
Deep Answers for Naturally Asked Questions
on the Web of Data

Mohamed Yahya, Klaus Berberich, Shady Elbassuoni,
Maya Ramanath‡, Volker Tresp†, Gerhard Weikum

Max Planck Institute for Informatics, Germany
myahya,kberberi,elbass,weikum@.mpi-inf.mpg.de

‡Dept. of CSE, IIT-Delhi, India †Siemens AG, Corporate Technology, Munich, Germany
ramanath@.cse.iitd.ac.in volker.tresp@.siemens.com

ABSTRACT
We present DEANNA, a framework for natural language
question answering over structured knowledge bases. Given
a natural language question, DEANNA translates questions
into a structured SPARQL query that can be evaluated over
knowledge bases such as Yago, Dbpedia, Freebase, or other
Linked Data sources. DEANNA analyzes questions and
maps verbal phrases to relations and noun phrases to ei-
ther individual entities or semantic classes. Importantly, it
judiciously generates variables for target entities or classes
to express joins between multiple triple patterns. We lever-
age the semantic type system for entities and use constraints
in jointly mapping the constituents of the question to rela-
tions, classes, and entities. We demonstrate the capabilities
and interface of DEANNA, which allows advanced users to
influence the translation process and to see how the different
components interact to produce the final result.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Query For-
mulation; I.2.1 [Applications and Expert Systems]:
Natural language interfaces

Keywords
question-answering, knowledge base, semantic search, dis-
ambiguation, usability

1. INTRODUCTION
Recently, very large, structured, and semantically rich

knowledge bases have become available. Examples are Yago
[8, 13], Dbpedia [3], and Freebase [5]. Dbpedia forms the
nucleus of the Web of Linked Data [4], which interconnects
hundreds of RDF data sources with a total of 30 billion
subject-property-object (SPO) triples.
Users can search in these knowledge bases using structured

query languages like SPARQL, but only expert programmers
are able to precisely specify their information needs and cope
with the schema-wise highly heterogeneous data. For less
initiated users the only option to search this rich data is by

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2012 Companion, April 16–20, 2012, Lyon, France.
ACM 978-1-4503-1230-1/12/04.

keyword search (e.g., via services like sig.ma [14]). However,
the most convenient approach to express information needs
over knowledge bases and linked data sources is by natural-
language questions.

As an example, consider a quiz question like “Which fe-
male actor played in Casablanca and is married to a writer
who was born in Rome?”. One can think of different formu-
lations of the same question, such as “Which actress from
Casablanca is married to a writer from Rome?”. A pos-
sible SPARQL formulation, assuming the user is familiar
with the schema of the underlying knowledge base(s), could
consist of the following six triple patterns (to be joined by
shared-variable bindings): ?x hasGender female, ?x isa ac-

tor, ?x actedIn Casablanca_(film), ?x marriedTo ?w, ?w isa

writer, ?w bornIn Rome. This query would yield good results,
but it is difficult for the user to come up with the precise
choices for relations, classes, and entities. This would require
knowledge of the contents of the knowledge base, which no
average user is expected to have. Our goal is to automat-
ically create such structured queries by mapping the user’s
question into this representation. Note that keyword search
is usually not a viable alternative when the information need
involves joining multiple triples to construct the final result,
not withstanding good attempts like [12]. In the example,
the obvious keyword query “female actress Casablanca mar-
ried writer born Rome” lacks a clear specification of the re-
lations that should connect the different entities.

Natural-language question answering, QA for short, has
a long history in NLP and IR research. However, the best
performing approaches simply map questions into keyword
search for finding (passages about) answer candidates; the
intelligence of these systems lies in their deeper methods
for ranking candidates. The IBM Watson system for Deep
QA has demonstrated great advances and impressive per-
formance in the Jeopardy quiz show, but does not con-
sider structured querying at all. Its key strength lies in
classifying and decomposing questions and in ranking and
type-checking candidate answers [6, 9]. There are few prior
attempts to automatically map questions into structured
queries (e.g., [7, 10]). However, the scope of these approaches
has been very limited. Only recently, interest in general-
purpose question-to-query translation has been rekindled in
the 2011 QALD workshop [1].

In our approach, we introduce new elements towards mak-

WWW 2012 – Demos Track April 16–20, 2012, Lyon, France

445



ing translation of questions into SPARQL triple patterns
more expressive and robust. Most importantly, we harness
the rich information in a knowledge base like Yago, which
knows not only entities and relations, but also surface names
and textual patterns by which web sources refer to them.
For example, Yago knows that “Casablanca” can refer to the
Morrocan city or the film, and “played in” or simply “from”
are patterns that can denote the actedIn relation. In ad-
dition, we can leverage the rich type system of semantic
classes. For example, knowing that Casablanca is a film,
for translating “from” we can focus on relations with a type
signature whose range includes films.
Based on these ideas, we have developed a framework

and prototype system coined DEANNA (DEep Answers for
maNy Naturally Asked questions). The framework com-
prises a full suite of components for question decomposition,
mapping constituents into the semantic concept space pro-
vided by the Yago knowledge base, generating alternative
candidate mappings, and computing a coherent mapping of
all constituents into a set of triple patterns that can be di-
rectly executed on Yago. Our demo shows both end-to-end
question-answering as well as the internal working of the
components and their interplay.

2. FRAMEWORK
The main difficulties that DEANNA addresses lie in dis-

ambiguating the information needs expressed in the verbal
phrases and noun phrases in the question, and doing this in
a globally coherent manner. Ambiguity problems occur at
different stages:

• mapping names to entities, for example, identifying
that“Casablanca”most likely denotes Casablanca_(film),
although it could also mean Casablanca, Morocco;

• mapping phrases to classes for which the knowledge
base has instances, for example, associating “author”
with writer (assuming author is not a known class);

• mapping verbal phrases to relations, for example, in-
ferring that actedIn is the best-matching relation for
the phrase “played in” – as opposed to say played-

ForTeam (from the sports domain);
• inferring additional query conditions, for example, map-

ping the adjective “female” into the property-object
pattern hasGender female which is directly supported
by the knowledge base.

DEANNA accepts a natural language question as input
and uses a knowledge base including a dictionary of relation
patterns. The goal is to produce a structured query which
captures the question over the knowledge base. Consider
a simplified variant of our example question: “Who played
in Casablanca and is married to a writer who was born in
Rome?”. A structured SPARQL query would look as follows:

SELECT ?x WHERE{

?x type person . ?x actedIn Casablanca_(film) .

?x marriedTo ?w .

?w isa writer . ?w bornIn Rome }

3. PROTOTYPE SYSTEM
Figure 1 shows the architecture of DEANNA, which is

composed of six main components:
1. Phrase detection. Phrases are detected that poten-

tially correspond to semantic items (relations, enti-
ties and classes) such as ‘Who’, ‘played in’, ‘movie’,
‘Casablanca’ and ‘writer’.

�

�
µ
�
��
]}
v

�
Z
��
��
�

��
�µ
��
µ
��
�

�
µ
�
�Ç

�

�}v����
�Z�o��]}v
WZ����
������]}v

�

:}]v�
�]��u�]r
Pµ��]}v

� �

u
�
�
�
]v
P
�

��
v
�
]�
�
��

P
��
�
Z

�

�v�]�]�����v�u��
�o���������µ��o�����
��o��]}v�����������v�
]v�oX��]��]}v��]���������]��]��

� �

<v}Áo��P������

�

�}v����
�Z�o��]}v
WZ����
D���]vP

� � � �

� �� � �

�

��

^�u�v�]�
/��u�
'�}µ�]vP

Yµ��Ç
'�v�r
���]}v

�

��
o�
��
�
�

�r
v
}
�
�
�

��
]�
o�

�
�
��
�
�v
�

�

Yrµv]���
'�v���r�
�]}v

Figure 1: System architecture

2. Phrase mapping to semantic items. This includes
finding that the phrase ‘played in’ can either refer to
the semantic relation actedIn or to playedForTeam

and the phrase ‘Casablanca’ can potentially refer to
Casablanca_(film) or Casablanca, Morocco.

3. Q-unit generation. Intuitively, a q-unit is a triple
composed of phrases. Their generation and role will
be discussed in detail.

4. Joint disambiguation, where the ambiguities in the
phrase-to-semantic item mapping are resolved. Here,
we determine for our running example that ‘played
in’ refers to the semantic relation actedIn and not to
playedForTeam and the phrase ‘Casablanca’ refers to
Casablanca_(film) and not Casablanca, Morocco.

5. Semantic item grouping to form semantic triples.
For example, we determine that the relation marriedTo

connects the person referred to by ‘Who’ and the writer
to form the semantic triple person marriedTo writer.

6. Query generation. If our target language is SPARQL,
then the semantic triple person marriedTo writer has
to be mapped to the triple patterns ?x type person,
?x marriedTo ?w, and ?w type writer.

Phrase detection uses multiple detectors, each of which
can detect a certain class of phrases, corresponding to se-
mantic classes, entities, relations and interrogative pronouns.
The detectors utilize different named entity recognition and
relation detection techniques. Each detector works indepen-
dently of the others, causing phrases to overlap, resulting in
more ambiguity.

For concepts (entities and classes), the mapping to seman-
tic items relies on the knowledge base having a dictionary of
surface forms to concepts, which looks as follows:

{‘Rome’,‘eternal city’,‘Roma’} → Rome

{‘Casablanca’} → Casablanca_(film)

{‘Casablanca’, ‘White House’} → White_House

To map relational phrases to semantic relations, a sim-
ilar dictionary of textual pattern mappings to relations is
maintained. The dictionary looks as follows:

{‘play’,‘star in’,‘act’,‘leading role’} → actedIn

{‘married’, ‘spouse’,‘wife’} → marriedTo

This step is performed by the second stage of our architec-
ture shown in Figure 1. For both concepts and relations, this
mapping process will generally generate multiple semantic
item candidates per phrase.

Next, triploids are detected in the natural language ques-
tion using a dependency parser [11]. A triploid consists of
three tokens potentially corresponding to a relation and its

WWW 2012 – Demos Track April 16–20, 2012, Lyon, France

446



Figure 2: Disambiguation graph

two arguments. Generally speaking, each token of a triploid
is the head of a noun phrase or verbal phrase.
Combining triploids and candidate phrases, the frame-

work generates q-units, where each q-unit is a phrase-level
triple, possibly with multiple candidates for a relation and
arguments.
At this point, the framework performs disambiguation to

resolve the mappings of phrases to semantic items. Because
the result of each disambiguation can influence the result of
others, we perform disambiguation is a joint manner. We do
this by constructing a weighted disambiguation graph and
then finding a dense subgraph.
The disambiguation graph, such as the one in Figure 2

can be seen as a tripartite graph with a set of semantic
item nodes (s-nodes), a set of phrase nodes (p-nodes) and a
set of q-unit nodes (q-nodes). S-nodes are connected to each
other via weighted semantic coherence edges, which indicate
how compatible a pair of semantic items is (these are not
shown in Figure 2). A p-node is connected to an s-node
via a weighted similarity edge that captures the strength
of the mapping of the phrase to the semantic item using a
weighted combination of a prior and syntactic similarity. Q-
nodes collect triples of phrases together. Each of the subject,
predicate and object fields in a q-unit is a set of possible
phrases, with each member of a q-unit’s relation set shown
using a dotted edge in Figure 2.
The problem of disambiguation is now reduced to finding a

subgraph of the disambiguation graph described above. The
desired subgraph is one with maximum density that respects
a set of judiciously crafted constraints. The density measure
takes into account the weights of similarity and coherence
edges. Examples of our constraints include:

• each token can be part of at most one phrase (shown
as ⊗ nodes in Figure 2);

• each p-node is mapped to one s-node at most;

• each triple should contain a subject, object and pred-
icate;

• each triple should respect the semantic type constraints;

Figure 3: Basic interface

Figure 4: Advanced options

• each triple should contain a semantic class that will
map to a type-constrained variable.

We encode our objective and constraints into a integer
linear program (ILP), which we then pass to the Gurobi ILP
solver [2] which efficiently computes the desired subgraph in
which phrase boundaries and mappings are disambiguated.

Once phrases have been unambiguously mapped to se-
mantic items, DEANNA forms semantic triples induced by
q-units and type constraints between the different seman-
tic items. The final remaining step is to construct a struc-
tured query from the semantic triples. DEANNA constructs
SPARQL queries from semantic triples by simply mappings
semantic classes to type-constrained variables. Variable as-
signment is also guided by q-units, as multiple occurrences
of the same semantic class might need to be mapped to dif-
ferent variables.

4. DEMO
DEANNA is an interactive question answering system. It

allows users to input questions in natural language and gen-
erates queries over a knowledge base that return answers.
Users can look into the intermediate steps of the translation
process and influence the process through options provided
by the interface. DEANNA currently runs over the Yago
knowledge base (which contains 10 million entities, 140 re-
lations, and 450 million facts). A live version of the demo
can be accessed by going to http://www.mpi-inf.mpg.de/

yago-naga/deanna/.
DEANNA operates in either default or advanced mode.

The default mode targets the average user, where the sys-
tem uses a default configuration which we have found to be
robust. Figure 3 shows a screenshot of the system in default
mode, with a question and the resulting structured query.

The advanced mode targets expert users. It allows them

WWW 2012 – Demos Track April 16–20, 2012, Lyon, France

447



Figure 5: Intermediate output - concept phrase
mappings

to manipulate how different components of the system influ-
enced the results. The system provides explanations for each
option, these include options for how node weights are com-
puted in the disambiguation graph and how far the trans-
lation process should go, and the type of relational phrase
recognizer to use. A screenshot of the system in advanced
mode is shown in Figure 4. We have found the advanced
mode to be very helpful in developing our QA framework.
The ‘Download Graph’ icon (not shown) gives the user a

PDF version of the disambiguation graph up to the point
to which the translation process has been run (completely
in default mode and depending on the user’s options in ad-
vanced mode).
The intermediate output a user can see include relation

and concept phrases and their candidate mappings, parse
trees and dependency graphs, triploids and semantic co-
herence between the various semantic items. Each type of
intermediate output is shown by clicking on its tab. Fig-
ure 5 shows a screenshot of the concept phrase mappings tab
for our running example. It shows each candidate concept
phrases and its possible semantic item mappings. Figure 6
shows a screenshot of the dependency graphs used in the
translation process.

5. REFERENCES
[1] 1st Workshop on Question Answering over Linked

Data (QALD-1). http://www.sc.cit-ec.
uni-bielefeld.de/qald-1, May 2011.

[2] Gurobi Optimizer. http://www.gurobi.com/, 2011.

[3] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann,
R. Cyganiak, and Z. G. Ives. DBpedia: A Nucleus for
a Web of Open Data. ISWC/ASWC, 2007.

Figure 6: Intermediate output - dependency graphs

[4] C. Bizer, T. Heath, T. Berners-Lee, and
M. Hausenblas. 4th Linked Data on the Web
Workshop (LDOW2011). WWW, 2011.

[5] K. D. Bollacker, C. Evans, P. Paritosh, T. Sturge,
J. Taylor. Freebase: a Collaboratively Created Graph
Database for Structuring Human Knowledge.
SIGMOD, 2008.

[6] D. A. Ferrucci et al. Building Watson: An Overview
of the DeepQA Project. AI Magazine, 31(3), 2010.

[7] A. Frank, H.-U. Krieger, F. Xu, H. Uszkoreit,
B. Crysmann, B. Jörg, U. Schäfer. Question
Answering from Structured Knowledge Sources. J.
App. Logic, 5(1), 2007.

[8] J. Hoffart, F. M. Suchanek, K. Berberich,
E. Lewis-Kelham, G. de Melo, G. Weikum. YAGO2:
Exploring and Querying World Knowledge in Time,
Space, Context, and many Languages. WWW, 2011.

[9] A. Kalyanpur, J. W. Murdock, J. Fan, C. A. Welty.
Leveraging Community-Built Knowledge for Type
Coercion in Question Answering. ISWC, 2011.

[10] Y. Li, H. Yang, H. V. Jagadish. NaLIX: A Generic
Natural Language Search Environment for XML
Data. ACM Trans. Database Syst., 32(4), 2007.

[11] M.-C. D. Marneffe, B. Maccartney, C. D. Manning.
Generating Typed Dependency Parses from Phrase
Structure Parses. LREC, 2006.

[12] J. Pound, I. F. Ilyas, G. E. Weddell. Expressive and
Flexible Access to Web-extracted Data: a
Keyword-based Structured Query Language.
SIGMOD, 2010.

[13] F. M. Suchanek, G. Kasneci, G. Weikum. Yago: A
Core of Semantic Knowledge. WWW, 2007.

[14] G. Tummarello, R. Cyganiak, M. Catasta,
S. Danielczyk, R. Delbru, S. Decker. Sig.ma: Live
Views on the Web of Data. J. Web Sem., 8(4), 2010.

WWW 2012 – Demos Track April 16–20, 2012, Lyon, France

448




