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Abstract

We replace the commonly used Gaussian noise model in nonlinear
regression by a more ¤exible noise model based on the Student-t-
distribution. The degrees of freedom of thet-distribution can be chosen
such that as special cases either the Gaussian distribution or the Cauchy
distribution are realized. The latter is commonly used in robust regres-
sion. Since thet-distribution can be interpreted as being an in£nite mix-
ture of Gaussians, parameters and hyperparameters such as the degrees
of freedom of thet-distribution can be learned from the data based on an
EM-learning algorithm. We show that modeling using thet-distribution
leads to improved predictors on real world data sets. In particular, if
outliers are present, thet-distribution is superior to the Gaussian noise
model. In effect, by adapting the degrees of freedom, the system can
“learn” to distinguish between outliers and non-outliers. Especially for
online learning tasks, one is interested in avoiding inappropriate weight
changes due to measurement outliers to maintain stable online learn-
ing capability. We show experimentally that using thet-distribution as
a noise model leads to stable online learning algorithms and outperforms
state-of-the art online learning methods like the extended Kalman £lter
algorithm.

1 INTRODUCTION

A commonly used assumption in nonlinear regression is that targets are disturbed by inde-
pendent additive Gaussian noise. Although one can derive the Gaussian noise assumption
based on a maximum entropy approach, the main reason for this assumption is practica-
bility: under the Gaussian noise assumption the maximum likelihood parameter estimate
can simply be found by minimization of the squared error. Despite its common use it is far
from clear that the Gaussian noise assumption is a good choice for many practical prob-
lems. A reasonable approach therefore would be a noise distribution which contains the
Gaussian as a special case but which has a tunable parameter that allows for more ¤exible
distributions. In this paper we use the Student-t-distribution as a noise model which con-
tains two free parameters – the degrees of freedomν and a width parameterσ2. A nice
feature of thet-distribution is that if the degrees of freedomν approach in£nity, we recover
the Gaussian noise model. Ifν < ∞ we obtain distributions which are more heavy-tailed
than the Gaussian distribution including the Cauchy noise model withν = 1. The latter
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is commonly used for robust regression. The £rst goal of this paper is to investigate if the
additional free parameters, e.g.ν, lead to better generalization performance for real world
data sets if compared to the Gaussian noise assumption withν = ∞. The most common
reason why researchers depart from the Gaussian noise assumption is the presence of out-
liers. Outliers are errors which occur with low probability and which are not generated by
the data-generation process that is subject to identi£cation. The general problem is that a
few (maybe even one) outliers of high leverage are suf£cient to throw the standard Gaus-
sian error estimators completely off-track (Rousseeuw & Leroy, 1987). In the second set of
experiments we therefore compare how the generalization performance is affected by out-
liers, both for the Gaussian noise assumption and for thet-distribution assumption. Dealing
with outliers is often of critical importance for online learning tasks. Online learning is of
great interest in many applications exhibiting non-stationary behavior like tracking, sig-
nal and image processing, or navigation and fault detection (see, for instance the NIPS*98
Sequential Learning Workshop). Here one is interested in avoiding inappropriate weight
chances due to measurement outliers to maintain stable online learning capability. Outliers
might result in highly ¤uctuating weights and possible even instability when estimating the
neural network weight vector online using a Gaussian error assumption. State-of-the art
online algorithms like the extended Kalman £lter, for instance, are known to be nonrobust
against such outliers (Meinhold & Singpurwalla, 1989) since they are based on a Gaussian
output error assumption.

The paper is organized as follows. In Section 2 we adopt a probabilistic view to outlier
detection by taking as a heavy-tailed observation error density the Student-t-distribution
which can be derived from an in£nite mixture of Gaussians approach. In our work we use
the multi-layer perceptron (MLP) as nonlinear model. In Section 3 we derive an EM algo-
rithm for estimating the MLP weight vector and the hyperparameters of¤ine. Employing
a state-space representation to model the MLP’s weight evolution in time we extend the
batch algorithm of Section 3 to the online learning case (Section 4). The application of the
computationally ef£cient Fisher scoring algorithm leads to posterior mode weight updates
and an online EM-type algorithm for approximate maximum likelihood (ML) estimation
of the hyperparameters. In in the last two sections (Section 5 and Section 6) we present
experiments and conclusions, respectively.

2 THE t-DENSITY AS A ROBUST ERROR DENSITY

We assume a nonlinear regression model where for thet-th data point the noisy target
yt ∈ IR is generated as

yt = g(xt;wt) + vt (1)

andxt ∈ IRk is a k-dimensional known input vector.g(.;wt) denotes a neural network
model characterized by weight vectorwt ∈ IRn, in our case a multi-layer perceptron
(MLP). In the of¤ine case the weight vectorwt is assumed to be a £xed unknown constant
vector, i.e.wt ≡ w. Furthermore, we assume thatvt is uncorrelated noise with density
pvt

(.). In the of¤ine case, we assumepvt
(.) to be independent oft, i.e.pvt

(.) ≡ pv(.). In
the following we assume thatpv(.) is a Student-t-density withν degrees of freedom with

pv(z) = T (z|σ2, ν) =
Γ
(

ν+1
2 )

σ
√

πν Γ(ν
2 )

(
1 +

z2

σ2ν

)− ν+1
2

, ν, σ > 0. (2)

It is immediately apparent that forν = 1 we recover the heavy-tailed Cauchy density. What
is not so obvious is that forν → ∞ we obtain a Gaussian density. For the derivation of
the EM-learning rules in the next section it is important to note that thet-denstiy can be
thought of as being an in£nite mixture of Gaussians of the form

T (z|σ2, ν) =
∫

N (z|0, σ2/u) p(u) du (3)
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Figure 1:Left : ψ(.)-functions for the Gaussian density (dashed) andt-densities withν =
1, 4, 15 degrees of freedom.Right: MSE on Boston Housing data test set for additive
outliers. The dashed line shows results using a Gaussian error measure and the continuous
line shows the results using the Student-t-distribution as error measure.

whereT (z|σ2, ν) is the Student-t-density withν degrees of freedom and width parameter
σ2, N (z|0, σ2/u) is a Gaussian density with center0 and varianceσ2/u andu ∼ χ2

ν/ν
whereχ2

ν is a Chi-square distribution withν degrees of freedom evaluated atu > 0.

To compare different noise models it is useful to evaluate the “ψ-function” de£ned as (Hu-
ber, 1964)

ψ(z) = −∂ log pv(z)/∂z (4)

i.e. the negative score-function of the noise density. In the case of i.i.d. samples theψ-
function re¤ects the in¤uence of a single measurement on the resulting estimator. Assum-
ing Gaussian measurement errorspv(z) = N (z|0, σ2) we deriveψ(z) = z/σ2 which
means that for|z| → ∞ a single outlierz can have an in£nite leverage on the estimator. In
contrast, for constructing robust estimators West (1981) states that large outliers should not
haveanyin¤uence on the estimator, i.e.ψ(z) → 0 for |z| → ∞. Figure 1 (left) showsψ(z)
for differentν for the Student-t-distribution. It can be seen that the degrees of freedomν
determine how much weight outliers obtain in in¤uencing the regression. In particular, for
£niteν, the in¤uence of outliers with|z| → ∞ approaches zero.

3 ROBUST OFFLINE REGRESSION

As stated in Equation (3), thet-density can be thought of as being generated as an in£nite
mixture of Gaussians. Maximum likelihood adaptation of parameters and hyperparameters
can therefore be performed using an EM algorithm (Langeet al., 1989). For thet-th sample,
a complete data point would consist of the triple(xt, yt, ut) of which only the £rst two are
known andut is missing.

In theE-stepwe estimate for every data point indexed byt

αt = (νold + 1)/(νold + δt) (5)

whereαt = E[ut|yt, xt] is the expected value of the unknownut given the available data

(xt, yt) and whereδt =
(
yt − g(xt;wold)

)2
/σ2,old .

In theM-stepthe weightsw and the hyperparametersσ2 andν are optimized using

wnew = arg min
w

{ T∑
t=1

αt

(
yt − g(xt;w)

)2
}

(6)
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(7)

νnew = arg max
ν

{Tν

2
log

ν

2
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ν

2
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ν

2
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T∑
t=1

βt −
ν

2

T∑
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αt

}
(8)

where

βt = DG
(νold + 1

2
)
− log

(1
2
(νold + δt)

)
(9)

with the Digamma functionDG(z) = ∂Γ(z)/∂z. Note that the M-step forν is a one-
dimensional nonlinear optimization problem. Also note that the M-steps for the weights in
the MLP reduce to a weighted least squares regression problem in which outliers tend to
be weighted down. The exception of course is the Gaussian case withν → ∞ in which all
terms obtain equal weight.

4 ROBUST ONLINE REGRESSION

For robust online regression, we assume that the model Equation (1) is still valid but that
w can change over time, i.e.w ≡ wt. In particular we assume thatwt follows a £rst order
random walk with normally distributed increments, i.e.

wt|wt−1 ∼ N (wt−1, Qt) (10)

and wherew0 is normally distributed with centera0 and covarianceQ0. Clearly, due to
the nonlinear nature ofg and due to the fact that the noise process is non-Gaussian, a fully
Bayesian online algorithm — which for the linear case with Gaussian noise can be realized
using the Kalman £lter — is clearly infeasible.

On the other hand, if we consider dataD = {xt, yt}T
t=1, the negative log-posterior

− log p(WT |D) of the parameter sequenceWT = (w>
0 , . . . , w>

T )> is up to a normaliz-
ing constant

− log p(WT |D) ∝ −
T∑

t=1

log pv

(
yt − g(xt;wt)

)
+

1
2
(w0 − a0)>Q−1

0 (w0 − a0)

+
1
2

T∑
t=1

(wt − wt−1)>Q−1
t (wt − wt−1) (11)

and can be used as the appropriate cost function to derive theposterior mode estimate
WMAP

T for the weight sequence. The two differences to the presentation in the last section
are that £rst,wt is allowed to change over time and that second, penalty terms, stemming
from the prior and the transition density, are included. The penalty terms are penalizing
roughness of the weight sequence leading to smooth weight estimates.

A suitable way to determine a stationary point of− log p(WT |D), the posterior mode es-
timate ofWT , is to applyFisher scoring. With the current estimateW old

T we get a better
estimateW new

T = W old
T +ηγ for the unknown weight sequenceWT whereγ is the solution

of
S(W old

T )γ = s(W old
T ) (12)

with the negative score functions(WT ) = −∂ log p(WT |D)/∂WT and the expected infor-
mation matrixS(WT ) = E[∂2 log p(WT |D)/∂WT ∂W>

T ]. By applying the ideas given in
Fahrmeir & Kaufmann (1991) to robust neural network regression it turns out that solving
(12), i.e. to compute the inverse of the expected information matrix, can be performed by



Cholesky decomposition in one forward and backward pass through the set of dataD. Note
that the expected information matrix is a positive de£nite block-tridiagonal matrix. The
forward-backward steps have to be iterated to obtain the posterior mode estimateWMAP

T
for WT .

Foronline posterior mode smoothing, it is of interest to smooth backwards after each £lter
stept. If Fisher scoring steps are applied sequentially fort = 1, 2, . . ., then the posterior
mode smoother at time-stept − 1, WMAP

t−1 = (w>
0|t−1, . . . , w

>
t−1|t−1)

> together with the
step-one predictorwt|t−1 = wt−1|t−1 is a reasonable starting value for obtaining the pos-
terior mode smootherWMAP

t at timet. One can reduce the computational load by limiting
the backward pass to a sliding time window, e.g. the lastτt time steps, which is reasonable
in non-stationary environments for online purposes. Furthermore, if we use the underly-
ing assumption that in most cases a new measurementyt should not change estimates too
drastically then asingleFisher scoring step often suf£ces to obtain the new posterior mode
estimate at timet. The resulting single Fisher scoring step algorithm with lookback param-
eterτt has in fact just one additional line of code involving simple matrix manipulations
compared to online Kalman smoothing and is given here in pseudo-code. Details about the
algorithm and a full description can be found in Briegel & Tresp (1999).

Online single Fisher scoring step algorithm (pseudo-code)

for t = 1, 2, . . . repeat the following four steps:

• Evaluate the step-one predictorwt|t−1.

• Perform the forward recursions fors = t − τt, . . . , t.

• New data point(xt, yt) arrives: evaluate the corrector stepwt|t.

• Perform the backward smoothing recursionsws−1|t for s = t, . . . , t − τt.

For the adaptation of the parameters in thet-distribution, we apply results from Fahrmeir
& K ünstler (1999) to our nonlinear assumptions and use an online EM-type algorithm for
approximate maximum likelihood estimation of the hyperparametersνt andσ2

t . We assume
the scale factorsσ2

t and the degrees of freedomνt being £xed quantities in a certain time
window of lengthτ̃t, e.g.σ2

t = σ2, νt = ν, t ∈ {t − τ̃t, t}. For deriving online EM update
equations we treat the weight sequencewt together with the mixing variablesut as missing.
By linear Taylor series expansion ofg(.;ws) about the Fisher scoring solutionsws|t and by
approximating posterior expectationsE[ws|D] with posterior modesws|t, s ∈ {t − τ̃t, t}
and posterior covariancescov[ws|D] with curvaturesΣs|t = E[(ws−ws|t)(ws−ws|t)>|D]
in the E-step, a somewhat lengthy derivation results in approximate maximum likelihood
update rules forσ2 andν similar to those given in Section 3. Details about the online
EM-type algorithm can be found in Briegel & Tresp (1999).

5 EXPERIMENTS
1. Experiment: Real World Data Sets. In the £rst experiment we tested if the Student-
t-distribution is a useful error measure for real-world data sets. In training, the Student-
t-distribution was used and both, the degrees of freedomν and the width parameterσ2

were adapted using the EM update rules from Section 3. Each experiment was repeated
50 times with different divisions into training and test data. As a comparison we trained
the neural networks to minimize the squared error cost function (including an optimized
weight decay term). On the test data set we evaluated the performance using a squared
error cost function. Table 1 provides some experimental parameters and gives the test
set performance based on the 50 repetitions of the experiments. The additional explained
variance is de£ned as [in percent]100 × (1 − MSPET /MSPEN ) whereMSPET is the
mean squared prediction error using thet-distribution andMSPEN is the mean squared
prediction error using the Gaussian error measure. Furthermore we supply the standard



Table 1: Experimental parameters and test set performance on real world data sets.

Data Set # Inputs/Hidden Training Test Add.Exp.Var. [%] Std. [%]
Boston Housing (13/6) 400 106 4.2 0.93
Sunspot (12/7) 221 47 5.3 0.67
Fraser River (12/7) 600 334 5.4 0.75

error based on the 50 experiments. In all three experiments the networks optimized with
the t-distribution as noise model were 4-5% better than the networks optimized using the
Gaussian as noise model and in all experiments the improvements were signi£cant based on
the pairedt-test with a signi£cance level of 1%. The results show clearly that the additional
free parameter in the Student-t-distribution does not lead to over£tting but is used in a
sensible way by the system to value down the in¤uence of extreme target values. Figure 2
shows the normal probability plots. Clearly visible is the derivation from the Gaussian
distribution for extreme target values. We also like to remark that we did not apply any
preselection process in choosing the particular data sets which indicates that non-Gaussian
noise seems to be the rule rather than the exception for real world data sets.
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Figure 2: Normal probability plots of the three training data sets after learning with the
Gaussian error measure. The dashed line show the expected normal probabilities. The
plots show clearly that the residuals follow a more heavy-tailed distribution than the normal
distribution.

2. Experiment: Outliers. In the second experiment we wanted to test how our approach
deals with outliers which are arti£cially added to the data set. We started with the Boston
housing data set and divided it into training and test data. We then randomly selected a
subset of the training data set (between 0.5% and 25%) and added to the targets a uniformly
generated real number in the interval[−5, 5]. Figure 1 (right) shows the mean squared error
on the test set for different percentages of added outliers. The error bars are derived from
20 repetitions of the experiment with different divisions into training and test set. It is
apparent that the approach using thet-distribution is consistently better than the network
which was trained based on a Gaussian noise assumption.

3. Experiment: Online Learning. In the third experiment we examined the use of the
t-distribution in online learning. Data were generated from a nonlinear mapy = 0.6x2 +
b sin(6x) − 1 whereb = −0.75,−0.4,−0.1, 0.25 for the £rst, second, third and fourth
set of 150 data points, respectively. Gaussian noise with variance 0.2 was added and for
training, a MLP with 4 hidden units was used. In the £rst experiment we compare the
performance of the EKF algorithm with our single Fisher scoring step algorithm. Figure 3
(left) shows that our algorithm converges faster to the correct map and also handles the
transition in the model (parameterb) much better than the EKF. In the second experiment
with a probability of 10% outliers uniformly drawn from the interval[−5, 5] were added to
the targets. Figure 3 (middle) shows that the single Fisher scoring step algorithm using the



t-distribution is consistently better than the same algorithm using a Gaussian noise model
and the EKF. The two plots on the right in Figure 3 compare the nonlinear maps learned
after 150 and 600 time steps, respectively.
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Figure 3: Left & Middle : Online MSE over each of the 4 sets of training data. On the
left we compare extended Kalman £ltering (EKF) (dashed) with the single Fisher scoring
step algorithm withτt = 10 (GFS-10) (continuous) for additive Gaussian noise. The
second £gure shows EKF (dashed-dotted), Fisher scoring with Gaussian error noise (GFS-
10) (dashed) andt-distributed error noise (TFS-10) (continuous), respectively for data with
additive outliers.Right: True map (continuous), EKF learned map (dashed-dotted) and
TFS-10 map (dashed) afterT = 150 andT = 600 (data sets with additive outliers).

6 CONCLUSIONS

We have introduced the Student-t-distribution to replace the standard Gaussian noise as-
sumption in nonlinear regression. Learning is based on an EM algorithm which estimates
both the scaling parameters and the degrees of freedom of thet-distribution. Our results
show that using the Student-t-distribution as noise model leads to 4-5% better test errors
than using the Gaussian noise assumption on real world data set. This result seems to in-
dicate that non-Gaussian noise is the rule rather than the exception and that extreme target
values should in general be weighted down. Dealing with outliers is particularly important
for online tasks in which outliers can lead to instability in the adaptation process. We in-
troduced a new online learning algorithm using thet-distribution which leads to better and
more stable results if compared to the extended Kalman £lter.
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