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Abstract. We consider the problem of predicting instantiated binary
relations in a multi-relational setting and exploit both intrarelational
correlations and contextual information. For the modular combination
we discuss simple heuristics, additive models and an approach that can
be motivated from a hierarchical Bayesian perspective. In the concrete
examples we consider models that exploit contextual information both
from the database and from contextual unstructured information, e.g.,
information extracted from textual documents describing the involved
entities. By using low-rank approximations in the context models, the
models perform latent semantic analyses and can generalize across spe-
cific terms, i.e., the model might use similar latent representations for
semantically related terms. All the approaches we are considering have
unique solutions. They can exploit sparse matrix algebra and are thus
highly scalable and can easily be generalized to new entities. We evaluate
the effectiveness of nonlinear interaction terms and reduce the number of
terms by applying feature selection. For the optimization of the context
model we use an alternating least squares approach. We experimentally
analyze scalability. We validate our approach using two synthetic data
sets and using two data sets derived from the Linked Open Data (LOD)
cloud.

1 Introduction

There recently has been a growing interest in the prediction of the truth values of
(instantiated) binary relations, i.e., grounded statements. A major reason is the
growing amount of data that is published in the Linked Open Data (LOD) cloud
where information is represented in the form of subject-predicate-object (s, p, o)
triples. In the associated RDF graph (Resource Description Framework), entities
(i.e., subjects and objects) are represented as nodes and statements are repre-
sented as directed labeled links from subject node to object node. Thus relation
prediction becomes equivalent to the prediction of labeled links. In this paper
we focus on the prediction of statements with a common predicate p and with
defined sets of subject nodes and object nodes. We then generalize to entities not
in the training set. For predicting instantiated binary relations we exploit both
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intrarelational correlations and contextual information. Intrarelational correla-
tions exploits dependencies within the relation of interest and would correspond
to the data dependencies exploited in typical collaborative learning systems.
Contextual information consists of all other information sources.

In the concrete examples we consider models that exploit two sources of
contextual information. The first one is multi-relational contextual information
that is derived from the database. The second one concerns information from
unstructured sources, e.g., in form of textual documents describing the involved
entities (e.g., from the entities’ Wikipedia pages). As a new contribution we
exploit nonlinear interactions between the associated information sources. By
using low-rank approximations in the context models, the models perform latent
semantic analyses and can generalize across specific terms, i.e., the model might
use similar latent representations for semantically related terms. In [12] we have
introduced a hierarchical Bayesian approach that is highly scalable by exploiting
sparse matrix algebra, can easily generalize to new entities and does not suffer
from local optima. [13] describes the additive modelling approach in greater
detail. In this paper we compare the two approaches and also consider simple
heuristic solutions.

The paper is organized as follows. The next section discusses related work.
Section 3 describes our different ways of combining contextual information with
intrarelational correlations. In section 4 we discuss how context information can
be modeled and we introduce an alternating least squares solution for combining
intrarelational correlations with contextual information. Section 5 contains our
experimental results on synthetic data sets and on two data sets derived from
the Linked Open Data (LOD) cloud. We also perform extensive experiments on
scalability. Section 6 presents our conclusions.

2 Related Work

Some standard models for relational learning are, e.g., Probabilistic Relational
Models [16,9], Markov Logic Networks [24] and the infinite models in [29,15].
Although conceptionally elegant, they are difficult to apply and often involve
complex structural learning.3 Our approach is related to link prediction, which
is reviewed in [22,8]. SVD-based decompositions, as used in our approach, were
compared to nonnegative matrix factorization (NMF) and latent Dirichlet alloca-
tion (LDA) in [10]. All three approaches benefitted greatly from regularization
and then gave comparable performance. We used SVD-based decompositions
since they can efficiently be computed using highly optimized packages, since
predictions for new entities can be calculated easily and since they have unique
solutions.

The winning entries in the Netflix competitions are based on matrix factoriza-
tion [25,1,4]. The main difference is that, in those applications, unknown ratings

3 As an example, we were not successful in getting the structural learning in MLNs
to work in our domains.



Scalable Relation Prediction 3

can be treated as missing entries. In contrast, in relation prediction an instanti-
ated relationship not known to be true is very likely untrue. In the experiments
in our paper we include the hierarchical Bayesian model developed in [12]. An
advantage of that model is that it is based on a probabilistic generative model.

RFD graphs also map elegantly to a tensor representation. Tensor models for
relational learning have been explored in [20] and [21], showing both scalability
and state-of-the-art results on benchmark datasets.

Recently, there has been quite some work on the relationship between kernels
and graphs [5,27,7,3,18]. Kernels for semi-supervised learning, for example, have
been derived from the spectrum of the Graph-Laplacian. In [30,28] approaches
for Gaussian process based link prediction have been presented. Link prediction
in relational graphs has also been studied by the relational learning communities
and by the ILP communities [26,19,17]. Kernels for semantically rich domains
have been developed by [6]. Link prediction is covered and surveyed in [22,8].
Inclusion of ontological prior knowledge to relational learning has been discussed
in [23].

3 Relation Prediction by Exploiting both Intrarelational
Correlation and Context Information

3.1 Notation and Contextual Information

In this paper we assume that binary relations are presented by RDF triples of
the form (s, p, o) where subject s and object o stand for entities in a domain
and where p is the predicate. In an RDF graph, entities are nodes and a triple is
a labeled directed link from subject node to object node. Let Zi,j,k be a variable
assigned to the triple (s = i, p = j, o = k). Zi,j,k = 1 stands for the fact that
the corresponding triple is known to exist and Zi,j,k = 0 stands for the fact that
the corresponding triple is not known to exist.

We are now interested in a particular set of triples {(s = i, p = p, o =
k)}i,k where p = p is fixed and where the sets of subject and object entities
are known. Let X be the matrix of Z-values where (X)i,k = 1 if (s = i, p
= p, o = k) is known to exist; otherwise (X)i,k = 0. In the following we will
derive a number of matrices where the zeros are replaced by continuous numbers
that can be interpreted as confidence values for a relation being true, based on
the available evidence. In a probabilistic sense, we can interpret the continuous
numbers as P ((X)i,k = 1|Data). These confidence values can then be the basis
for classification and ranking tasks as described in Section 5.

In this paper we assume that contextual information is available from which
we can derive an estimate of how likely a target relation is true, denoted by

fi,k.

Contextual information might consist of other statements in the knowledge base
relevant for the relation under consideration, but could also include unstruc-
tured information, e.g., textual documents describing the involved entities (see
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Section 4). The corresponding matrix F with (F )i,k = fi,k has the same di-
mensionality as X and entries typically assume values between zero and one,
although this is not enforced.

Our first and most simple estimate for the confidence values for statements
would be simply derived from this estimate and represents a pure context-based
model of the form

XF = F. (1)

Here we do not exploit intrarelational correlations and this solution is sensible if
X is very sparse. Alternatively, we might trust the ones in the X matrix (which
represent certain facts) and use

XM = max(X,F ) (2)

where max is applied componentwise or, if we are willing to tolerate confidence
values greater than one,

XS = X + F. (3)

In both solutions, F is mostly relevant to the zero entries of X.

3.2 Intrarelational Correlations

In many applications the correlations in the relational matrix can be exploited
to derive predictions, an effect often associated with collaborative filtering. The
leading approaches exploiting intrarelational correlations are based on a factor-
ization of X, which is also the approach we are taking.

We propose to minimize the cost function

min
Xr

‖X −Xr‖2F

where we impose the constraint on Xr to have a maximum rank of r.
It is well known that one specific solution can be derived from a singular

value decomposition (SVD) with

X = UDV T (4)

where U and V are matrices with orthonormal columns and whereD is a diagonal
matrix. The diagonal entries di ≥ 0 are ordered according to magnitude. The
optimal r-rank reconstruction can be written as

Xr = UrDr V
T
r

where Ur and Vr contain the first r columns of the respective matrices and
where Dr is a diagonal matrix with the r leading components of D. Low-rank
reconstructions are used in latent semantic analysis to generalize from observed
terms to related terms, they are an important ingredient in the winning entries in
the Netflix competition [25,1,4], and they also give very good results in predicting
links in semantic graphs [10].
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We also consider a regularized version which typically improves predictions
significantly by using the cost function

min
W̃

(
‖X −XrW̃‖2F + λ‖W̃‖2F

)
where Xr is fixed and where the parameter matrix W̃ is optimized.

The overall solution is then4

XCF = Ur diag

{
d3i

d2i + λ

}r
i=1

V Tr

= Ur diag

{
d2i

d2i + λ

}r
i=1

UTr X = XVr diag

{
d2i

d2i + λ

}r
i=1

V Tr (5)

where diag
{

d2i
d2
i
+λ

}r
i=1

is an r×r diagonal matrix with r diagonal entries. In the

following we assume that X has fewer rows than columns such that Ur is fast
to compute based on an SVD of the kernel matrix XXT , but one should simply
apply the reconstruction most suitable.

We can easily generalize to a new subject entity with xnew (as column vector)
using

xnewCF = Vr diag

{
d2i

d2i + λ

}r
i=1

V Tr x
new = XTUr diag

{
1

d2i + λ

}r
i=1

UTr Xx
new. (6)

We can now include contextual information by adding the context matrix
and the intrarelational module and obtain as a heuristics

XH = XCF + F. (7)

Note that in contrast to XS, here we use XCF instead of X and we obtain a
combination model that exploits correlations in X. Thus we will get a high score
for a link, if either the context model or the intrarelational model (or both) is
positive about the link.

3.3 Hierarchical Bayes

So far, the combination scheme in Equation 7 might be considered a plausible
heuristic. In this section and in the next section we consider two combination
schemes that can be derived from principled approaches.

In [12] we described a hierarchical Bayesian (HB) approach for the combina-
tion of contextual information with intrarelational correlation. It motivates the
following approach: We are searching for the low-rank approximation XHBS that
minimizes

min
XHBS

‖XS −XHBS‖2F

4 Here and in the following we have typically these three ways of formulating the solu-
tion. One should take the one which is most efficient considering the dimensionalities
of the involved matrices.
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where XS = X +F was defined in Equation 3. Again, the solution can be based
on the SVD, in this case in the form of

X + F = UMFDMFVMFT

and a regularized low-rank approach now leads to the model

XHBS = UMF
r diag

{
(dMF
i )2

(dMF
i )2 + λ

}r
i=1

UMF
r

T
(X + F ). (8)

A similar solution, i.e., XHBM, is obtained if we use XM instead of XS. Note that
for XH we first smooth X via a regularized low-rank approximation and then
add F , whereas for MHBS we first add X and F and then smooth the resulting
matrix.

Alternatively we can use as a basis the decomposition of X instead of the
decomposition of X + F and obtain

XHBS2 = Ur diag

{
d2i

d2i + λ

}r
i=1

UTr (X + F )

= XCF + Ur diag

{
d2i

d2i + λ

}r
i=1

UTr F. (9)

For XHBS2 we can exploit sparse matrix algebra for calculating the decomposi-
tion of X (whereas X+F is typically non sparse) and F only needs to be calcu-
lated for the entities of interest. Interestingly, the solution consists of adding to
XCF a regularized projections of F using the largest singular values, so we add
to XCF a “low-frequency” version of F .

3.4 Additive Models

The idea here is that the intrarelational correlations should only model the
residual difference after F has been subtracted from X. The goal is then to
minimize the cost function

min
XCFa

‖X − (F +XCFa)‖2F .

A regularized low-rank approximation where the basis is calculated from the
decomposition of X is then

XCFa = Ur diag

{
d2i

d2i + λ

}r
i=1

UTr (X − F ) (10)

and the overall prediction is

Xadd = XCFa + F
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such that

Xadd = XCFa + F = Ur diag

{
d2i

d2i + λ

}r
i=1

UTr (X − F ) + F

= XCF + U

(
I − diag

{
d2i

d2i + λ

}r
i=1

)
UTF. (11)

Interestingly, the solution consists of adding to XCF a “high frequency” version
of F .

In the next section we derive specific models for F . An overall additive model
where F and Xadd are adapted in turn (the latter using Equation 10) and where
Equation 11 is used for overall prediction is defined as Xglobal.

4 Context Models for Our Applications

4.1 Context Models Based on the Database

So far, f could have been an arbitrary function of context information. We see
this as a great advantage of our approach since it permits a great modularity and
the context model and the intrarelational model can be optimized independently.

Now we derive a specific context model that we will use in the applications.
Let’s consider a multi-relational database of triples (i.e., a triple store). Let A
be a matrix with as many rows as X, i.e., with one row for each subject entity
in X. The columns of A represent features describing the subjects in X. In the
simplest case they consist of the truth value of all (relevant) triples with the
same subject. Consider the example that rows are users and columns are movies
and the task is to predict if a user watches a movie. In this example, a particular
column in A might indicate if a user is of young age and the model would be
able to exploit the preference of young people for certain movies.

Similarly, B is a matrix. The number of rows of B is equal to the number
of columns of X.The columns of B represent features describing the objects in
X. In the simplest case they consist of the truth values of all (relevant) triples,
where the object of X is the subject. Following the example, a column in B might
indicate if a movie is an action movie and the model can exploit the preference of
some people for action movies. Thus B is suitable to model personal preferences.

Finally, we introduce the matrix C formed by the Kronecker product C =
A ⊗ B, i.e., C contains all possible product terms of the elements of A and B.
The number of rows in C is the number of rows of A times the number of rows
of B and the number of columns in C is the number of columns of A times the
number of columns of B. Following the example, a column in C might indicate
if a movie is an action movie and, at the same time, the user is young and the
model might learn that young people like action movies.

We now write a least squares cost function

‖X − F‖2F
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where
F = AWA + (BWB)T + matrix(CwC) (12)

and where matrix(·) transforms the vector into a matrix of appropriate dimen-
sions. ‖ · ‖F is the Frobenius norm. The matrices WA and WB and the vector
wC contain the parameters to be optimized. Thus we predict the entries in F as
a linear combination of the subject features in A, the column features in B and
the interaction features in C.

To control overfitting, we add to the cost functions the penalty terms λA‖WA‖2F ,
λB‖WB‖2F , and λC‖wC‖2F .

To reduce the amount of computation and also as a means to prevent overfit-
ting, we are looking for low-rank solutions with ranks rA, rB , and rC as discussed
in the next subsection. By using low-rank models, the models perform latent se-
mantic analyses and can generalize across specific terms, i.e., the model might
use similar latent representation for semantically related terms.

The number of interaction terms in C can easily be several millions, so we
perform fast feature selection strategies by evaluating the Pearson correlation
between targets and features.

4.2 Alternating Least Squares

An easy way to optimize the cost function is to repeatedly iterate over all three
terms where in each iteration we keep the other two fixed.

Let

X−A = X −
(
(BWB)T + matrix(CwC)

)
X−B = X −

(
AWA + matrix(CwC)

)
X−C = X −

(
AWA + (BWB)T

)
and let x−C = vec(X−C).

The individuals contributions are the calculated as

AWA = UA,rA diag

{
(d

(A)
i )2

(d
(A)
i )2 + λA

}rA
i=1

UTA,rAX
(−A) (13)

BWB = UB,rB diag

{
(d

(B)
i )2

(d
(B)
i )2 + λB

}rB
i=1

UTB,rB (X(−B))T (14)

CwC = UC,rC diag

{
(d

(C)
i )2

(d
(C)
i )2 + λC

}rC
i=1

UTC,rCx
(−C) (15)

where we have used the singular value decompositions (SVD)

A = UADAV
T
A B = UBDBV

T
B C = UCDCV

T
C (16)

and where UA,rA contains the first rA columns of UA, UB,rB contains the first
rB columns of UB , and UC,rC contains the first rC columns of UC .
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Again we can exploit sparse matrix algebra for calculating the decomposi-
tions. The convergence of the alternating least squares algorithm is quite fast,
requiring fewer than 10 iterations.

Note again that we can include the intrarelational model as an additional
fourth component to be optimized with alternating least squares leading to the
model Xglobal introduced in Section 3.4. A more extensive analysis of the ad-
ditive models can be found in [13] where also additional feature candidates are
discussed. Since the bases for the decompositions (calculated in Equations 4
and 16) are calculated before the optimization of the parameters, the alternat-
ing least squares iterations converge to unique solutions. 5

4.3 Incorporating External Information Sources and Aggregation

In the applications we are considering we sometimes have available textual data
describing the involved entities. We simply treat the keywords in the textual
descriptions as additional features describing subjects, resp. objects. In some
applications, it is useful to add aggregated information. This can be represented
as additional features as well.

5 Experiments

5.1 Scalability

For the kind of relational data that we are considering, X is very sparse and the
reduced-rank reconstruction can be calculated efficiently. Figure 1 shows exper-
imental results. Note that for a sizable X-matrix with 105 rows, 106 columns,
107 nonzero elements and a rank of r = 50, the computation only takes ap-
proximately 10 minutes on a standard laptop computer. For matrices where
K = XXT becomes dense one might employ the alternating least squares solu-
tion described in [20] that does not rely on a sparsity of K in the factorization
and does not enforce orthogonality constraints.

5.2 Tuning of Hyperparameters

The approaches contain up to 8 hyperparameters (r, rA,rB ,rC , λ, λA,λB ,λC)
which are tuned using cross-validation sets (i.e. they are not tuned on the test
set). We follow the approach described in [2] and perform a random search for
the best hyperparameters.

5 Recall that we first calculate the kernel matrix K = XXT and then perform the
SVD decomposition. Naturally, we could start with a kernel matrix suitable for the
RDF graph. In this view our alternating least squares solution is an efficient way
of calculating a kernel solution with a kernel k(s, s′, o, o′) = kCF (s, s′) + kA(s, s′) +
kB(o, o′) + kC(s, s′, o, o′) where kCF (s, s′) is the intrarelational kernel, kA(s, s′) is a
kernel for subject nodes, kB(o, o′) is a kernel for object nodes, and kC(s, s′, o, o′) is
a kernel for modeling interactions.
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Fig. 1. We consider a sparse random N ×M matrix X. First we construct the kernel
matrix via K = XXT and then use sparse SVD to obtain Ur. The top left figure shows
computational time for the SVD as a function of N (red dashed). We see approximately
a linear dependency which is related to the fact that the number of rows of U is N as
well. In this experiment, r = 50, M = 106 and the number of nonzero entries in X is
p = 106. The top right figure shows computation time for the SVD as a function of M
(red dashed). We see a decrease: the reason is that with increasing M , K becomes less
dense. We used p = 106, N = 105, and r = 50. The bottom left shows an approximately
quadratic dependency of the computational time for the SVD on p (M = 106, N = 105,
r = 50) (red dashed). Note that the last data point in the plot is a system with p = 107

requiring only 10 minutes of computation. Finally, the bottom right figure shows the
dependency on r (M = 106, N = 105, p = 106) (red dashed). A 10 fold increase in r
approximately displays a 10 fold increase in computational cost. Each figure also shows
the computational time for calculating K = XXT , which, in comparison, is negligible
(blue continuous). A prediction for data for a novel subject (i.e., a new row in X) can
efficiently be calculated using Equation 6.
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5.3 Synthetic Data

The synthetic data has been generated according to our modeling assumptions.
The target relation is a sum of four components: the first one is modeling the
intrarelations correlation, the second one uses features describing the subject
entities, the third one uses features describing the object entities, and the fourth
one uses interaction terms. In the first experiment, both the intrarelational cor-
relation and the context models have predictive power and all six combination
schemes improve upon the subsystems. The additive models Xadd and Xglobal

seem to be more robust and perform well on both experiments.
We randomly selected one true relation to be treated as unknown (test state-

ment) for each subject entity in the data set. In the test phase we then predicted
all unknown relations for the entity, including the entry for the test statement.
The test statement should obtain a high likelihood value, if compared to the other
unknown entries. The normalized discounted cumulative gain (nDCG@all) [11]
is a measure to evaluate a predicted ranking.

5.4 Associating Diseases with Genes

As the costs for gene sequencing are dropping, it is expected to become part of
clinical practice. Unfortunately, for many years to come the relationships between
genes and diseases will remain only partially known. The task here is to predict
diseases that are likely associated with a gene based on knowledge about gene
and disease attributes and about known gene-disease patterns.

Disease genes are those genes involved in the causation of, or associated
with a particular disease. At this stage, more than 2500 disease genes have been
discovered. Unfortunately, the relationship between genes and diseases is far from
simple since most diseases are polygenic and exhibit different clinical phenotypes.
High-throughput genome-wide studies like linkage analysis and gene expression
profiling typically result in hundreds of potential candidate genes and it is still a
challenge to identify the disease genes among them. One reason is that genes can
often perform several functions and a mutational analysis of a particular gene
reveals dozens of mutation cites that lead to different phenotype associations to
diseases like cancer [14]. An analysis is further complicated since environmental
and physiological factors come into play as well as exogenous agents like viruses
and bacteria.

Despite this complexity, it is quite important to be able to rank genes in terms
of their predicted relevance for a given disease as a valuable tool for researchers
and with applications in medical diagnosis, prognosis, and a personalized treat-
ment of diseases.

In our experiments we extracted information on known relationships between
genes and diseases from the LOD cloud, in particular from Linked Life Data and
Bio2RDF, forming the triples (Gene, related to, Disease). In total, we considered
2462 genes and 331 diseases. For genes we extracted 11332 features and for
the diseases 1283 features from the LOD cloud. In addition, we retrieved 8000
textual features describing genes and 3800 textual features describing diseases
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Fig. 2. Test results on synthetic data. In the first experiment (top), we had 100 sub-
jects and 80 objects, A had 80 columns, B had 80 columns, and C had 8000 rows and
4000 columns. The three context models FY |A, FY |B , and FY |INTER make valuable
predictions significantly above random. The combination of all three context models,
i.e., XF = Fall, is better than any of the individual context models. The context model
and the intrarelation correlation are comparable strong in prediction: XCF gives com-
parable results to Fall. All six combination schemes are better than the intrarelational
model or the context model on their own, so all combination schemes are sensible.
The additive model Xadd and the additive model where the context model and the
context model are jointly optimized (Xglobal) perform best, although there is no statis-
tical significant difference between the 6 combination models. In the second experiment
(bottom), we had 1000 subjects and 1000 objects, A had 6 columns, B had 7 columns,
and C had 1000000 rows and 42 columns. Thus the intrarelation correlation is stronger
than the contextual model. Xadd and Xglobal show better performance than XCF and
Fall individually.
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from corresponding text fields in Linked Life Data and Bio2RDF. After applying
feature selection, the interaction matrix C had 814922 rows and 1133 columns.

Figure 3 shows the results. This is a very interesting data set: when pre-
dicting diseases for genes, the contextual information (reflected in Fall) and the
intrarelation correlational (reflected in XCF) are both equally strong; in most
data sets, one of the two is dominating. All six combination schemes are effective
and provide results significantly better than Fall or XCF on their own. Predict-
ing genes for diseases generally gives a weaker nDCG score and the leading
approaches are Xadd and Xglobal.

5.5 Predicting Writer’s Nationality in YAGO2

The final set of experiments was done on the YAGO2 semantic knowledge base.
YAGO2 is derived from Wikipedia and also incorporates WordNet and GeoN-
ames. There are two available versions of YAGO2: core and full. We used the first
one which currently contains 2.6 million entities, and describes 33 million facts
about these entities. Our experiment was designed to predict the nationalities
of writers. We choose four different types of writers: American, French, German
and Japanese.

We obtained 440 entities representing the selected writers. We selected 354
entities (i.e., writers) and added textual information describing the writers and
the countries. We performed 10-fold cross validation for each model, and eval-
uated them with the area under precision and recall curve. Figure 4 shows the
results. As there are only 4 nationalities, which are almost always mutual ex-
clusive (there is a small number of writers with more than one nationality),
the intrarelational correlation is quite weak and the country attributes were not
used. Interestingly, the interaction term is reasonable strong (FY|INTER). In fact,
no model is better than FY |W which only exploits the contextual information of
the writers.

6 Conclusions

In this paper we have considered the problem of predicting instantiated binary
relations in a multi-relational setting and exploit both intrarelational correlations
and contextual information. We have presented a number of sensible algorithms.
The algorithms are all modular and have unique solutions. As contextual infor-
mation we consider information extracted from the database and textual data
describing the entities. To include contextual information we use an alternating
least squares approach that includes models for subject features, object features
and an interaction model. By using low-rank approximations in the context
models, the models perform latent semantic analyses and can generalize across
specific terms, i.e., the model might use similar latent representation for seman-
tically related terms. The approaches can exploit sparse matrix algebra and, as
we have demonstrated experimentally, are highly scalable. The models can easily
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Fig. 3. The goal is to predict the relationship between genes and diseases. On the
top we ranked recommended diseases for genes and on the bottom we ranked recom-
mended genes for diseases. We considered contextual features from disease attributes
FY |AD and from gene attributes FY |AG, and contribution from the interaction term
FY |INTER. The combination of all contextual models in Fall is better than the individ-
ual context models where FY |INTER is not better than random. All six combination
schemes are better than the intrarelational model or the context model on their own, so
all combination schemes are sensible. In this experiment, two of the hierarchical Bayes
models, i.e., XHBS and XHBS2 give best results. The results are generally better than
the results reported in [12] since, there, only contextual features from text documents
were used. The second task, predicting genes for diseases, is more difficult due to the
great number of potential genes. Intrarelational correlation on its own is relatively weak
(XCF). Again, all combination schemes give good results.
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Fig. 4. The task is to predict the nationalities of writers. The writer attributes FY |W
have considerable predictive power. The intrarelational correlation (XCF) benefits from
the imbalance of classes. We display the area under precision/recall curve on writers
not in the training set (induction). None of the combination models is significantly
better than FY |W , which in this experiment is reasonable, since very few writers have
more than one nationality (of the combination schemes, we only show XH).

be applied to new entities not considered in model training. We presented experi-
mental results on synthetic data, on life science data from the Linked Open Data
(LOD) cloud. All the presented combination schemes are effective and there is
no clear best approach, although there seems to be a general advantage for the
additive models Xadd and Xglobal.
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