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Abstract Bulk whole genome sequencing (WGS) enables the analysis of tumor evolution but,

because of depth limitations, can only identify old mutational events. The discovery of current

mutational processes for predicting the tumor’s evolutionary trajectory requires dense sequencing

of individual clones or single cells. Such studies, however, are inherently problematic because of

the discovery of excessive false positive (FP) mutations when sequencing picogram quantities of

DNA. Data pooling to increase the confidence in the discovered mutations, moves the discovery

back in the past to a common ancestor. Here we report a robust WGS and analysis pipeline

(DigiPico/MutLX) that virtually eliminates all F results while retaining an excellent proportion of true

positives. Using our method, we identified, for the first time, a hyper-mutation (kataegis) event in a

group of ~30 cancer cells from a recurrent ovarian carcinoma. This was unidentifiable from the bulk

WGS data. Overall, we propose DigiPico/MutLX method as a powerful framework for the

identification of clone-specific variants at an unprecedented accuracy.

Introduction
Next generation sequencing has revolutionized our understanding of the genetic evolution of human

cells in health and disease (Turajlic et al., 2019; Zhang et al., 2018). In bulk cancer genome

sequencing, inferring the prevalence of variants, the fraction of cells that harbor a variant, enables

the computation of the clonal composition of a tumor. In turn, knowledge of the clonal composition

enables the construction of evolutionary trees that tell the story of how a particular tumor has

evolved over time (Turajlic et al., 2019; Zhang et al., 2018; Gerstung et al., 2017). Analyzing

shared mutations within individual clones can be used to deduce mutational processes that may

have been operational during the evolution of a tumor. Understanding what mutational processes

have taken place within a tumor and what drives them mechanistically, is highly desirable since this

could provide opportunities for therapeutic intervention or for predicting the evolutionary trajectory

of a tumor. However, the limitation of the depth of sequencing means that only highly prevalent

mutations that occurred early in tumorigenesis can be detected using standard bulk whole genome

sequencing (WGS) approaches (Figure 1A; Figure 1—figure supplement 1). Consequently, the abil-

ity to model evolutionary events is limited to early events that have been fixed during the tumor evo-

lution and not recent or current processes (Turajlic et al., 2019; Barber et al., 2015). This limits the
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Figure 1. DigiPico sequencing rationale, workflow, and performance. (A) WGS approaches can only identify early mutational processes (EM) in

dominant expanded clones in a tumor (red and blue). Currently active mutational processes (CM) result in a diverse set of sub-clones with different

clone-specific mutations. This diversity determines the evolutionary trajectory of the tumor. (B) Template partitioning prior to WGA so that each

compartment receives no more than one DNA molecule from each locus allows for the identification of artificial mutations. Since damage-induced

Figure 1 continued on next page
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practical application of understanding mutational processes. Studying current or recent evolutionary

events requires the confident identification of mutations with very low prevalence (Turajlic et al.,

2019; Barber et al., 2015). Sequencing of single cells or small populations of spatially-related cells

offer the promise to resolve this issue by the detection of cell-specific or clone-specific mutations

(Figure 1—figure supplement 1). This gives a readout of mutational processes that are occurring in

currently observed cells (Figure 1A). However, accurate sequencing of small (picogram) quantities of

DNA that can be obtained from single cells or spatially-related cells is highly challenging. Unavoid-

able DNA damage through oxidation or spontaneous deamination is particularly troublesome when

dealing with small quantities of DNA (Bohrson et al., 2019). These sources of damage result in dis-

proportionate numbers of artefactual C > A and C > T mutations, respectively (Bohrson et al.,

2019; Chen et al., 2017a; Costello et al., 2013). The identification of these artefactual mutations as

variants during variant calling results in a large number of false positive (FP) variant calls. An impor-

tant concern is that such mutations can also be attributed to biological processes such as the accu-

mulation of oxidative DNA damage with age or overactivity of members of the APOBEC family of

deaminases (Nik-Zainal et al., 2012; Martincorena et al., 2018; Tubbs and Nussenzweig, 2017). It

is not currently possible to differentiate between biologically-driven C > A and C > T mutations and

the artefactual ones that have arisen during library preparation when working with picogram quanti-

ties of DNA. In addition, the usual step of whole genome amplification (WGA) prior to sequencing

inflates the number of artefactual mutations and propagates the errors caused by DNA damage

(Bohrson et al., 2019). Several approaches have been proposed to reduce DNA-damage during

library preparation or to filter out false positive results during analysis (Bohrson et al., 2019;

Dong et al., 2017; Zafar et al., 2016; Chen et al., 2017b). However, to date, such techniques still

result in the retention of thousands of false positive mutations and, therefore, require extensive vali-

dation before firm biological conclusions can be made (Bohrson et al., 2019; Dong et al., 2017;

Zafar et al., 2016). As extensive validation is not possible in the majority of cases (Bohrson et al.,

2019), a robust method that eliminates false positive variants from whole genome amplified

sequencing data is needed.

In this work we developed a single DNA molecule WGA and sequencing approach to obtain

high-quality and data-rich sequencing results from picogram quantities of DNA obtained from clini-

cal samples (we termed DigiPico; for Digital sequencing of Picograms of DNA). Moreover, we imple-

mented a complementary analysis workflow for DigiPico data using an artificial neural network

Figure 1 continued

errors (red) and replication errors (cyan) occur stochastically during replication, artefactual mutations result in dual-allelic compartments. (C) DigiPico

sequencing workflow. LCM: Laser-capture micro-dissection. (D) End-point relative fluorescent unit (RFU) from EvaGreen-labeled DNA was used to

ensure homogeneous distribution of template and WGA process across the plate. RFU values were normalized to achieve a median of 1 in each run. (E)

Per well qPCR using Illumina adapter primers (P5 and P7) measures the relative quantity of adapter-ligated products in each well. Ct values were

normalized to achieve a median of 0 in each run. (F) Streamlining the DigiPico library preparation process required miniaturized a WGA that can

specifically and sensitively amplify sub-picogram quantities of DNA in every well. Values represent the mean RFU values across nine replicates. Error

bars represent SD. (G, H, and I) preliminary analysis of DigiPico sequencing data from individual wells in each run confirms sequencing high-quality and

homogeneity of mapping rate, depth of coverage and breadth of coverage as indicated. (J) Definition of unique to DigiPico (UTD) variants. Subtracting

the SNVs that are identifiable in standard WGS data from corresponding DigiPico data results in UTD variants. These will mainly be consisted of

artefactual mutations as well as some clone-specific mutations. Since the template in run D1110 is practically a subset of the template used for the

standard WGS, all true variants in the DigiPico run D1110 are expected to also be present in the standard WGS data. In contrast, clone-specific variants

in run D1111 are likely to be absent in the standard WGS data because of depth limitation, even though the DNA molecules supporting such variants

might have been present in the bulk DNA sample at very low frequencies. In all boxplots the horizontal line represents the median. Boxes represent

interquartile range (between the 25th and the 75th percentile). Whiskers represent the range excluding outliers. Outliers are defined as data points

above or below 1.5 times the interquartile range.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Raw values for the whole genome amplification monitoring of runs D1110 and D1111.

Source data 2. Raw relative fluorescent values for miniaturized whole genome amplification reactions over time.

Source data 3. Per well mapping rate, breadth and depth of coverage for runs D1110 and D1111.

Source data 4. Sequence of oligonucleotides used in DigiPico library preparation.

Figure supplement 1. Challenges in identifying recent mutations.

Figure supplement 2. DigiPico library preparation workflow.

Figure supplement 3. Analysis workflow for DigiPico data.
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(ANN)-based algorithm (MutLX, for Mutation Learn) to eliminate FP results while maintaining excel-

lent sensitivity for true positive mutations on a whole genome scale. We validate our approach using

data from an extensively sequenced tumor from a single patient with a cumulative depth of ~4200x

obtained from 45 WGS runs on DNA from three different time points. We show the versatility of the

methods by sequencing samples from four additional cancer patients and a lymphoblastoid cell line.

Results

Implementation of DigiPico sequencing approach
A key feature of amplification errors with or without prior DNA damage is that they are introduced

at random during the amplification process (Chen et al., 2017a; Costello et al., 2013;

Arbeithuber et al., 2016). We, therefore, hypothesized that when amplifying and sequencing a sin-

gle DNA molecule an artefactual mutation would be present in only a fraction of the reads that have

resulted from sequencing the original single DNA molecule. In contrast, genuine variants would be

expected to be present in all such reads. Partitioning of the template DNA into individual compart-

ments prior to WGA, such that each compartment receives no more than one DNA molecule from

every locus would result in such single DNA molecule sequencing data (Figure 1B). Since the arte-

factual mutations would result in compartments with reads supporting multiple alleles this approach

enables the identification of these artefacts and allows for the elimination of FP variant calls. In addi-

tion, such partitioning approach also results in the independent progression of WGA reactions for

each locus. Thus, providing multiple internal replication data for the WGA process. While genuine

variants are expected to be regularly present across replicates, the artefactual mutations, because of

their stochastic nature, will likely have a limited presence in a small number of compartments. Conse-

quently, taking both of these points into account, such a WGA and sequencing approach can result

in distinctive distribution patterns across the compartments for artefactual mutations compared to

real mutations. Since ANNs have shown to be capable of extracting complex patterns from high-

dimensional inputs, they make a good candidate for identifying and eliminating FP mutations from

this type of data. While previous partitioning and sequencing methods have been described to

obtain haplotype information, there is no such method for distinguishing true mutations from arte-

factual mutations (Peters et al., 2012; Amini et al., 2014; Zheng et al., 2016).

To fully benefit from the data-richness of a partitioning and sequencing approach for accurate

genomics study of clinical samples, we developed DigiPico sequencing (Figure 1C). To perform Digi-

Pico sequencing, first, we uniformly distribute nearly 200 pg of DNA (obtained from 20 to 30 human

cells) into individual wells of a 384-well plate. This ensures that the likelihood for the co-presence of

two different DNA molecules from the same locus in the same well is less than 10% (Peters et al.,

2012). Following WGA, each well is then processed independently into indexed libraries, each

receiving a unique barcode sequence, prior to pooling and sequencing (Figure 1C; Figure 1—figure

supplement 2; ‘Materials and methods’). Since, in our approach, the key distinguishing factor for

artefactual mutations lies in their peculiar distribution pattern, homogeneous distribution and ampli-

fication of DNA molecules as well as consistent depth of sequencing coverages across the wells

would be critical. Achieving this homogeneity ensures that the differences in the distribution pattern

of true and artefactual mutations are maximized. To ensure that the required homogeneity is

achieved, during every DigiPico library preparation we monitored the WGA reactions’ progress and

quantified the final outcome for all the wells. The former was achieved by adding EvaGreen dye to

the WGA reactions and monitoring the fluorescent intensity every 5 min in real-time. EvaGreen is an

intercalating dye that binds to the minor groove of the DNA and therefore, does not interfere with

the isothermal WGA reactions (Hosokawa et al., 2017). For the latter, we introduced a per-well

qPCR step to measure the relative number of adapter-ligated fragments in each well using adapter

specific primers prior to pooling. Only libraries that passed both of these homogeneity tests were

used for sequencing (Figure 1D,E; Figure 1—source data 1). Importantly, we also miniaturized the

WGA reaction volumes to 1 ml. This could only be achieved after the identification of a compatible

multiple displacement amplification (MDA) approach. Comparing six different MDA strategies,

REPLI-g Single Cell amplification was the only method that met the required sensitivity and selectiv-

ity for our purpose (Figure 1F; Figure 1—source data 2). Reaction miniaturization allowed us to

streamline the library preparation process in a single 384-well plate without the need for
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intermediate purification steps using readily available automated pipetting instruments. Finally, we

aimed to optimize the DigiPico library preparation process for frozen clinical samples. This was

achieved by performing the WGA reaction directly on the crude lysate of small groups of neighbor-

ing cells (tumor islets) isolated via LCM (laser-capture micro-dissection). This strategy ensured the

minimal loss of genomic material while minimizing the manipulation time and thereby, reducing the

chance of template oxidation.

DigiPico sequencing platform generates high quality libraries from
limited clinical samples
Having optimized all the necessary aspects of DigiPico library preparation process, we decided to

assess the quality of DigiPico libraries obtained from clinical samples. For this purpose, we prepared

DigiPico libraries D1110 and D1111 from a frozen recurrent tumor sample (PT2R) obtained from a

high-grade serous ovarian cancer patient (#11152). In this experiment, while D1110 library was pre-

pared from 200 pg of template taken from a bulk DNA extraction of the PT2R sample, the D1111

library preparation was directly performed on a small frozen section of the remainder of this tumor

sample (containing nearly 30 cancer cells). Each library was sequenced on an Illumina NextSeq plat-

form to obtain nearly 400,000,000 reads in 150 � 2 paired-end format. The initial assessment of the

obtained sequencing data revealed that both the D1110 and D1111 libraries have resulted in high

quality sequencing data with an overall mapping rate of 91.35% and 94.27% on human hg19

genome, respectively (Figure 1G;; Figure 1—source data 3). Analyzing the homogeneity of distri-

bution across the plates indicated that in runs D1110 and D1111, on average, each well covers nearly

4.4% and 4.6% of the genome with an average depth of 1.7x and 2.1x in each well, respectively,

with an outstanding homogeneity across the plates (Figure 1H,I; Figure 1—source data 3). This

cumulatively resulted in a breadth of coverage of 92.1% and 91.1% with a depth of 30x and 43x for

each run, respectively. These results confirmed that DigiPico sequencing can be used to produce

high-quality sequencing data with excellent coverage from limited amount of frozen clinical samples.

Lastly, we assessed whether our initial hypotheses regarding the distinctive distribution pattern of

different mutation types hold true in actual DigiPico datasets. For this purpose, we assumed that

any variant that is shared between a DigiPico dataset and the standard bulk sequencing data of the

same tumor sample must be a true variant. These should mainly consist of germline SNPs and clonal

somatic variants. As a result, by definition, all FP variant calls and the majority of clone-specific muta-

tions (had they existed in the sample under study) will be among variants that are only present in the

DigiPico data and not in the bulk WGS data. These variants are referred to as UTD for simplicity,

hereafter (Figure 1—figure supplement 3). Consequently, given that the standard bulk sequencing

data of the PT2R sample had been obtained from the same DNA extract that was used for D1110

library preparation, nearly all the UTD variants in D1110 DigiPico run ought to be artefacts

(Figure 1J). To the contrary, the UTDs in run D1111 are likely to contain some clone-specific muta-

tions alongside the artefactual mutations (Figure 1J). Therefore, we used the UTD variants in run

D1110 as a representative of artefactual mutations in our analysis. Comparing the frequency of wells

with co-presence of two allele for the same locus (Figure 2A) as well as the number of wells support-

ing each variant (Figure 2B) in run D1110 showed that UTDs had significantly higher proportion of

the former and lower number of the latter compared to any other category of mutations (p<2e-16

for both analyses, One-way ANOVA followed by Tukey HSD testing). This clearly supported the dis-

tinct distribution pattern of artefactual mutations in this DigiPico dataset as hypothesized.

MutLX analysis pipeline for DigiPico data
Having obtained high-quality data using DigiPico sequencing, we decided to implement an analysis

pipeline to eliminate FP variant calls based on the distribution pattern of mutations. As mentioned

earlier, ANN algorithms are ideally suited for problems with such complex patterns. Given a repre-

sentative set of correctly labelled examples (training set), an ANN can learn to classify mutations

without the need for any class-specific information. However, there are two main issues in imple-

menting ANN algorithms for the problem of eliminating FP mutations from sequencing data; (a) the

difficulty in obtaining a generalizable model and (b) unavailability of representative accurately

labelled training sets. First, it is not possible to generate a model that is generalizable for the analy-

sis of every DigiPico dataset because the distribution pattern of mutations depends on various run-
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Figure 2. MutLX algorithm, design and results. (A) Comparing the number of wells supporting various mutation types in run D1110 confirms that, as

hypothesized, the majority of UTDs are present in only a few wells. Horizontal lines represent median. Boxes represent interquartile range. Whiskers

show the range excluding outliers which are defined as being outside 1.5 times the interquartile range. (B) Similarly, the dual-allelic compartment rate

of UTDs appears to be significantly higher when compared with true variants. This value was calculated by dividing the number of wells with co-

presence of variant and reference alleles to the total number of wells with evidence for variant allele. (C) A diagram showing the main challenges in

analyzing DigiPico data using ANNs. Each circle/star indicates one variant. Red lines show the behavior of the classification model. All variants above

and/or to the left of the lines are predicted to be true variants by the model. The analysis of a sample without clone-specific variant would result in

precise separation between real and artefactual mutations. In contrast, the analysis of a sample with true clone-specific mutations would result in a

suboptimal model, which could lead to an over-fitting against true UTDs. This will enforce a model that removes all FP calls at the cost of losing nearly

all clone-specific variants. (D) A diagram showing the two-step training process in MutLX. The first training step identifies some of the mislabeled true

mutations (grey circles) among UTDs. All potentially mislabeled data points are temporarily removed from the analysis in the second training (colored in

black) so that a better model is obtained for assigning a probability score to all mutations. Finally, combining the probability scores obtained from the

model with the uncertainty estimate (as described in E) of these probability scores allows for effective elimination of FP calls while maintaining an

excellent sensitivity for true clone-specific variants. (E) A diagram showing the test-time drop-out analysis to compute the uncertainty estimate of

probability scores. Black neurons indicate the neurons that had been turned off during the drop-out analysis. Accepting only variants with a high

probability score and a low uncertainty score should allow for elimination of FP variant calls. (F) The ROC curves of the output of MutLX analysis for runs

D1110, D1111, DE011, and GM12885 are presented. Circles represent the default cut-off values determined by MutLX. (G) Bar plots representing the

number of passed UTDs in the output of SCcaller, Platypus and MutLX. Since no true UTDs are expected to be present in runs D1110, DE011, and

GM12885 the number of UTDs in these runs represent the FP rate for each analysis method. Values for Platypus are based on DigiPico-specific filtering

criteria prior to the application of MutLX.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Comparison of MutLX analysis with Platypus and SCcaller.

Source data 2. Targeted sequencing of some of the clone-specific variants identified in run D1111.

Source data 3. Targeted sequencing of some of the artefactual variants identified in run DE111.

Source data 4. Number of different mutation types in various sequencing runs.

Source data 5. Primer pairs used for targeted validation of UTD variants.

Figure supplement 1. MutLX analysis algorithm.

Figure supplement 2. Analysis of the synthetic DigiPico datasets.

Figure 2 continued on next page
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specific initial conditions that cannot easily be accounted for (e.g. the copy number state of the

genome). Therefore, run-specific models tailored to each DigiPico run will be required. This means

that subsets of run-specific mutations need to be selected as a training sets for each DigiPico run.

Second, while correctly labelled examples of true mutations can easily be extracted from known

SNPs in the genome, identifying a representative and accurate set of examples for artefactual muta-

tions is not possible. To address this issue, we considered UTDs as a reasonable approximation for a

representative set of artefactual mutations, assuming that UTDs are predominantly composed of

such mutations. This assumption, however, can result in a key challenge. UTDs by definition are com-

posed of artefactual mutations as well as true clone-specific mutations. While artefactual mutations

are expected to be abundantly present in all DigiPico runs, true clone-specific mutations may be

present at different frequencies depending on the sample (Figure 1J). Therefore, when UTDs are all

considered as examples for artefactual mutations, samples with more clone-specific variants will

have a noisier training set. If this is not taken into account, it can put the samples with true clone-

specific variants at an analytical disadvantage, because noisier training sets can result in worse classi-

fication models (Figure 2C). Specifically, the presence of real mutations among the examples of arte-

factual mutations in samples with true clone-specific variants may result in over-fitting of the model

against these variants (Figure 2C). This can undermine the ability of the model to accurately identify

true clone-specific variants in such samples. Given that the main objective of DigiPico sequencing is

to identify clone-specific variants it is essential to ensure that such over-fitting does not occur when

analyzing DigiPico datasets.

Considering all the aforementioned limitations and issues, we designed and implemented an

ANN-based binary classifier, MutLX, for the analysis of DigiPico datasets. The focus of the DigiPico

analysis pipeline was set for effective elimination of FP calls and accurate identification of true clone-

specific variants from UTDs. To address the issue of training with imperfect training sets, we

employed the following approach in training MutLX. Initially we considered all UTD variants as exam-

ples for artefactual mutations (labelled as 0 s) and a similar number of randomly selected heterozy-

gous germline SNPs as example for true variants (labelled as 1 s). Since the majority of UTD variants

are FP calls with an unknown ratio of true clone-specific variants, the 0 labels are considered to be

‘noisy’ at this stage. In other words, while true clone-specific variants, must have been labelled as 1,

because of their anonymity at this stage, they are labelled as 0 among others. To accommodate for

this type of noise in the training dataset we employed a two-step training process (Figure 2D). In

the first step, a model is trained given all labelled example data. This initial model is then used to

compute the probability of each mutation belonging to its label’s category. Any mutation that

appears to have been mislabeled based on these model predictions, is temporarily eliminated

(pruned) from the dataset. The underlying assumption here is that even though a model trained on

noisy samples might not be as robust as a model trained on a hypothetically clean dataset, still, it

will be biased towards better predictions of correct examples because of their higher ratio com-

pared to noise in the dataset. Therefore, the examples that the model predict against their original

label, are likely to have been mislabeled in the first place. In the second step, a new classification

model is trained on this pruned training set. Since the second training set is likely to contain less mis-

labeled data points, the final model is expected to be more effective at identifying true mutations

regardless of whether or not all UTD variants had indeed been artefacts (Northcutt et al., 2017;

Natarajan et al., 2013). We next employ this model to assign a ‘probability score’ to each putative

mutation. This score indicates the likelihood that a certain mutation belongs to the true variants’ cat-

egory. While this two-step training process is expected to significantly improve the classification

model, the final model will still be prone to errors due to imperfections in the training sets. There-

fore, we added another level of analysis to further improve the accuracy of our pipeline. This was

achieved by assigning an uncertainty estimate to the ‘probability score’ of each mutation. This uncer-

tainty estimation is based on the assumption that a robust prediction is supported by most of the

Figure 2 continued

Figure supplement 3. Frequency of various mutation types among FP calls identified by MutLX in DigiPico data.

Figure supplement 4. Probability score values for runs D1110, D1111, DE011, and GM12885.

Figure supplement 5. Data simulation confirmed that the AUC negatively correlates with the number of true UTD variants.
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activated neurons in the hidden layers of the ANN. Therefore, any subset of these neurons would

also consistently result in a similar probability score and hence, there will be a low variance between

various ‘probability scores’ obtained from different neuronal subsets (Figure 2E). In contrast, the

seemingly high ‘probability score’ of an artefactual mutation is most likely only supported by some

of the neurons in the hidden layer of the ANN. Therefore, different neuronal subsets will result in

varying ‘probability scores’ which will lead to a high variance in the scores obtained from different

neuronal subsets for an artefactual mutation (Figure 2E). As a result, an ‘uncertainty score’ can be

calculated as the variance of ‘probability scores’ obtained from multiple different randomly selected

neuronal subsets of the trained ANN in MutLX (Gal and Ghahramani, 2015). The combination of

‘probability score’ and ‘uncertainty score’ for each mutation should therefore allow us to accurately

determine whether a called variant is a real mutation or a result of artefactual changes in the tem-

plate (Figure 2—figure supplement 1).

Validation of the MutLX algorithm
To validate our strategy, we chose to test the MutLX analysis pipeline on runs D1110 and D1111.

This is because these DigiPico runs had been obtained from a HGSOC (High-grade Serous Ovarian

Cancer) that was previously extensively sequenced with data available from 48 independent WGS

data sets across three different time points (patient #11152) at a total depth of approximately 4200x

from two independent sequencing platforms (Hellner et al., 2016). To our knowledge, this com-

prises the most extensively whole genome sequenced tumor to date. This exceptionally large

dataset allows for reliable cross-validation of mutations in this tumor. For this purpose, we used the

MutLX algorithm to analyze the sequencing data from runs D1110 and D1111. As explained previ-

ously, when using the bulk sequencing data from the PT2R site for comparison with these DigiPico

datasets, true UTD variants (clone-specific variants) are only expected to be present in run D1111,

while nearly all UTDs in run D1110 are expected to be artefacts (Figure 1J). In addition, we also ana-

lyzed DigiPico sequencing data prepared from purified DNA of a blood sample (run DE011), as well

as cultured GM12885 lymphoblastoid cells, both of which are also expected to have no true UTD

mutations. The de novo variant calling on these DigiPico runs followed by an initial filtering based on

the well counts resulted in the identification of thousands of UTD variants in each sample, nearly all

of which were expected to be FP calls. However, the application of MutLX algorithm on the UTD var-

iants of runs D1110, DE011, and GM12885 resulted in the effective elimination of over 99% of the

FP variant calls in these runs to only 4, 7, and three genome-wide FP mutations, respectively, while

maintaining a sensitivity of ~85% for detecting true mutations (Figure 2F,G). In comparison, SCcaller

(Dong et al., 2017) analysis of the same data resulted in 713, 712, and 13,280 FP variant calls,

respectively (Figure 2G; Figure 2—source data 1). On the other hand, MutLX identified 266 puta-

tive clone-specific variants in run D1111, 240 of which (90%) were validated through comparison

with independent high-depth datasets of this tumor sample (Figure 2G). Moreover, these observa-

tions were further validated by performing targeted sequencing on the bulk DNA of the tumor.

Whereby, out of the 11 analyzed amplicons harboring clone-specific variants from run D1111, 10

were found to conclusively be present at low frequencies in the bulk DNA of the PT2R sample (Fig-

ure 2—source data 2). Furthermore, amplicon sequencing of 37 seemingly high-quality UTD variants

from run DE111 that were labelled as artefactual by MutLX algorithm indicated no evidence for their

presence in the bulk DNA sample (Figure 2—source data 3). These results clearly confirm that

MutLX can learn accurate classification models that distinguish artefactual mutations from real var-

iants and is able to effectively identify true clone-specific variants in DigiPico data.

Additionally, we investigated whether the presence of true clone-specific mutations could com-

promise the sensitivity of the model due to over-fitting. For this purpose, we artificially mislabeled

varying numbers of somatic mutations in runs D1110 and DE111 as artificial UTD variants (UTD*) to

generate synthetic datasets with various ratios of true UTDs. These synthetic datasets were then

independently analyzed by MutLX and the FP rate as well as the recovery rate of UTD*s at varying

UTD*/UTD ratios were examined in all the synthetic datasets. The results showed that a UTD*/UTD

ratio as high as 10% does not significantly affect the recovery rate of UTD* variants, indicating that

overfitting does not occur in MutLX (Figure 2—figure supplement 2).
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Versatility of DigiPico/MutLX sequencing and analysis approach
Finally, to ensure the versatility of our proposed method, DigiPico sequencing was performed on

various sources of template DNA from four different HGSOC patients and the resulting UTDs were

analyzed using MutLX algorithm. The results clearly indicate that MutLX can reliably identify and

eliminate the artefactual variant calls from a diverse set of DigiPico libraries (Table 1). This strongly

suggests that DigiPico/MutLX can effectively enable the study of recently acquired mutations in solid

tumors. Importantly, analyzing the frequency of different mutation types in these data indicated the

presence of a higher level of C > A mutations among the identified artefactual mutations, consistent

with the notion that such FP calls are a result of oxidative damage to the template DNA (Figure 2—

figure supplement 3; Figure 2—source data 4).

We next tested the feasibility of studying mutational processes in a patient with HGSOC

(#11152). For this patient, various sequencing data from a pre-chemotherapy omental mass were

available (standard bulk sequencing at 30x as well as five tumor islet DigiPico runs). The patient sub-

sequently had a recurrence and tumor samples were collected from the pelvis (pelvic recurrent

tumor; PT2R) and from the para-aortic lymph node (PALNR) for standard bulk sequencing as well as

DigiPico sequencing of tumor islets. The analysis of the bulk pre-chemotherapy sequencing data

identified 13,721 somatic mutations. 84.6% of these mutations were present in at least three tumor

islets from DigiPico data, 91.4% of which were also present in at least three additional islets from

previously published LFR data (Hellner et al., 2016). The high occurrence of the mutations indicates

that they were early mutations that became fixed in the tumor. The analysis of DigiPico data from

tumor islets revealed that there was a limited number of clone-specific mutations that were absent in

the bulk tumor. Each of the five pre-chemotherapy islets harbored a number of truly unique muta-

tions (2, 6, 8, 8, and 36), compared to other islets, indicating that they were recent occurrences

(Figure 3A). The bulk WGS data of the PT2R recurrence indicated the emergence of 3009 new

somatic mutations that were absent in the pre-chemotherapy bulk sequencing data, DigiPico data or

LFR data. These mutations may have occurred at any point since the common ancestors of the

omental mass and the PT2R recurrence diverged from each other (Figure 3A). The analysis of tumor

islets in the recurrence samples from patient #11152 showed that the pelvic recurrent tumor (PT2R)

has a high load of clone-specific mutations compared to the para-aortic lymph node recurrence

Table 1. Application of DigiPico sequencing and MutLX analysis to a diverse set of clinical samples.

Run ID Patient ID Sample type Collection site Sequencing platform Total UTD Passed UTDs Validation rate* AUC

D1110 #11152 Recurrence PT2R NextSeq 1634 4b NA 0.95

D1111 #11152 Recurrence PT2R NextSeq 1325 266 240/266c 0.85

D1112* #11152 Recurrence PT2R HiSeq 4000 1219 210 189/210c 0.85

D1511 #11152 Recurrence PALNR HiSeq X 1786 9 NA 0.94

D1210 #11152 Pre-chemo OM NextSeq 3139 28 16/28c 0.94

D1211 #11152 Pre-chemo OM HiSeq 4000 5521 69 17/69c 0.91

D1212 #11152 Pre-chemo OM HiSeq 4000 5015 24 16/24c 0.94

D1213 #11152 Pre-chemo OM HiSeq 4000 5090 46 25/46c 0.93

D1214 #11152 Pre-chemo OM HiSeq 4000 3415 37 27/37c 0.93

DE011 #11513 Normal Blood HiSeq X 1759 7b NA 0.95

DE111 #11513 Pre-chemo Ascites HiSeq X 3685 4b NA 0.97

D6311 OP1036 Pre-chemo RPCG HiSeq X 3185 12 NA 0.96

DA111 #11502 Pre-chemo LPrt NextSeq 12511 10 NA 0.97

GM12885 - Cell line - NextSeq 2970 3b NA 0.96

* Run D1112 is a technical replicate of run D1111. b Runs where true UTDs are not expected to be present.c Validation through comparison with indepen-

dent high-depth WGS data from the bulk of the tumor. * Validation rate is an under-estimation for the positive predictive value of clone-specific variants.

PT2R: Pelvic Tumor Recurrence; PALNR: Para-Aortic Lymph Node Recurrence; OM: Omental Mass; RPCG: Right Paracolic Gutter; LPrt: Left Peritoneum;

NA: Not Available; AUC: Area Under the Curve of receiver operating characteristic plot.

The study of active mutational processes using DigiPico/MutLX.
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Figure 3. Identification of an active mutational process using DigiPico/MutLX. (A) Schematic representation of tumor evolution in HGSOC patient

#11152. Standard bulk WGS of various tumor samples identified ~11000 shared somatic mutations among all sites. Dotted purple line indicates the

point at which the most recent common ancestor of the studied tumor samples has diverged. Bulk sequencing also identified nearly 5000, 3000, and

2000 sub-clonal mutations specific to the pre-chemotherapy omental mass, PT2R recurrence, and PALNR recurrence, respectively. These mutations

however could have occurred anytime during the expansion of these clones and is biased towards older mutations. This is due to the limitations in

identifying low-prevalence somatic mutations. DigiPico sequencing of five pre-chemotherapy tumor islets, PT2R and PALNR recurrence sites, however,

identified various numbers of recently emerged clone-specific mutations in each of these samples (represented in red numbers). The significantly higher

number of clone-specific variants in PT2R indicates the presence of an active mutational process. (B) This active mutational process is highlighted by the

presence of a strong clone-specific kataegis event on chromosome 17 in run D1111. Y-axis represents the pair-wise distance of consecutive somatic

mutations in log scale. Only mutations from chromosome 17 are shown. Mutations involved with the sub-clonal Kataegis event are highlighted in the

box, nearly all of which are in the form of strand-specific C > T or C > G mutations. This suggests the involvement of APOBEC enzymes in this hyper-

mutagenesis process. (C) Representative examples of some of the mutations involved in the kataegis. The presence of all the mutations on the forward

strand of the genome further confirms the involvement of a hyper-mutagenesis event (Figure 3—figure supplement 1).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. IGV images of SNVs that were identified in the sub-clonal kataegis in PT2R sample.
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(PALNR) or the pre-chemotherapy tumor. This observation suggests that, in this patient, molecular

mechanisms underlying the SNV mutagenesis may have been recently activated (Figure 3A). More-

over, analyzing the clone-specific mutations of the PT2R sample with a rainfall plot revealed the pres-

ence of a strong sub-clonal local hyper-mutagenesis (kataegis) event (Nik-Zainal et al., 2012) on

chromosome 17 (Figure 3B,C; Figure 3—figure supplement 1). Comparing the mutations that

made up this kataegis events to bulk sequencing data, DigiPico data and LFR data of the pre-che-

motherapy omental mass revealed that they were only found in the DigiPico PT2R data indicating

that they were genuine clone-specific mutations.

Discussion
In this work we presented DigiPico/MutLX as an integrated platform for the identification of muta-

tions from small groups of cells with unprecedented accuracy on a whole genome scale using an

ANN. While ANNs and other machine learning approaches have frequently been employed in the

field of genomics, however, the focus of these methodologies has mainly been on the elimination of

technical and computational noise from sequencing data (Cibulskis et al., 2013; Spinella et al.,

2016; Wang et al., 2013; Fang et al., 2015; Wood et al., 2018). Such sources of noise, resulting

from low-quality sequencing data or inaccurate mapping of short reads, lead to variant calls that had

not actually been present in the sequenced library and their elimination is essential for accurate iden-

tification of somatic mutations. However, these methods are unable to address the issue of artefac-

tual mutations that physically occur in the sequenced libraries due to the WGA of damaged DNA.

As such, artefactual mutations will exhibit all the features of real mutations and will not be eliminated

by the previously described algorithms. Given that the process of WGA ‘fixates’ such mutations into

the final library, it is essential to preserve some information prior to the start of the WGA which can

later be employed for identification of these sources of error. In our method, we preserve this infor-

mation by compartmentalizing the template DNA prior to the start of WGA and by subsequent

indexing of the compartments during the DigiPico library preparation pipeline. As a result, in MutLX

rather than trying to evaluate whether a variant call had indeed been present in the library, we use

the complex pre-WGA information to decipher whether the called mutations had existed in the orig-

inal template or they have artefactually arisen through the process of WGA. This critical distinction is

what allows us to identify extremely low-prevalence mutations in small populations of cells which in

turn enables the study of active mutational processes. We, therefore, believe that this work provides

an important stepping stone for the discovery of current or recent somatic mutational processes that

occur in cancer and normal tissue. It is also important to note that MutLX takes advantage of com-

partment level data generated through the DigiPico library preparation method followed by rela-

tively deep sequencing of each compartment. However, in theory, other linked-read library

preparation methods such as the commercially available 10x platform may also generate data that

could be utilized by MutLX, if modifications are applied. For such alternative approaches to benefit

from MutLX the DNA input should be lowered, and the depth of sequencing per each compartment

must significantly increase.

Understanding current mutational processes is key for predicting the evolutionary trajectory of a

tumor and, potentially, for interfering with such trajectories therapeutically. A mutation that is identi-

fied in bulk sequencing of a tumor must have occurred at a point during the extended history of a

tumor from the initiation till presentation. In contrast, a cell-specific mutation must have occurred

during the limited lifetime of that cell. Similarly, a mutation in a small clone that has been derived

from a single cell is also recent. The age of such a mutation can’t be more than the age of the clone

which is defined by the number of cell divisions it took to generate that clone. Studying patterns in

cell-specific or small-clone-specific mutations can allow for the identification of recent or current

mutational processes (Turajlic et al., 2019). Defining such processes is highly desirable since they

can be causally linked to biological or chemical phenomena and, therefore, yield significant mecha-

nistic insights. Identifying these mechanisms have important practical implications since they are

potentially amenable for therapeutic intervention or for predicting future tumor behavior. The cur-

rent state of the art does not allow the direct accurate identification of mutations from individual

cells or individual small clones from tumors. DigiPico/MutLX enables this endeavor for the first time.

To overcome significant technical pitfalls predominantly related to the discovery of FP mutations,

current methods for single cell WGS analysis either require extensive validation studies (Dong et al.,
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2017) or rely on combining data from multiple cells to obtain reliable mutations that are shared

between cells (Zafar et al., 2016; Laks et al., 2018). These cells are then grouped into clones that

have been derived from a common ancestor. While such techniques go to a more recent common

ancestor compared to bulk sequencing, they are still not ideal as data derived from these

approaches do not reflect mutational processes that are taking place in existing cells. Furthermore,

reducing the depth of sequencing per cell to enable sequencing large numbers of cells, reduces the

breadth of coverage, which is already compromised by loss of genetic materials during preparation

steps. This increases the number of cells that are needed to be analyzed for inferring and identifying

clones which in turn moves the ancestor further back into the past. In addition, the lack of informa-

tion about physical relatedness in single cell analysis methods, results in loss of an opportunity to

group cells that are likely to be from a single clone. This increases the gap between the ancestor of

an inferred clone and the present time, making it difficult to define processes that are active within

currently existing cells in a tumor.

DigiPico/MutLX has the distinct advantage of enabling the preservation of spatial information.

Analyzing spatially-related cells, preserves physical relatedness and enables the assumption that

physically related cells belong to an individual clone (Martincorena et al., 2018). Defining distinct

structures that may have arisen from a tissue resident stem cell has also been suggested to identify

and analyze clones. For example, cells from a single small intestinal crypt or a single endometrial

gland could be reasonable expected to come from a single tissue-resident stem cell (Moore et al.,

2018; Lee-Six et al., 2019). Under these circumstances, each anatomical unit defines a clone that

may or may not have clone-specific mutations that can be related to a mutational driver. Further-

more, sequencing data from a clone can be computationally used to infer subclones and predict

more recent events that may have arisen within a clone. This is akin to what bulk sequencing and

analysis achieves but at the level of a single clone that is composed of a limited number of cells. Pre-

serving spatial information is also particularly interesting because of the recent developments in

enabling spatial transcriptomics technologies (Burgess, 2019). It is conceivable that combining

highly accurate DNA sequencing with spatial transcriptomics would allow the dissection of genetic

and non-genetic heterogeneity in tissues. In short, current technologies, for the analysis of small

clones yield large number of FP results making it impossible to obtain direct accurate clone-specific

information on a genome scale without exhausting validation. Combing data from multiple clones, is

a common solution but moves the ancestor further back into the past. We have previously used this

approach for the analysis of small collection of tumor cells (tumor islets) (Hellner et al., 2016).

Because of the uncertainty associated with the mutation calls from individual islets, it was necessary

to only call mutations that were shared between all tumor islets and effectively identify only truncal

mutations. This was then followed by independent validation of some 700 mutations using targeted

sequencing. While this still yielded important biological insights, we were unable to study islet-spe-

cific mutations. DigiPico/MutLX is now enabling the study of such mutations. We demonstrated how

the direct analysis of DNA from ~30 cancer cells, resulted in the confident identification of a sub-

clonal kataegis event.

Overall, here we showed that DigiPico and MutLX can enable hyper-accurate identification of

somatic mutations from limiting numbers of cells obtained from clinical samples, as an important

improvement over the existing methodologies. Moreover, unlike other computational methods that

rely on diploid regions of the genome to calculate amplification biases, our method is also compati-

ble with genomes that suffer from extensive copy number alterations, such as in HGSOC. We believe

that the versatility of the DigiPico/MutLX method enables the study of active mutational processes

in tumors as well as in normal tissues.

Materials and methods

Patient samples and consent
Patients #11152, #11502 and #11513 provided written consent for participation in the prospective

biomarker validation study Gynaecological Oncology Targeted Therapy Study 01 (GO-Target-01)

under research ethics approval number 11/SC/0014. Patient OP1036 participated in the prospective

Oxford Ovarian Cancer Predict Chemotherapy Response Trial (OXO-PCR-01), under research ethics

approval number 12/SC/0404. Necessary informed consents from study participants were obtained
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as appropriate. Blood samples were obtained on the day of surgery. Tumor samples were biopsied

during laparoscopy or debulking surgery and were immediately frozen on dry ice. All samples were

stored in clearly labelled cryovials in �80˚C freezers (Table 2).

Cell lines
GM12885 lymphoblastoid cell line (RRID:CVCL_5F01) was obtained from Coriell institute and cells

were kept in culture as recommended by the provider and were immediately used for DNA

extraction.

Sectioning and LCM
Frozen tumor samples were embedded in OCT (NEG-50, Richard-Allan Scientific) and 10–15 mm sec-

tions were taken using MB DynaSharp microtome blades (ThermoFisher Scientific, USA) in a CryoStar

cryostat microtome (ThermoFisher Scientific, USA). Tumor sections were then transferred to PEN

membrane glass slides (Zeiss, Germany) and were immediately stained on ice (2 min in 70% ethanol,

2 min in 1% Cresyl violet (Sigma-Aldrich, USA) in 50% ethanol, followed by rinse in 100% ethanol. A

PALM Laser Microdissection System (Zeiss, Germany) was used to catapult individual tumor islets

into a 200 ml opaque AdhesiveCap (Zeiss, Germany).

Standard WGS and data analysis
DNA was extracted using DNeasy blood and tissue kit (Qiagen, USA). Up to 1 mg DNA was diluted

in 50 ml of water for fragmentation using a Covaris S220 focused-ultrasonicator instrument to achieve

250–300 bp fragments. The resulting DNA fragments were then used for library preparation using

NEBNext Ultra II library preparation kit (NEB, USA), following the manufacturer’s protocol. The

resulting libraries were sequenced on Illumina NextSeq or HiSeq platforms at a depth of 30 – 40x

over human genome. Sequencing reads in the FastQ format were initially trimmed using TrimGalore

(Krueger, 2016) and were then mapped to human hg19 genome using Bowtie2 (Langmead and

Salzberg, 2012). Germline variant calling was performed using GATK’s HaplotypeCaller following

the best practice guidelines (McKenna et al., 2010). Somatic variants were called using Strelka2

with a variant allele fraction (VAF) cut-off of 0.2 (35).

DigiPico sequencing
DigiPico library preparation workflow is composed of five simple reaction steps performed in 384-

well plate format (Figure 1—figure supplement 2). Addition of reagents can be performed using

readily available liquid handling robots such as Mosquito HTS liquid handler (SPT Labtech, United

Kingdom) (Video 1). For library preparation, 200 pg of purified DNA, 20–30 resuspended nuclei, or

laser-capture micro-dissected tumor islets, were first denatured using 5 ml of D2 buffer from Repli-g

single cell kit (Qiagen, USA). After 5 min incubation at room temperature, 95 ml of water was added

to the sample and then 200 nl of the denatured template was added to each well of a 384-well

Table 2. Summary of patient samples and associated sequencing experiments.

Patient ID Sample type Collection site

Analysis performed

Bulk WGS DigiPico sequencing

#11152 Normal Blood x

#11152 Pre-chemo Omentum x x

#11152 Recurrence Pelvic tumor x x

#11152 Recurrence Lymph node x

#11513 Normal Blood x x

#11513 Pre-chemo Ascites x x

OP1036 Normal Blood x

OP1036 Pre-chemo Paracolic gutter x x

#11502 Normal Blood x

#11502 Pre-chemo Peritoneum x x
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reaction plate already containing 800 nl of WGA

mix (0.58 ml Sc Reaction Buffer, 0.04 ml Sc Poly-

merase (REPLI-g Single Cell kit, Qiagen), 0.075

ml 1 mM dUTP (Invitrogen, USA), 0.04 ml Eva-

Green 20x (Biotium, USA), and 0.065 ml water).

The plate was incubated at 30˚C for 2 hr fol-

lowed by heat inactivation at 65˚C for 15 min.

Addition of EvaGreen in the reaction allows for

monitoring of the WGA reaction using a real-

time PCR machine if required (Hosokawa et al.,

2017). Next, controlled enzymatic fragmentation

(Peters et al., 2012) reaction steps were

sequentially performed on the whole genome

amplified DNA without any purification steps.

Briefly, (A) 1200 nl of UDG mix (0.08 U/ml rSAP

(NEB, USA), 0.2 U/ml UDG (NEB, USA), 0.4 U/ml

EndoIV (NEB, USA) in 1.8x NEBuffer 3) was added with 2 hr incubation at 37˚C and heat inactivation

at 65˚C for 15 min. (B) 1200 nl of PolI mix (0.4 U/ml DNA Polymerase I (NEB, USA) 0.25 mM dNTP, 8

mM MgCl2, and 0.8 mM DTT) was added with 1.5 hr incubation at 37˚C and heat inactivation at 70˚

C for 20 min. (C) 1200 nl of Klenow mix (0.5 U/ml Klenow exo- (NEB, USA), 0.5 mM dATP, 8 mM

MgCl2, and 0.8 mM DTT) was added with 45 min incubation at 37˚C and heat inactivation at 70˚C

for 20 min. (D) 400 nl of 20 mM full-length Illumina adapter oligos with well specific indices (Fig-

ure 1—source data 4) were added to each well followed by the addition of 1100 nl of Ligation mix

(40 U/ml T4 DNA Ligase (NEB, USA), 5 mM ATP, 11.5% PEG 8000 (Qiagen, USA), and 6.8 mM

MgCl2) and with 30 min incubation at 20˚C and heat inactivation at 65˚C for 15 min.

The resulting products were then pooled and the DNA was precipitated using an equal volume of

isopropanol. DNA was then resuspended in water and the products were dual-size selected using

Agencourt AMPure XP SPRI magnetic beads (Beckmann coulter) with 0.45x bead ratio for the left

selection and an additional 0.32x for the right selection. The purified DNA was then resuspended in

water and was immediately used for limited-cycle PCR amplification using the P5 and P7 primer mix

(Figure 1—source data 4). PCR was performed for 12 cycles with 10 s annealing at 55˚C and 45 s

extension at 72˚C. Final products were bead purified at 0.9x ratio. The resulting libraries were then

sequenced on Illumina sequencing platforms in 2 � 150 paired-end sequencing mode to achieve a

depth of coverage of 30 – 40x over human genome. The additional processing steps required for

the DigiPico library preparation, at present, adds nearly £250 to the total reagent costs.

Analysis of DigiPico sequencing data
The analysis pipeline of DigiPico sequencing data is presented in Figure 1—figure supplement 3.

Briefly, 384 paired-read FastQ files for each well were obtained after demultiplexing the Illumina

sequencing data. FastQ files were trimmed for adapter sequences and quality (Krueger, 2016). The

first 12 nucleotides of each read were also removed. For mapping, in this work, we used Bowtie2

(Langmead and Salzberg, 2012) with the ignore-quals parameter activated mainly due to its higher

speed. The ignore-quals parameter decreases the likelihood that low quality reads map to wrong

locations in the genome. Reads were mapped to human hg19 reference genome and duplicate

reads were marked using Picard Tools (Picard Tools, 2018). Joint variant calling was then performed

on all 384 individual bam files together with a merged bam file from all wells using Platypus variant

caller (Rimmer et al., 2014). The Platypus variant caller was chosen as it is currently the only algo-

rithm capable of swiftly handling simultaneous callings on a large number of inputs which is essential

for the analysis of DigiPico data. Next, all low-quality variants were removed by applying the quality

filters (QUAL >60, FR >0.1, HP � 4, QD >10, and SbPval � 0.95). Moreover, the total number of

wells covering each locus (Tw) and the number of wells supporting each variant (Vw) were deter-

mined and the well count filters (Tw >5, Vw > 2, and Vw/Tw >0.1) were applied to only retain the

high confidence loci for analysis. Lastly, all regions of the genome with bad mappability

(Derrien et al., 2012) were removed from the analysis using VCFtools (Danecek et al., 2011). The

resulting list of high confidence de novo DigiPico variants were then used to perform variant re-call-

ing (genotyping) on WGS data from blood and bulk of the tumor using Platypus with minPosterior

Video 1. Automated pipetting procedure of DigiPico

library preparation.

https://elifesciences.org/articles/55207#video1

KaramiNejadRanjbar et al. eLife 2020;9:e55207. DOI: https://doi.org/10.7554/eLife.55207 14 of 21

Tools and resources Cancer Biology Genetics and Genomics

https://elifesciences.org/articles/55207#video1
https://doi.org/10.7554/eLife.55207


parameter set to 0 and minMapQual parameter set to 5. Any variant that was confidently unsup-

ported in both of the standard WGS data, based on Platypus’s joint variant calling results, was

extracted as an UTD variant. Any variant that was confidently also present in the bulk sequencing

data of the blood sample (based on GATK analysis) was extracted as a TP (True Positive) variant (Fig-

ure 1—figure supplement 3). Since only very high confidence germline variant calls based on bulk

sequencing data are used in the labelling of the data at this stage, this step is impervious to the

choice of germline variant caller.

MutLX algorithm
The MutLX analysis pipeline is summarized in Figure 2—figure supplement 1.

Artificial neural network architecture
The neural network model used in this study is a multilayer perceptron with an input layer consisting

of N neurons (N = 41) where N is the number of features used in each experiment and was imple-

mented in Python3 using Keras (Chollet, 2015). The model has two hidden layers with ReLU activa-

tions. We varied these numbers but did not see any significant improvement when using larger

numbers of neurons. The last layer is a single output neuron with a sigmoid activation. The loss func-

tion is binary cross-entropy. For training, we applied a stochastic gradient descent optimization with

momentum (Adam Kingma and Ba, 2014) with a learning rate of 0.001, a batch-size of 8 and for 10

epochs. After 10 epochs we did not observe any additional improvement in performance.

Features used for training
The following features, extracted from the Platypus output of the DigiPico data, were used as the

input of neural network model:

Platypus quality parameters: QUAL, BRF, FR, HP, HapScore, MGOF, MMLQ, MQ, QD, SbPval,

NF, NR, TCF, and TCR (Rimmer et al., 2014).

Sequence context complexity: F20[1], F20[2], F20[3]. Where F20[i] is the sum of the frequency of

the i most abundant nucleotides in the 10 bp sequence on either side of the variant position.

Read distribution data:

Rmerge[ref+var], and Rmerge[var] (where Rmerge[x] indicates the total number of reads in the merged

bam file supporting the allele x. ref = reference allele; var = variant allele).

W[ref >0 and var = 0][], W[ref >0][0/0], W[ref >0][0/1], W[var >0][], W[var >0][1/1], W[var >0][0/

1], W[var >0 and ref = 0][0/1], and W[ref >0 and var >0][] (where W[i][j] is the number of wells

matching criteria i with genotype j. Absence of value for j indicates all genotypes were considered).

W[ref = 0 and var >n][] (5 �n � 0).

Rmax[m][var], and Rmax[m][ref+var] (3 �n � 0; Where Rmax[y][x] shows the number of reads in the

well with the yth highest number of reads supporting allele x).

Maxc + Maxr, and W[var >0][] - (Maxc + Maxr) (where Maxc is the number of variant supporting

wells in the column with the highest number of wells supporting the variant allele and Maxr is the

number of variant supporting wells in the row with the highest number of wells supporting the vari-

ant allele).

Training using MutLX
For each DigiPico run, we consider a full training set as the collection of all UTD variants (labelled as

0) and heterozygous germline SNPs (labelled as 1). The number of UTD variants in this set is much

smaller than heterozygous germline SNPs, making the set imbalanced. Therefore, in order to avoid

bias towards a specific label in the training we create 25 different balanced training subsets for each

DigiPico run. This is done so that each training subset is composed of all UTD variants and a ran-

domly selected subset of heterozygous germline SNPs with a size equal to the number of UTD var-

iants. As explained previously, the majority of UTD variants are FP variant calls with an unknown

ratio of true clone-specific variants among them, hence making the 0 labels noisy. To perform two-

step training considering these noisy labels, we employ the following strategy. After training an ini-

tial model on each balanced training subset, the resulting model is applied to the mutations in the

full training set to obtain an initial probability value for each mutation. These probability values indi-

cate the predicted probability of a mutation belonging to label one category. Hence, any 0 labelled
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mutation that attains a predicted probability value close to 1, is likely to be a mislabeled mutation.

Therefore, to reduce the level of mislabeled data in the training set, all UTD variants with a probabil-

ity value of more than 0.7 and all germline SNPs with a probability value of less than 0.3 are consid-

ered mislabeled and are removed from the training set. The cut-off values in this step were

empirically determined by the analysis of various simulated datasets. In the end, following a similar

sub-sampling strategy as in the initial training, a new model is trained on the remaining mutations of

the training set. This model is then used for the analysis of all UTD variants.

Calculation of probability and uncertainty scores
As explained earlier, in MutLX the training process is repeated 25 times with different randomly

selected germline SNP subsets, resulting in different models each time and hence 25 different pre-

dicted probability values for each mutation. We therefore defined the ‘probability score’ for each

mutation as the average of all of its predicted probability values:

Probabilityscore¼

Pn

i¼1

Pi

n

Where Pi is the probability value obtained from the ith training subset and n represents the num-

ber of subsets (n = 25).

Moreover, to obtain an uncertainty estimation for each probability value we performed a test-

time drop-out analysis (Gal and Ghahramani, 2015). The trained model was applied to each muta-

tion for 100 iterations during which, different neurons were dropped out with a rate of 0.8 and 0.7

for the first and the second hidden layers of the neural network, respectively. This process resulted

in 100 probability values for each mutation. Based on these values, we defined the ‘uncertainty

score’ for each mutation as the average of the dropout variances from the 25 different subsets:

Uncertaintyscore¼

Pn

i¼1

s
2
i

n

Where si
2 is the variance of 100 probability values obtained from the dropout analysis of the ith

training subset and n represents the number of subsets (n = 25).

The uncertainty scores of all variants with a probability score above 0.2 (Figure 2—figure supple-

ment 4) was used to generate a putative receiver operating characteristic (ROC) curve. The curve

was generated by considering a range of cut-off values between 0.0 and 0.25 for the uncertainty

score. At each cut-off value the ratio of germline SNPs that have an uncertainty score below the cut-

off value was plotted against the corresponding number of UTDs. The area under the curve (AUC)

was then calculated after normalizing the number of UTDs between 0 and 1. Note that in cases

where true clone-specific variants are not expected (all UTDs are FP calls), this plot represents a

ROC curve and the AUC of this plot should be close to 1, assuming a perfect model. In contrast, in

when the AUC is significantly lower, it indicates the presence of true clone-specific variants in the

sample. This negative correlation between the number of true UTDs and AUC was validated using

simulated datasets (Figure 2—figure supplement 5). Based on these observations, for samples

where the ROC curve suggests the presence of true clone-specific variants (AUC <0.9) MutLX uses

‘uncertainty score’ cut-off values that result in a TPR of 95% to improve the recovery rate of clone-

specific variants. For datasets with an AUC �0.9 the cut-off value for filtering the data was deter-

mined based on the intersection of the threshold curve and the ROC curve.

Generation and analysis of simulated DigiPico datasets
Simulated data were used to: (a) validate the negative correlation between the number of true UTDs

and AUC (Figure 2—figure supplement 5) and (b) ensure that over-fitting to potentially true clone-

specific variants does not occur (Figure 2—figure supplement 2).

To generate simulated datasets, we first identified somatic mutations in the bulk WGS data of the

tumor sample PT2R from patient #11152 using Strelka2 somatic variant caller (Kim et al., 2018).

These somatic variants were then identified in the de novo variant calling data of run D1110 and any

somatic variant with a Tw > 6 and Vw/Tw > 0.45 was selected as a high-confidence somatic variant.
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Next, various numbers of randomly selected high-confidence somatic variants were artificially misla-

beled as UTDs (UTD*) to achieve 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, and 0.1 UTD*/

UTD ratios. The resulting synthetic list of variants were then independently used for MutLX analysis

and the number of UTDs and UTD*s that passed the MutLX filtering were calculated for each run. To

ensure a robust analysis, for each ratio 10 different subsets of the somatic variants were analyzed. A

similar analysis was also performed on the DigiPico data DE111, obtained from the bulk DNA extrac-

tion from an ascites sample of patient #11513.

Validation of MutLX algorithm
Tumor sample PT2R from patient #11152 was used for the validation of the MutLX algorithm. A

small piece of the tumor was macro-dissected from a frozen specimen and was embedded in OCT

medium for sectioning. The first section (15 mm) from the tumor was collected in a separate tube

and the nuclei were resuspended in 50 ml of sterile PBS solution. Total number of nuclei in the sus-

pension was measured and a volume containing 30 nuclei was used for direct denaturation with an

equal volume of D2 buffer from Repli-g mini WGA kit (Qiagen). The resulting crude lysate was

directly used for DigiPico library preparation for run D1111. The remainder of the tumor sample was

then used for bulk DNA extraction using DNeasy blood and tissue kit (Qiagen). 200 pg of the result-

ing DNA was directly used to prepare DigiPico library D1110. 1 mg of the DNA was used for stan-

dard library preparation using NEBNext Ultra DNA library preparation kit (NEB). In this setting only

run D1111 is expected to have true clone-specific variants. Since the template for run D1110 is a

subset of the template used in the bulk WGS analysis, nearly all real variants in run D1110 will also

be present in the WGS data at similar frequencies and therefore will not be identified as UTDs. A

similar logic is also applicable to the results of DigiPico runs DE011 and GM12885. Since both of

these DigiPico runs had been performed on 200 pg of DNA from bulk DNA extractions, no true

UTD variants are expected to be present in these samples. It is also worth noting that because of

the digitized nature of the data, variants with very low frequencies (<0.05%) will show an inflated

VAF in runs D1110, DE011, and GM12885, however, since such variants are unlikely to appear in

more than one well, they will be eliminated from the data based on the Vw filter. Therefore, it is safe

to assume that nearly all UTD variants in these runs are FP calls.

Application of SCcaller on DigiPico data
SCcaller has originally been developed for the analysis of multiple displacement amplified single cell

sequencing data (Dong et al., 2017). Since DigiPico library preparation also requires multiple dis-

placement amplification on limiting amounts of template DNA, the resulting data are fundamentally

similar to the natural input for SCcaller. Therefore, we used the merged bam file of DigiPico data as

an input for SCcaller. For the analysis, the list of heterozygous SNPs was obtained from the respec-

tive bulk WGS data using GATK HaplotypeCaller and cut-off values were used for alpha = 0.01.

Next, all filtered SNVs were used for variant re-calling on respective standard WGS data and all var-

iants that were confidently unsupported by WGS data were extracted as UTD variants.

Mutation validation
Variants that pass the MutLX analysis were validated by comparison with deep sequencing data of

the bulk tumor from an independent sequencing platform. All DigiPico data from patient #11152

were validated through comparison with 39 deep sequencing datasets obtained from the same

tumor masses sequenced on Complete Genomics sequencing platform (Drmanac et al., 2010). This

included three Complete Genomics bulk sequencing and 36 LFR (Long-Fragment Read) sequencing

data. Since the independent sequencing data for the omental mass were not obtained from exactly

the same tumor mass as the ones that were used for DigiPico sequencing the validation rate by such

a comparison for these runs is not expected to be high. For targeted validation, primers were

designed to obtain amplicons containing the variants using the primer3 tool (Figure 2—source data

5). Amplicons were obtained by performing a 2-step PCR using Phusion High-Fidelity PCR Master

Mix with GC Buffer for 16 cycles on 1 ng of template. All amplicons from each sample were then

pooled and purified before adapter ligation and indexing using NEBNext Ultra II kit. The resulting

libraries were sequenced on a MiSeq platform. Sequencing results were mapped to human hg19
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genome using Bowtie2 and the number of reads supporting each variant was counted using Platypus

variant caller.

Local hyper-mutation (kataegis) analysis
To generate the rainfall plots, the distances between pairs of consecutive somatic mutations on chro-

mosome 17 were plotted against their genomic position of the second mutation in each pair using a

custom script in R. The presence of clusters of localized mutations indicates kataegis events. In these

plots, each dot is colored based on the mutation type of the second mutation in the pair in respect

to the hg19 human reference genome.

Code availability
Source code for MutLX is available on Github at https://github.com/mmdknr/

DigiPico (KaramiNejadRanjbar and Sharifzadeh, 2020; copy archived at https://github.com/elifes-

ciences-publications/DigiPico).

Accession numbers
Sequence data has been deposited at the European Genome-phenome Archive (EGA), which is

hosted by the EBI and the CRG, under accession number EGAS00001003555 (EGAD00001005118).

Further information about EGA can be found on https://ega-archive.org ‘The European Genome-

phenome Archive of human data consented for biomedical research’.
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