
Predicting Clinical Events by Combining Static and
Dynamic Information using Recurrent Neural

Networks
Cristóbal Esteban
Siemens AG and

Ludwig Maximilian
University of Munich

Munich, Germany

Oliver Staeck
Charité

University Hospital of Berlin
Berlin, Germany

Stephan Baier
Siemens AG and

Ludwig Maximilian
University of Munich

Munich, Germany

Yinchong Yang
Siemens AG and

Ludwig Maximilian
University of Munich

Munich, Germany

Volker Tresp
Siemens AG and

Ludwig Maximilian
University of Munich

Munich, Germany

Abstract—In clinical data sets we often find static information
(e.g. patient gender, blood type, etc.) combined with sequences
of data that are recorded during multiple hospital visits (e.g.
medications prescribed, tests performed, etc.). Recurrent Neural
Networks (RNNs) have proven to be very successful for modelling
sequences of data in many areas of Machine Learning. In
this work we present an approach based on RNNs, specifically
designed for the clinical domain, that combines static and
dynamic information in order to predict future events. We work
with a database collected in the Charité Hospital in Berlin
that contains complete information concerning patients that
underwent a kidney transplantation. After the transplantation
three main endpoints can occur: rejection of the kidney, loss
of the kidney and death of the patient. Our goal is to predict,
based on information recorded in the Electronic Health Record
of each patient, whether any of those endpoints will occur within
the next six or twelve months after each visit to the clinic. We
compared different types of RNNs that we developed for this
work, with a model based on a Feedforward Neural Network
and a Logistic Regression model. We found that the RNN that
we developed based on Gated Recurrent Units provides the best
performance for this task. We also used the same models for a
second task, i.e., next event prediction, and found that here the
model based on a Feedforward Neural Network outperformed
the other models. Our hypothesis is that long-term dependencies
are not as relevant in this task.

I. INTRODUCTION

As a result of the recent trend towards digitization, a grow-
ing amount of information is recorded in clinics and hospitals
and therefore the human expert is increasingly overwhelmed.
This problem is one reason why Machine Learning (ML) is
gaining attention in the medical domain, since ML algorithms
can make use of all of the available information to predict the
most likely future events that will occur to each individual
patient. Physicians can take advantage of these predictions
in their decisions which might lead to improved outcomes.
ML can also be the basis for a decision support system that
provides personalized recommendations for each individual
patient (e.g., which is the most suitable medication, which
procedure should be applied next, etc.).

It is also worth noticing that the medical data sets are
becoming both longer (i.e. we have more samples collected

through time) and wider (i.e. we store more variables). There-
fore we need to use Machine Learning algorithms capable of
capturing complex relationships among a big number of time-
evolving variables.

A class of algorithms that can model very complex relation-
ships are Neural Networks, which have proven to be successful
in other areas of Machine Learning [1]. Particularly, there is
a notable parallelism among the prediction of clinical events
and the field of Language Modelling, where Deep Learning,
a class of Neural Networks with multiple hidden layers, has
also proven to be very successful. One could imagine that each
word of a text represents an event. Therefore a text would be
a stream of events and the task of Language Modelling would
be to predict the next event in the stream. For this reason,
we can get inspired by Language Modelling to create models
that predict clinical events. However, the medical domain
has a set of characteristics that make it an almost unique
scenario: multiple events can occur at the same time, there
are multiple sequences (i.e. multiple patients), each sequence
has an associated set of static variables and both inputs and
outputs can be a combination of Boolean variables and real
numbers. For these reasons we need to develop approaches
specifically designed for the medical use case.

For our work we use a large data set collected from patients
that suffered from kidney failure. The data was collected in the
Charité hospital in Berlin and it is the largest data collection of
its kind in Europe. Once the kidney has failed, patients face a
lifelong treatment and periodic visits to the clinic for the rest of
their lives. Until the hospital finds a new kidney for the patient,
he or she must attend to the clinic multiple times per week in
order to receive dialysis, which is a treatment that replaces
many of the functions of the kidney. After the transplant
has been performed, the patient receives immunosuppressive
therapy to avoid the rejection of the transplanted kidney. The
patient must be periodically controlled to check the status of
the kidney, adjust the treatment and take care of associated
diseases, such as those that arise due to the immunosuppressive
therapy. This data set started being recorded more than 30
years ago and it is composed of more than 4000 patients that



underwent a renal transplantation or are waiting for one. The
database has been the basis for many studies in the past [2],
[3], [4], [5].

There are a set of endpoints that can occur after a trans-
plantation and it would be very valuable for the physicians to
be able to know beforehand when one of these is going to
happen. Specifically we will predict whether the patient will
die, the transplant will be rejected, or the transplant will be
lost. For each visit that a patient makes to the clinic, we will
anticipate which of those three events (if any) will occur both
within 6 months and 12 months after the visit.

In order to accomplish the prediction of these endpoints, we
developed a new model based on Recurrent Neural Networks
(RNNs). The main advantage of our model is its ability
to combine static and dynamic information from patients.
This capability is very important for medical applications,
since most of the clinical data sets present some background
information about the patients (e.g. gender, blood type, main
disease, etc.) combined with dynamic information that is
recorded during the multiple visits to the clinic (e.g. results of
the laboratory tests, prescribed medications, etc.).

The paper is organized as follows. In the next section we
discuss alternative approaches for endpoint predictions. One
example is a Feedforward Neural Network that is also able to
deal with dynamic and static information. This model will be
used as our main benchmark. In Section III we describe details
of the nephrology use case and explain why anticipating these
endpoints could be of great value for physicians. Section IV
introduces the proposed models for this work, starting with a
brief overview on RNNs followed by the specific details of
our work. In Section V we explain the experimental set ups
and present our results. Section VI contains our conclusions
and an outlook.

II. RELATED WORK

Regarding the task of predicting clinical events, Esteban
et al. [6] introduced the Temporal Latent Embeddings model
which is based on a Feedforward Neural Network. This
model outperforms its baselines for the task of predicting
which events will be observed next given the previous events
recorded (i.e. the goal was to predict which laboratory analyses
and medication prescriptions will be observed in the next visit
for each patient).

The architecture of this model can be seen in Figure 1. It
takes two types of inputs. On the bottom left corner of the
picture we can find the input vector that contains the static
information of the patients and an aggregation of their med-
ical histories. Therefore, this vector contains the background
information of the patient. The rest of the input vectors that
we can see in Figure 1 form a set of n vectors that contain
the events that occurred in the n steps previous to the one we
want to predict.

Each of the input vectors is fed into a representation layer.
The representation layer compresses the input vectors into
their latent representations, which are vectors composed of
real numbers. Then, the n+1 latent representations are stacked

together horizontally and the resulting vector is used as the
input of a Feedforward Neural Network.

Overall, the Temporal Latent Embeddings resembles an n-
th order Markov model, and due to its architecture, it requires
to explicitly define the number of time steps in the past that
we want to consider in order to predict the next step. In some
scenarios, this constraint can actually be an advantage since
many recent papers have shown how attention mechanisms
do actually improve the performance of the Neural Networks
[8] [9]. The Temporal Latent Embeddings model puts all its
attention on the last n samples and therefore it provides an
advantage over RNNs for data sets where the events that we
want to predict are dependent just on the n previous events.
However, in order to capture long term dependencies on the
data with this model, we have to aggregate the whole history
of each patient in one vector (e.g. computing the mean values
of each laboratory measurement), and therefore many long-
term dependencies can be lost in this aggregation step (e.g. a
very high value in one measurement followed by a very low
value).

In recent work, Choi et al. [10] used an RNN with Gated
Recurrent Units (GRUs) combined with skip-gram vectors
[11] in order to predict diagnosis, medication prescription and
procedures. However in this work they follow a standard RNN
architecture that takes sequential information as input, whereas
the static information of the patients was not integrated into the
Neural Network. However, due to its nature, medical data will
always contain both static and dynamic features, and therefore
it is fundamental to develop algorithms that can combine and
exploit both types of data.

Outside of the medical domain, there are multiple examples
where RNNs have been successfully applied to sequential data
sets in order to predict future events. For example, in Natural
Language Processing RNNs are commonly used to predict the
next word in a text or even full sentences [12] [13]. However
to the best of our knowledge none of them includes both
sequential and static information, which is the typical setting
in sequences of clinical data.

III. KIDNEY TRANSPLANTATION ENDPOINTS

Chronic kidney disease is a worldwide health burden with
increasing prevalence and incidence. It affects multiple organ
systems and may result in end-stage renal disease. The grow-
ing number of patients with end-stage renal disease requiring
dialysis or transplantation is a major challenge for health-
care systems around the world [14]. For most patients, kidney
transplantation is the treatment of choice offering lowest
morbidity, significant survival benefit, lowest costs and highest
quality of life. The main goals after transplantation are the
reduction of complications and the increase of long-term graft
and patient survival. However, kidney transplant recipients are
at high risk of severe complications like rejections, infections,
drug toxicity, malignancies and cardiovascular diseases. The
majority of patients have to take 5-10 different medications
every day during their entire life. Due to complexities of post-
transplant management, kidney transplant recipients should



Fig. 1. Temporal Latent Embeddings Model.

remain in life-long specialized care. The medical records of
kidney transplant recipients mostly cover a very long history
of disease (years to decades) and include a vast number
of diagnoses, symptoms, results, medications and laboratory
values.

Due to this complexity of medical data, decision making
is complex and difficult in the clinical practice of kidney
transplantation. Considering the load of treating 20-40 patients
per day, it is generally not possible for the medical practitioner
to review all available medical information during every bed
side visit or outpatient consultation. Early prediction of clinical
events on the base of current data, as proposed in our proposed
solution, can lead to informed decision making on how to best
choose future therapy and identify current problems. Thus our
proposed solution can help to avoid complications and improve
survival of the patient and graft, reduce morbidity and improve
health related quality of life.

Assessing the risk of graft failure or death in renal transplant
recipients can be crucial for the individual patient manage-
ment by detecting patients that need intensified medical care.
Integrating a computerized tool to predict relevant end points
(deteriorating of the graft function, infections, rejections, graft
loss, death) on the base of all available medical data may be
of great benefit in the clinical routine and provide medical
professionals with significant decision support.

Detecting a higher risk of graft failure or death 6-12 months
in advance may timely allow identifying toxicities, side effects,
interactions of medications, infections, relevant comorbidities
and other complications. Early detection permits timely in-
tervention with a chance of improved outcome. Furthermore,
predicting future rejections during consultations enables the

medical practitioner to change immunosuppressive medica-
tions and thus prevent deterioration of the graft function.
In summary, computerized prediction of relevant events has
the potential to significantly change daily medical practice in
patient care.

There are three major endpoints that can happen after a
kidney transplantation: rejection of the kidney, graft loss and
death of the patient. A rejection means that the body is
rejecting the kidney. In such situation, physicians try to fight
the rejection with medications and if they are not able to stop
the rejection, the kidney will eventually stop working.

Our goal with this work is to predict which of these
endpoints (if any) will occur to each patient 6 months and
12 months after each visit to the clinic, given the medical
history of the patient. Our predictions are based on information
from the patient’s medical history, the sequence of medications
prescribed for the patient, the sequence of laboratory tests
performed together with their results, and static information, as
for example age, gender, blood type, weight, primary disease,
etc. Therefore each patient is represented as a sequence of
events (medications prescribed and laboratory tests performed)
combined with static data. We will use both static and dynamic
data to predict the explained endpoints.

IV. RECURRENT NEURAL NETWORKS FOR CLINICAL
EVENT PREDICTION

RNNs are a type of Neural Network where the hidden
state of one time step is computed by combining the current
input with the hidden state of the previous time step. In this
way, RNNs can learn to remember events from the past that



are relevant to predict future outcomes. Figure 2 shows the
architecture of an RNN.

An advantage of RNNs is that the memory is essentially
unlimited, whereas for Feedforward Neural Networks the time
window relevant for prediction needs to be specified: RNNs
can in principle learn to remember any event (or combination
of events) that occur in the life of the patient that is useful
to predict future events. This feature can be very valuable
when our clinical data set presents such kind of long term
dependencies.

Another advantage of using RNNs for learning with se-
quences is that, given a new patient, we can start predicting
future events for such patient right after his or her first visit
to the clinic. On the other hand, if we model our data with
a Feedforward Neural Network and we have decided to use
the n previous visits to predict future events, we will have to
wait until we have accumulated at least n visits for a patient
to start predicting his or her future events. In some scenarios,
this ability of making predictions using a variable amount of
previous time steps can be a very useful feature.

More formally, the output of an RNN is computed as:

ŷt = σ (Woht ) (1)

where Wo is a matrix containing the parameters of the model,
ht is a vector containing the hidden state of the Neural
Network, σ is some differentiable function that is applied
element-wise (usually the logistic sigmoid function or the
hyperbolic tangent) and ŷt is a vector containing the predicted
output.

Given a sequence of input vectors x = (x1, x2, · · · , xT ), the
hidden state of an RNN is computed the following way:

ht = f (ht−1, xt ) . (2)

We will summarize the most common options for the f
function in the next sections.

A. Standard Recurrent Neural Network

The hidden state in RNNs is updated as:

ht = σ (W xt +Uht−1) (3)

where W and U are two matrices that contain the parameters
of the model.

In order to compute the value of the hidden state at time
t, we perform a linear combination of the hidden state of
the previous time step ht−1 together with the current input
to the network xt . In this way the Neural Network can learn
to remember specific events observed in the past by encoding
them in the hidden state.

As we mentioned earlier, one of our main interests for using
RNNs is to capture long-term dependencies. The ability to
remember events that occurred a long time ago can be specially
useful for some medical applications where events observed
at some point in the life of the patient can be very informative
about future events that will be observed.

However, it was observed by Bengio et al. [15], that it is not
possible for standard RNNs to capture long-term dependencies
from very far in the past due to the vanishing gradient problem.
The vanishing gradient problem means that, as we propagate
the error through the network to earlier time steps, the gradient
of such error with respect to the weights of the network
will exponentially decay with the depth of the network. This
happens because for each additional time step that we go into
the past, we multiply the gradient of the error by the derivative
of the sigmoid and a matrix composed of very small numbers.
The derivative of the sigmoid has a maximum value of 0.25.
Therefore, as after a few time steps, we have multiplied the
gradient multiple times by very small numbers and therefore
it tends to 0. Pascanu et al. recently published a thorough
study on the subject [16]. It has been empirically checked that
standard RNNs cannot remember events that occurred around
5-10 time steps into the past.

B. Long Short-Term Memory units

In order to alleviate the gradient vanishing problem, Hochre-
iter et al. [17] developed a gating mechanism that dictates
when and how the hidden state of an RNN has to be updated.

There are different versions with minor modifications re-
garding the gating mechanism in the long short-term memory
units (LSTM) units. We will use in here the ones defined by
Graves et al.[18].

it = σ (Wxi xt +Whiht−1 +Wcict−1 + bi) (4)
rt = σ (Wxr xt +Whr ht−1 +Wcrct−1 + br ) (5)
ct = rt � ct−1 + it � tanh (Wxc xt +Whcht−1 + bc) (6)
ot = σ (Wxoxt +Whoht−1 +Wcoct−1 + bo) (7)
ht = ot � tanh(ct ) (8)

where � is the element-wise product and i, r and o are the
input, forget and output gates, respectively. As it can be seen,
the gating mechanism regulates how the current input and the
previous hidden state must be combined to generate the new
hidden state.

The main differences between this implementation of the
LSTM units and the first one published by Hochreiter et al.,
is that the original implementation did not include forget gates
and the activation function was the sigmoid function instead
of tanh.

LSTM units have been successfully used many times before
[8] [9]. Indeed they have become the de facto standard for
RNN implementations. The only downside of LSTM units,
when compared with standard RNN updates, is the increase
in the number of network parameters, which makes them more
computationally expensive. However, their excellent prediction
performance makes them the preferred choice in most appli-
cations.

C. Gated Recurrent Units

Another gating mechanism, named Gated Recurrent Units
(GRUs), was introduced by Cho et al. [19] with the goal of



Fig. 2. Recurrent Neural Network.

making each recurrent unit to adaptively capture dependencies
of different time scales. We follow the equations as defined
by Chung et al. [20]:

rt = σ (Wr xt +Ur ht−1) (9)

h̃t = tanh (W xt +U (rt � ht−1)) (10)
zt = σ (Wz xt +Uzht−1) (11)

ht = (1 − zt )ht−1 + zt h̃t (12)

where z and r are the update and reset gates respectively.
As it can be seen, GRUs are less complex than LSTM units,

and experimentally in many cases perform better.
In [20], Chung et al. compare the performance provided by

standard RNNs, LSTM units and GRU units, using multiple
data sets. It was shown that GRU units outperform the other
models in most cases.

D. Combining RNNs with Static Data

It often happens that Electronic Health Records (EHRs)
contain both dynamic information (i.e. new data is recorded
every time a patient visits the clinic or hospital) and static
or slowly changing information (e.g. gender, blood type, age,
etc.).

Therefore, we modified the RNN architecture to include
static information of the patients, such as gender, blood type,
cause of the kidney failure, etc. The modified architecture is
depicted in Figure 3.

As it can be seen, we process the static information on
an independent Feedforward Neural Network whereas we
process the dynamic information with an RNN. Afterwards
we concatenate the hidden states of both networks and provide
this information to the output layer.

We feed our network with the latent representation of the
inputs, as it is often done in Natural Language Processing
[21] [13]. In this case we compute such latent representation
applying a linear transformation to the raw input.

More formally, we first compute the latent representation of
the input data as

x̃ei = Ax̃i (13)
xet,i = Bxt,i (14)

where x̃i is a vector containing the static information for
patient i being x̃ei its latent representation, and xt,i is a vector
containing the information recorded during the visit made by
patient i at time t, where xet,i is its latent representation.

Then we compute the hidden state of the static part of the
network as

h̃i = f̃ (x̃ei ) (15)

where we are currently using the input and hidden layers of a
Feedforward Neural Network as f̃ .

In order to compute the hidden state of the recurrent part
of the network we update:

ht,i = f (xet,i, ht−1,i) (16)

where f can be any of the update functions explained above
(standard RNN, LSTM or GRU).

Finally, we use both hidden states in order to predict our
target:

ŷt,i = g(h̃i, ht,i). (17)

In this work we concatenate h̃i and ht,i , and then the
function g is computed as

g = σ(Wo(h̃i, ht,i) + b). (18)

We derive a cost function based on the Bernoulli likelihood
function, also known as Binary Cross Entropy, which has the
form



Fig. 3. Recurrent Neural Network with static information. i stands for the index of the patient.

cost(A, B,W,U) =∑
t,i∈Tr

−yt,i log(ŷt,i) − (1 − yt,i) log(1 − ŷt,i) (19)

where Tr stands for the training data set, yt,i stands for the
true target data and ŷt,i stands for the predicted data.

It is worth mentioning that we tried other architectures for
combining static data with dynamic data using RNNs. For
example we experimented with the approach of using an RNN
to compute a latent representation of the whole history of
the patient, in order to use such representation together with
the latent representations of the last n visits as the inputs of
a Feedforward Neural Network. We thought it could be an
interesting approach since the network would put a higher
attention on the most recent visits and would still have access
to the full history of the patient. We also tried an attention
mechanism similar to the ones shown in [8] [9], which also
has the advantage of providing an interpretable model (i.e.
it provides information about why a prediction was made).
However none of these approaches was able to improve the
performance of the models presented in this article.

V. EXPERIMENTS

A. Data Pre-processing and Experimental Setup

We have three groups of variables in our data set: endpoints,
prescribed medications and laboratory results. Both endpoints
and prescribed medications are binary data. On the other hand,
the laboratory results are a set of real numbers.

Not every possible laboratory measurement is performed
each time a patient visits the clinic (e.g. some times a doctor
may order to measure calcium if it is suspected that the
patient might have low calcium, otherwise the doctor will
not order such measurement). In order to deal with such

missing data, we experimented with mean imputation and
median imputation. Also, we experimented with both scaling
and normalizing the data before inputting it to the Neural
Network.

It turned out that encoding the laboratory measurements
in a binary way by representing each of them as three
event types as in [6], i.e., LabValueHigh, LabValueNormal
and LabValueLow, provided a better predictive performance
than the approach of doing mean or median imputation and
normalizing or scaling the data. This improvement was around
5% for the area under the ROC curve score and 3% for
the area under the precision-recall curve score. In order to
encode the laboratory measurements into High, Normal and
Low values, we calculated the mean and standard deviation
for each of them. Then, measurements greater than the mean
plus the standard deviation were encoded as high, values below
the mean minus the standard deviation were encoded as low,
and values in between were encoded as normal. If a certain
measurement was not done, its corresponding three events are
all set to 0, which removes the need of imputing missing
data. We believe that this improved performance provided by
the discretization of the inputs, is due to the increase in the
number parameters of the model and due to the fact that with
this strategy we remove the need of doing data imputation,
which can add a significant noise to the data set.

The final aspect of the pre-processed data that we will use
as input for our models can be found in Figure 4, where
each row represents a visit to the clinic. The target data (i.e.
the data we want to predict) will be a matrix that contains
a row composed of 6 binary variables for each row on the
input matrix. This 6 binary variables specify which of the 3
endpoints (if any) occurred 6 and 12 months after each visit.
The possible endpoints are: kidney rejection, kidney loss and
death of the patient.



Fig. 4. Sample of pre-processed data that we use as input for our models. Each row represents a visit to the clinic.

Another option for performing this binary encoding would
be to somehow normalize the measured values using demo-
graphic data of each patient (e.g. gender, age, weight) or to
use normal and limit values according to the medical literature.
We will explore those options in future work.

In this article we consider events from the data set that oc-
curred on the year 2005 and onwards due to the improvement
of the data quality from that year on. After cleaning the data
the total number of patients is 2061, which in total have made
193111 visits to the clinic. The density of end-points (target
matrix) is 7.3%, and 38.4% of the patients have suffered at
least one end-point event.

The dynamic information that is generated on each visit
to the clinic is composed of 1061 medications that can be
prescribed and 1835 substances that can be measured in the
laboratory. Thus, given that we encode each laboratory mea-
surement into three binary variables as explained earlier, the
dynamic information is composed of a total of 6566 variables.
On the other hand, the static information is composed of 342
features that remain constant for each patient.

The model contains several hyperparameters that need to
be optimized. The most relevant ones are the rank of the
latent representations, the number of hidden units in the Neural
Network, the learning rate and the dropout regularization
parameter [7]. Besides we will test our models with two op-
timization algorithms, which are Adagrad [22] and RMSProp
[23].

In order to fit these hyperparameters, we randomly split the
data into three subsets: 60% of the patients were assigned
to the training set, 20% of the patients were assigned to the
validation set and another 20% to the test set. Under this
configuration, we evaluate the performance of the model by
predicting the future events of patients that the model has never
seen before, and therefore increasing the difficulty of the task.

When comparing the performance of these models, we
report for each model the mean area under the Precision-Recall
curve (AUPRC) and mean area under Receiver Operating
Characteristics curve (AUROC) together with their associated
standard errors after repeating each experiment five times with
different random splits of the data. We made sure that these

five random splits were identical for each model.
It is worth noting that in use cases where the target event

we want to predict is very infrequent, and where we are more
interested in knowing when such event is going to happen
(as opposed to when it is not going to happen), then the
AUPRC is a more interesting score to evaluate the quality of
the predictions than the AUROC. This is because getting high
sensitivity and specificity can be fairly easy in these problems.
However, obtaining a high precision in the predictions is a very
hard challenge. Indeed, we will show in the next section how
making random predictions provides a very low AUPRC, much
lower than the AUROC for random predictions. Therefore, the
most interesting score to compare the models presented in this
work is the AUPRC.

We will also report results on the Logistic Regression,
since it provided the second best performance in the task of
predicting sequences of clinical data in [6].

B. Results

Table I shows the results of predicting endpoints without
considering different types of them (i.e. we concatenate all
the predictions of the set and evaluate all of them together).
“GRU + static”, “LSTM + static” and “RNN + static” stand
for the architectures presented in this paper that combine an
RNN with static information. TLE stands for the Temporal
Latent Embeddings model [6]. Random stands for the scores
obtained when doing random predictions.

We can see how the recurrent models outperform the other
models both in the AUROC score and AUPRC score. The
best performance is achieved by the GRUs with an AUPRC
of 0.345 and an AUROC of 0.833. The AUPRC scores are
pretty low compared to its maximum possible value (i.e. 1),
but are fairly good compared to the random baseline of 0.073,
which is that low due to the high sparsity of the data.

Since we repeated the experiment five times with different
splits of the data, we have slight variations on the configuration
of the winning model. However, the most repeated configura-
tion was composed of 100 hidden units, a rank size of 50 for
the latent representation, a dropout rate of 0.1, a learning rate
of 0.1 and the Adagrad optimization algorithm.



TABLE I
SCORES FOR ENDPOINT PREDICTION. AUPRC STANDS FOR AREA UNDER

PRECISION-RECALL CURVE. AUROC STANDS FOR AREA UNDER ROC
CURVE.

AUPRC AUROC
GRU + static 0.345 ± 0.013 0.833 ± 0.006
LSTM + static 0.330 ± 0.014 0.826 ± 0.006
RNN + static 0.319 ± 0.012 0.822 ± 0.006
TLE 0.313 ± 0.010 0.821 ± 0.005
Logistic Regression 0.299 ± 0.009 0.808 ± 0.005
Random 0.073 ± 0.002 0.5

In Table II we show the performance achieved for each
specific endpoint. It can be seen how the it gets the best score
for predicting the death of a patient whereas it obtains the
worse AUPRC in the task of predicting kidney loss within the
next 6 months.

TABLE II
GRU + STATIC SCORES FOR ENDPOINT PREDICTION. AUPRC STANDS FOR
AREA UNDER PRECISION-RECALL CURVE. AUROC STANDS FOR AREA

UNDER ROC CURVE.

AUPRC AUROC
Rejection 6 months 0.234 ± 0.010 0.778 ± 0.006
Rejection 12 months 0.279 ± 0.014 0.768 ± 0.009
Loss 6 months 0.167 ± 0.017 0.821 ± 0.009
Loss 12 months 0.223 ± 0.019 0.814 ± 0.009
Death 6 months 0.467 ± 0.018 0.890 ± 0.004
Death 12 months 0.465 ± 0.020 0.861 ± 0.004

C. Additional experiments

As we mentioned earlier, the Temporal Latent Embeddings
model outperformed the baselines presented in [6] for the task
of predicting the events that will be observed for each patient
in his or her next visit to the clinic (i.e. which laboratory
analyses will be made next, which results will be obtained in
such analyses and what medications will be prescribed next).
However none of those baselines were based on RNNs.

Thus we reproduced the experiments presented in [6] in-
cluding the models based on RNNs introduced in this article.
Table III shows the result of such experiment, where we
can appreciate that the Temporal Latent Embeddings model
still provides better scores than the other models. We also
included in Table III an entry named “Static embeddings”
which corresponds to the predictions made with a Feedforward
Neural Network using just the static information of each
patient. We hypothesize that the reason that Temporal Latent
Embeddings model provides the best performance is due to the
lack of complex long term dependencies that are relevant for
this task. Thus it would be an advantage to use a model that
puts all the attention on the most recent events in situations
where all the relevant information to predict the target was
recorded during the previous n visits.

TABLE III
SCORES FOR NEXT VISIT PREDICTION. AUPRC STANDS FOR AREA

UNDER PRECISION-RECALL CURVE. AUROC STANDS FOR AREA UNDER
ROC CURVE.

AUPRC AUROC
TLE 0.584 ± 0.0011 0.978 ± 0.0001
LSTM + static 0.571 ± 0.0048 0.975 ± 0.0002
GRU + static 0.566 ± 0.0034 0.975 ± 0.0002
Static embeddings 0.487 ± 0.0016 0.974 ± 0.0002
Random 0.011 ± 0.0001 0.5 -

VI. CONCLUSION

We developed and compared novel algorithms based on
RNNs that are capable of combining both static and dynamic
clinical variables, in order to solve the task of predicting
endpoints on patients that underwent a kidney transplantation.
This is an application that will provide critical information to
physicians and will support them to make better decisions.

We found that an RNN with GRUs combined with a
Feedforward Neural Network provides the best score for this
task.

We also compared these recurrent models with other models
for the task of predicting future medications and laboratory
results. We found that for such use case the RNNs do not
outperform a model based on a Feedforward Neural Network.
We hypothesize that this is due to the lack of complex long
term dependencies in the data that are relevant for this task,
and therefore it is an advantage to use a model that puts all
the attention to the most recent events.

We also found that binary encoding input variables that are
composed of real numbers provides a better performance than
normalizing the input data and performing imputation to deal
with missing data.

VII. FUTURE WORK

We explained the gradient vanishing problem in Section IV,
and later showed how LSTM and GRU units solve this
problem. Interestingly, Deep Feedforward Neural Networks
also suffer from this problem, also due to the several mul-
tiplications by the derivative of the sigmoid (or hyperbolic
tangent) function that are accumulated in the first layers of
the network. Recently there have been some efforts to solve
this problem with a gating mechanism [24], similar to what
is done in RNNs. However, the most common solution to
solve this problem in Feedforward Neural Networks is to use
Rectified Linear Units [25], whose derivative is 1 for positive
input values, and therefore mitigate the gradient vanishing
problem. It turns out that there have been also efforts to
train standard RNNs with Rectified Linear Units in order
to prevent the gradient vanishing problem, without the extra
computational cost of the gating mechanisms. The results of
this approach seems promising and we will add this option to
our benchmark, as part of future work.

The key feature of a Clinical Decision Support System is its
ability to consider as much patient information as possible and



combine it in a meaningful and scalable way to predict future
events. We are already capable of combining static information
with a sequence of structured data. We plan to integrate more
sources of data into our model with the goal of improving the
quality of our predictions.

Also, having more powerful models that can deal with more
data and more complex data, will allow us to tackle more
difficult problems. For example, in the second experiment
we predict prescribed medications, but we do not provide
information regarding the doses of medications or the intake
patterns. As our models improve, we will try to predict this
kind of complex targets.

Finally, concerning our specific data set composed of pa-
tients that suffered from kidney failure, there is a lot of
information that we are not using yet, as for example biopsies
and its results. We will keep adding to our models additional
sources of information.

REFERENCES

[1] LeCun Y, Bengio Y and Hinton G. Deep learning. Nature 521, 436444,
Feb 2015.

[2] Huber L, Naik M, Budde K. Desensitization of HLA-incompatible
kidney recipients. N Engl J Med. 27;365(17):1643, Oct 2011.

[3] Budde K, Becker T, Arns W, Sommerer C, Reinke P, Eisenberger
U, Kramer S, Fischer W, Gschaidmeier H, Pietruck F. Everolimus-
based, calcineurin-inhibitor-free regimen in recipients of de-novo kidney
transplants: an open-label, randomised, controlled trial. The Lancet.
5;377(9768):837-47, Mar 2011.

[4] Budde K, Lehner F, Sommerer C, Arns W, Reinke P, Eisenberger
U, Wthrich RP, Scheidl S, May C, Paulus EM, Mhlfeld A, Wolters
HH, Pressmar K, Stahl R, Witzke O. Conversion from cyclosporine
to everolimus at 4.5 months posttransplant: 3-year results from the
randomized ZEUS study. Am J Transplant. 12(6):1528-40, Jun 2012.

[5] Bissler JJ, Kingswood JC, Radzikowska E, Zonnenberg BA, Frost M,
Belousova E, Sauter M, Nonomura N, Brakemeier S, de Vries PJ,
Whittemore VH, Chen D, Sahmoud T, Shah G, Lincy J, Lebwohl D,
Budde K. Everolimus for angiomyolipoma associated with tuberous
sclerosis complex or sporadic lymphangioleiomyomatosis: a multicentre,
randomised, double-blind, placebo-controlled trial. The Lancet, 2012

[6] Esteban C, Schmidt D, Krompaß D, Tresp V. Predicting sequences of
clinical events by using a personalized temporal latent embedding model.
In Proceedings of the IEEE International Conference on Healthcare
Informatics, 2015.

[7] Srivastava, R., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov,
R. Dropout: A simple way to prevent neural networks from overfitting.
JMLR, 2014.

[8] Cho K, Courville A, Bengio Y, Describing multimedia con-
tent using attention-based encoder-decoder networks, arXiv preprint
arXiv:1507.01053, 2015.

[9] Xu K, Ba J, Kiros R, Cho K, Courville A, Salakhutdinov R, Zemel R,
Bengio Y. Show, attend and tell: Neural image caption generation with
visual attention. In Proceedings of The 32-nd International Conference
on Machine Learning, 2015.

[10] Choi E, Taha Bahadori M, Sun J. Doctor AI: Predicting clinical events
via recurrent neural networks. arXiv preprint arXiv:1511.05942, 2015.

[11] Mikolov T, Sutskever I, Chen K, Corrado G, Dean J. Distributed
representations of words and phrases and their compositionality. NIPS,
2013.

[12] Mikolov T. Statistical Language Models based on Neural Networks. PhD
thesis, Brno University of Technology, 2012.

[13] Sutskever I, Vinyals O, V. Le Q. Sequence to Sequence Learning with
Neural Networks. NIPS 2014.

[14] Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P, Van
Lente F, Levey AS. Prevalence of chronic kidney disease in the United
States. JAMA, 2007.

[15] Bengio Y, Frasconi P, Simard P. The problem of learning long-term
dependencies in recurrent networks. pages 11831195, IEEE Press, 1993.

[16] Pascanu, R., Mikolov, T. Bengio, Y. arXiv preprint arXiv:1211.5063,
2013.

[17] Hochreiter S, Schmidhuber J. Long Short-Term Memory. Neural Com-
putation, 9(8):17351780, 1997.

[18] Graves A, Mohamed A, Hinton G. Speech recognition with deep
recurrent neural networks. In ICASSP2013, pages 66456649. IEEE,
2013

[19] Cho K, van Merrienboer B, Bahdanau D, Bengio Y. On the properties of
neural machine translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259, 2014.

[20] Chung J, Gulcehre C, Cho K, Bengio Y. arXiv preprint arXiv:1412.3555.
[21] Cho K, van Merrienboer B, Bahdanau D. On the Properties of Neu-

ral Machine Translation: EncoderDecoder Approaches. arXiv preprint
arXiv:1409.1259.

[22] Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online
learning and stochastic optimization. The Journal of Machine Learning
Research, pages 2121-2159, 2011.

[23] Tieleman T, Hinton G. Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude. Coursera: Neural Networks for
Machine Learning, 4, 2012

[24] Srivastava, R., Greff, K. and Schmidhuber, J., Highway Networks. arXiv
preprint arXiv:1505.00387.

[25] Glorot, X., Bordes, A. and Bengio, Y. Deep sparse rectifier neural
networks. Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics, 2011.


