the mode ofp(XT |YT , UT ). In some cases the approximation of
the posterior density by a single Gaussian might be considered too crude, in particular if
the posterior distribution is multimodal. In this section we approximate the posterior by a
weighted sumof m Gaussiansp(XT |YT , UT ) ≈ ∑m

k=1 αkp(XT |k) wherep(XT |k) is the
k-th Gaussian. If the individual Gaussians model the different modes we are able to model
multimodal posterior distributions accurately. The approximations of the individual modes
are local maxima of the Fisher scoring algorithm which are found by starting the algorithm
using different initial conditions. Given the different Gaussians, the optimal weighting fac-
tors areαk = p(YT |k)p(k)/p(YT ) wherep(YT |k) =

∫
p(YT |XT )p(XT |k) dXT is the

5Note that the difference between the Fisher scoring and the Gauss-Newton update is that in the
former we take the expectation of the information matrix.

6The expected information matrix is a positive de£nite block-tridiagonal matrix.



likelihood of the data given modek. If we approximate that integral by inserting the Fisher
scoring solutionŝxFS,k

t for each time stept and linearize the nonlinearitygv(.) about the
Fisher scoring solutions, we obtain a closed form solution for computing theαk (see Ap-
pendix). The resulting estimator is a weighted sum of them single Fisher scoring estimates
x̂MM

t =
∑m

k=1 αkx̂FS,k
t . The mixture of modes algorithm can be found in the Appendix.

For the learning task samples of the mixture of Gaussians are based on samples of each of
them single Gaussians which are obtained the same way as in subsection 3.2.

4 EXPERIMENTAL RESULTS

In the £rst experiment we want to test how well the different approaches can approximate
the posterior distribution of a nonlinear time series (inference). As a time-series model we
chose

f(xt−1, ut) = 0.5xt−1 + 25
xt−1

1 + x2
t−1

+ 8 cos
(
1.2(t − 1)

)
, g(xt) =

1
20

x2
t , (9)

the covariancesQt = 10, Vt = 1 and initial conditionsa0 = 0 andQ0 = 5 which is
considered a hard inference problem (Kitagawa, 1987). At each time step we calculate the
expected value of the hidden variablesxt, t = 1, ..., 400 based on a set of measurements
Y400 = {y1, ..., y400} (which is the optimal estimator in the mean squared sense) and based
on the different approximations presented in the last section. Note that for the single mode
approximation,xmode

t is the best estimate ofxt based on the approximating Gaussian. For
the mixture of modes approach, the best estimate is

∑m
k=1 αkx̂FS,k

t wherex̂FS,k
t is the mode

of thek-th Gaussian in the dimension ofxt. Figure 2 (left) shows the mean squared error
(MSE) of the smoothed estimates using the different approaches. The Fisher scoring (FS)
algorithm is signi£cantly better than the EKFS approach. In this experiment, the mixture of
modes (MM) approach is signi£cantly better than both the EKFS and Fisher scoring. The
reason is that the posterior probability is multimodal as shown in Figure 1.

In the second experiment we used the same time-series model and trained a neural net-
work to approximatefw(.) where all covariances were assumed to be £xed and known.
For adaptation we used the learning rules of section 3 using the various approximations
to the posterior distribution ofXT . Figure 2 (right) shows the results. The experiments
show that truly sampling from the approximating Gaussians gives signi£cantly better re-
sults than using the expected value as a point estimate. Furthermore, using the mixture
of modes approach in conjunction with sampling gave signi£cantly better results than the
approximations using a single Gaussian. When used for inference, the network trained us-
ing the mixture of modes approach was not signi£cantly worse than the true model (5%
signi£cance level, based on 20 experiments).

5 CONCLUSIONS

In our paper we presented novel approaches for inference and learning in NSSMs. The
application of Fisher scoring and the mixture of modes approach to nonlinear models as
presented in our paper is new. Also the idea of sampling from an approximation to the
posterior distribution of the hidden variables is presented here for the £rst time. Our results
indicate that the Fisher scoring algorithm gives better estimates of the expected value of
the hidden variable than the EKFS based approximations. Note that the Fisher scoring al-
gorithm is more complex in requiring typically 5 forward-backward passes instead of only
one forward-backward pass for the EKFS approach. Our experiments also showed that if
the posterior distribution is multimodal, the mixture of modes approach gives signi£cantly
better estimates if compared to the approaches based on a single Gaussian approximation.
Our learning experiments show that it is important to sample from the approximate dis-
tributions and that it is not suf£cient to simply substitute point estimates. Based on the
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Figure 1: Approximations to the posterior distributionp(xt|Y400, U400) for t = 294 andt =
295. The continuous line shows the posterior distribution based on Gibbs sampling using
1000 samples and can be considered a close approximation to the true posterior. The EKFS
approximation (dotted) does not converge to a mode. The Fisher scoring solution (dash-
dotted) £nds the largest mode. The mixture of modes approach with 50 modes (dashed)
correctly £nds the two modes.

sampling approach it is also possible to estimate hyperparameters (e.g. the covariance ma-
trices) which was not done in this paper. The approaches can also be extended towards
online learning and estimation in various ways (e.g. missing data problems).

Appendix: Mixture of Modes Algorithm

Themixture of modesestimatêxMM
t is derived as a weighted sum ofk = 1, . . . , m individual Fisher

scoring (mode) estimateŝxFS,k
t . Form = 1 we obtain theFisher scoringalgorithm of subsection 3.3.

First, one performs the set of forward recursions(t = 1, . . . , T ) for each single mode estimatork.

Σk
t|t−1 = Ft(x̂

FS,k
t−1 )Σk

t−1|t−1F
>
t (x̂FS,k

t−1 ) + Qt (10)

Bk
t = Σk

t−1|t−1F
>
t (x̂FS,k

t−1 )(Σk
t|t−1)

−1 (11)

Σk
t|t =

(
(Σk

t|t−1)
−1 + Gt(x̂

FS,k
t )V −1

t G>
t (x̂FS,k

t )
)−1

(12)

γk
t = st(x̂

FS,k
t ) + Bk

t

>
γk

t−1 (13)

with the initializationΣk
0|0 = Q0, γ0 = s0(x̂

FS,k
0 ). Then, one performs the set of backward smooth-

ing recursions(t = T, . . . , 1)

(Dk
t−1)

−1 = Σk
t−1|t−1 − Bk

t Σk
t|t−1B

k
t

>
(14)

Σk
t−1 = (Dk

t−1)
−1 + Bk

t Σk
t Bk

t

>
(15)

δk
t−1 = (Dk

t−1)
−1γk

t−1 + Bk
t δk

t (16)

with Ft(z) =
∂fw(xt−1,ut)

∂xt−1
|xt−1=z, Gt(z) = ∂gv(xt,ut)

∂xt
|xt=z, st(z) = ∂ log p(XT ,YT |UT )

∂xt
|xt=z and

initialization δk
T = Σk

T γk
T . Thek individual mode estimateŝxFS,k

t are obtained by iterative applica-
tion of the update ruleXFS,k

T := η δk + XFS,k
T with stepsizeη whereXFS,k

T = {x̂FS,k
0 , . . . , x̂FS,k

T }
andδk = {δk

0 , . . . , δk
T }. After convergence we obtain the mixture of modes estimate as the weighted

sumx̂MM
t =

∑m

k=1
αkx̂FS,k

t with weighting coef£cientsαk := αk
0 whereαk

t (t = T − 1, . . . , 0)

are computed recursively starting with a uniform priorαk
T = 1

m
(N (x|µ, Σ) stands for a Gaussian

with centerµ and covarianceΣ evaluated atx):

αk
t =

αk
t+1N (yt|gv(x̂FS,k

t , ut), Ω
k
t )∑m

j=1
αj

t+1N (yt|gv(x̂FS,j
t , ut), Ω

j
t)

(17)

Ωk
t = Gt(x̂

FS,k
t )Σk

t Gt(x̂
FS,k
t )> + Vt (18)
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Figure 2: Left (inference): The heights of the bars indicate the mean squared error between
the truext (which we know since we simulated the system) and the estimates using the
various approximations. The error bars show the standard deviation derived from 20 rep-
etitions of the experiment. Based on the pairedt-test, Fisher scoring is signi£cantly better
than the EKFS and all mixture of modes approaches are signi£cantly better than both EKFS
and Fisher scoring based on a 1% rejection region. The mixture of modes approximation
with 50 modes (MM 50) is signi£cantly better than the approximation using 20 modes. The
improvement of the approximation using 20 modes (MM 20) is not signi£cantly better than
the approximation with 10 (MM 10) modes using a 5% rejection region.
Right (learning): The heights of the bars indicate the mean squared error between the true
fw(.) (which is known) and the approximations using a multi-layer perceptron with 3 hid-
den units andT = 200. Shown are results using the EKFS approximation, (left) the Fisher
scoring approximation (center) and the mixture of modes approximation (right). There are
two bars for each experiment: The left bars show results where the expected value ofxt

calculated using the approximating Gaussians are used as (single) samples for the general-
ized M-step – in other words – we use a point estimate forxt. Using the point estimates, the
results of all three approximations are not signi£cantly different based on a 5% signi£cance
level. The right bars shows the result whereS = 50 samples are generated for approxi-
mating the gradient using the Gaussian approximations. The results using sampling are all
signi£cantly better than the results using point estimates (1% signi£cance level). The sam-
pling approach using the mixture of modes approximation is signi£cantly better than the
other two sampling-based approaches (1% signi£cance level). If compared to the inference
results of the experiments shown on the left, we achieved a mean squared error of 6.02 for
the mixture of modes approach with 10 modes which is not signi£cantly worse than the
results the with the true model of 5.87 (5% signi£cance level).
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