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Abstract

In this chapter, we describe some of the most important architectures and algorithms
for committee machines. We discuss three reasons for using committee machines. The first
reason is that a committee can achieve a test set performance unobtainable by a single
committee member. As typical representative approaches, we describe simple averaging,
bagging and boosting. Secondly with committee machines, one obtains modular solutions
which is sometimes desirable. The prime example here is the mixture of experts approach
whose goal it is to autonomously break up a complex prediction task into subtasks which
are modeled by the individual committee members. The third reason for using committee
machines is a reduction in computational complexity. In the presented Bayesian committee
machine, the training data set is partitioned into several smaller data sets and the different
committee members are trained on the different sets. Their predictions are then combined
using a covariance-based weighting scheme. The computational complexity of the Bayesian
committee machine approach grows only linearly with the size of the training data set,
independent of the learning systems used as committee members.

1 Introduction

In committee machines, an ensemble of estimators —consisting typically of neural networks or
decision trees— is generated by means of a learning process and the prediction of the committee
for a new input is generated in form of a combination of the predictions of the individual
committee members. Committee machines can be useful in many ways. First, the committee
might exhibit a test set performance unobtainable by an individual committee member on its
own. The reason is that the errors of the individual committee members cancel out to some
degree when their predictions are combined. The surprising discovery of this line of research is
that even if the committee members were trained on “disturbed” versions of the same data set,
the predictions of the individual committee members might be sufficiently different such that this
averaging process takes place and is beneficial. This line of research is described in Section 2.
A second reason for using committee machines is modularity. It is sometimes beneficial if a
mapping from input to target is not approximated by one estimator but by several estimators,
where each estimator can focus on a particular region in input space. The prediction of the
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committee is obtained by a locally weighted combination of the predictions of the committee
members. It could be shown that in some applications the individual members self-organize in
a way such that the prediction task is divided into meaningful modules. The most important
representatives of this line of research are the mixture of experts approach and its variants
which are described in Section 3. The third reason for using committee machines is a reduction
in computational complexity. Instead of training one estimator using all training data it is
computationally more efficient for some type of estimators to partition the data set into several
data sets, train different estimators on the individual data sets and then combine the predictions
of the individual estimators. Typical examples of estimators for which this procedure is beneficial
are Gaussian process regression, kriging, regularization neural networks, smoothing splines and
the support vector machine, since for those systems, training time increases drastically with
increasing training data set size. By using a committee machine approach, the computational
complexity increases only linearly with the size of the training data set. In Section 4 it is
shown how the estimates of the individual committee members can be combined such that the
performance of the committee is not substantially degraded compared to the performance of one
system trained on all data.

The interest of the machine learning community in committee machines began around the
middle of the 90’s of the last century and this field of research is still very active. A re-
cent compilation of important work can be found in [1] and two web sites dedicated to the
issue of committee machines can be found at http://melone.tussy.uni-wh.de/˜chris/ensemble
and http://www.boosting.org. In the addition to the activities in the machine learning com-
munity, there has been considerable work on committee machines in the area of economical
forecasting [2]. One should also emphasize that traditional Bayesian averaging can be inter-
preted as a committee machine approach. Assume that a statistical model allows the inference
about the variable y in form of the predictive probability density P (y|w) where w is a vector
of model parameters. Furthermore let’s assume that we have a data set D which contains in-
formation about the parameter vector w in form of the probability density P (w|D). We then
obtain

P (y|D) =
∫

P (y|w)P (w|D)dw ≈ 1
M

M∑
i=1

P (y|wi),

where M samples {wi}M
i=1 are generated from the distribution P (w|D). The last approximation

tells us that for Bayesian inference, one should average the predictions of a committee of esti-
mators. This form of Bayesian averaging will not be discussed further in this book chapter and
interested readers should consult the literature on Bayesian statistics, e.g. the book by Bernardo
and Smith [3].

2 Averaging, Bagging and Boosting

2.1 Introduction

The basic idea is to train a committee of estimators and combine the individual predictions
with the goal of achieving improved generalization performance if compared to the performance
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achievable with a single estimator. As estimators most researchers either use neural networks
or decision trees, generated with CART or C4.5 [4].

In regression, the committee prediction for a test input x is achieved by forming a weighted
sum of the predictions of the M committee members

t̂(x) =
M∑
i=1

gifi(x)

where fi(x) is the prediction of the i-th committee member at input x and where the gi are
weights which are often required to be positive and to sum to one.

In classification, the combination is typically implemented as a voting scheme. The com-
mittee assigns the pattern to the class which obtains the majority of the (possibly weighted)
vote

̂class(x) = arg max
j

M∑
i=1

gifi,class=j(x)

where fi,class=j(x) is the output of the classifier i for class j. The output typically either corre-
sponds to the posterior class probability fi,class=j(x) ∈ [0, 1] or to a binary decision fi,class=j(x) ∈
{0, 1}.

Committee machines can be generalized in various directions. In Sections 3 and 4 we will use
non-constant weights, i.e., weighting functions which reflect the relevance of a committee member
given the input. Also it might not be immediately obvious, but —as explored in Section 4—
predictions of the committee members at other inputs can help to improve the prediction at a
given x.

The motivation for pursuing committee methods can be understood by analyzing the pre-
diction error of the combined system which is particularly simple if we use a squared error cost
function. The expected squared difference between the prediction of a committee member fi

and the true but unknown target t (for simplicity, we don’t denote the dependency on x in most
parts of this section explicitly)

E(fi − t)2 = E(fi − mi + mi − t)2

= E(fi − mi)2 + E(mi − t)2 + 2E ((fi − mi)(mi − t)) (1)
= vari + b2

i

decomposes into the variance vari = E(fi−mi)2 and the square of the bias bi = mi−t with mi =
E(fi). E(.) stands for the expected value which is calculated with respect to different data sets
of the same size and possibly variations in the training procedure such as different initializations
of the weights in a neural network. As stated earlier, we are interested in estimating t by forming
a linear combination of the fi

t̂ =
M∑
i=1

gifi = g′f
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where f = (f1, . . . , fM )′ is the vector of the predictions of the committee members and where
g = (g1, . . . , gM )′ is the vector of weights. The expected error of the combined system is [5, 6]

E(t̂ − t)2 = E(g′f − E(g′f))2 + E(E(g′f) − t)2

= E(g′(f − E(f)))2 + E(g′m − t)2

= g′Ωg + (g′m − t)2
(2)

where Ω is an M × M covariance matrix with

Ωij = E[(fi − mi)(fj − mj)]

and where m = (m1, . . . , mM )′ is the vector of the expected values of the predictions of the
committee members. Here, g′Ωg is the variance of the committee and g′m − t is the bias of the
committee.

If we simply average the predictors, i.e., we set gi = 1/M , the last expression simplifies to

E(t̂ − t)2 =
1

M2

M∑
i=1

Ωii +
1

M2

M∑
i=1

M∑
j=1,j 6=i

Ωij +
1

M2

(
M∑
i=1

(mi − t)

)2

. (3)

If we now assume that the mean mi = mean, the variance Ωii = var and the inter-member
covariances Ωij = cov are identical for all members, we obtain

E(t̂ − t)2 =
1
M

var +
M2 − M

M2
cov + (mean − t)2.

It is apparent that the bias of the combined system (mean − t) is identical to the bias of each
member and is not reduced. Therefore, estimators should be used which have low bias and
regularization —which introduces bias— should be avoided. Secondly, the estimators should
have low covariance, since this term in the error function cannot be reduced by increasing M .
The good news is that the term which results from the variances of the committee members
decreases as 1/M . Thus, if we have estimators with low bias and low covariance between
members, the expected error of the combined system is significantly less than the expected
errors of the individual members. So in some sense, a committee can be used to reduce both
bias and variance: bias is reduced in the design of the members by using little regularization and
variance is reduced by the averaging process which takes place in the committee. Unfortunately,
things are not quite as simple in practice and we are faced with another version of the well-known
bias-variance dilemma (see also Section 2.3).

In regression, t(x) corresponds to the optimal regression function and fi(x) to the predic-
tion of the i-th estimator. Here, the squared error is a commonly used and the bias-variance
decomposition described in this section is applicable. In (two-class) classification t(x) might
correspond to the probability for class one, 1− t(x) to the probability for class two, and fi(x) is
the estimate of the i-th estimator for t(x). Although it is debatable if the squared error is the
right error measure for classification, the previously described decompositions are applicable as
well. In contrast, if we consider as the output of a classifier a decision, i.e., the assigned class, the
previously described bias-variance decomposition cannot be applied. A number of alternative
bias-variance decompositions for this case have been described in the literature. In particular,
Breiman describes a decomposition in which the role of the variance is played by a term named
spread [7]. In the same paper the author showed that the spread can dramatically be reduced
by bagging, a committee approach introduced in Section 2.3.
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2.2 Simple Averaging and Simple Voting

In this approach, committee members are typically neural networks. The neural networks are all
trained on the complete training data set. A decorrelation among the neural network predictions
is typically achieved by varying the initial conditions in training the neural networks such that
different neural networks converge into different local minima of the cost function. Despite its
simplicity, this procedure is surprisingly successful and turns an apparent disadvantage, local
minima in training neural networks, into something useful. This approach was initialized by the
work of Perrone [8] and drew a lot of attention to the concept of committee machines. Using
the Cauchy inequality, Perrone could show that even for correlated and biased predictors the
squared prediction error of the committee machine (obtained by averaging) is equal or less to
the mean squared prediction error of the committee members, i.e.,

(t̂ − t)2 ≤ 1
M

M∑
i=1

(fi − t)2.

Loosely speaking, this means that as long as the committee members have good prediction
performance, averaging cannot really make things worse; it is as good as the average model or
better. This can also be understood from the work of Krogh and Vedelsby [9]. Again applied to
the special case of averaging (i.e., gi = 1/M) they show that (using the notation of Section 2.1)

(t̂ − t)2 =
1
M

M∑
i=1

(fi − t)2 − 1
M

M∑
i=1

(fi − t̂)2 (4)

which means that the generalization error of the committee is equal to the average of the
generalization error of the members minus the average variance of the committee members
(the ambiguity) which immediately leads to the previous bound. In highly regularized neural
networks, the ensemble ambiguity is typically small and the generalization error is essentially
equal to the average generalization error of the committee members. If neural neural networks
are not strongly regularized the ensemble ambiguity is high and the generalization error of
the committee should be much smaller than the average generalization error of the committee
members. Note that the last equation is valid for a given committee. The expected value of the
right side is identical to the right side of Equation 3.

2.3 Bagging

Despite the success of the procedures described in the previous section, it became quickly clear
that if the training procedure is disturbed such that the correlation between the estimators is
reduced, the generalization performance of the combined systems can further be improved. The
most important representative of this approach was introduced by Breiman under the name of
bagging (bootstrap aggregation) [7]. The idea behind bagging can be understood in the following
way. Let’s assume that each committee member is trained on a different data set. Then, surely,
the covariance between the predictions of the individual members is zero. Unfortunately, we
typically have to work with a fixed training data set. Although it is then impossible to obtain
a different training data set for each member, we can at least mimicry this process by training
each member on a bootstrap sample of the original data set. Bootstrap data sets are generated
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by drawing randomly K data points from the original data set of size K with replacement. This
means that some data points will appear more than once in a given new data set and some
will not appear at all. We repeat this procedure M times and obtain M non-identical data sets
which are then used to train the estimators. The output of the committee is then obtained by
simple averaging (regression) or by voting (classification).

Experimental evidence suggests that bagging typically outperforms simple averaging and vot-
ing. Breiman makes the point that committee members should be unstable for bagging to work.
By unstable it is meant that the estimators should be sensitive to changes in the training data
set, e.g. neural networks should not be strongly regularized. But recall that well regularized neu-
ral networks in general perform better than under-regularized neural networks and we are faced
with another version of the well known bias-variance dilemma: if we use under-regularized neu-
ral networks we start with suboptimal committee members but bagging improves performance
considerably. If we start with well-regularized neural networks we start with well-performing
committee members but bagging does not significantly improve performance. Experimental ev-
idence indicates that the optimal degree of regularization is problem-dependent [6]. Breiman
himself mostly works with CART decision trees as committee members.

There are other ways of perturbing the training data set besides using bootstrap samples for
training (e.g. adding noise, flipping classification labels) [10, 11] which in some cases also work
well. Raviv and Intrator [12] report good results by adding noise on bootstrap samples to increase
the decorrelation between committee members, in combination with a sensible regularization of
the committee members.

2.4 Boosting

In this section, we will only discuss the classification case. The difference to the previous
approaches is that in boosting, committee members are trained sequentially, and the training of
a particular committee member is dependent on the training and the performance of previously
trained members. Also in contrast to the previous approaches, boosting is able to reduce both
variance and bias in the prediction [13]. This is due to the fact that more emphasis is put on
data points which are misclassified by previously trained committee members.

The original boosting approach, boosting by filtering, is due to Schapire [14]. Here, three
neural networks are used and the existence of an oracle is assumed which can produce an
arbitrary number of training data points. The first neural network is trained on K training
data points. Then the second neural network is also trained on K training data points. These
training data are selected from the pool of training data (or the oracle) such that half of them
are classified correctly and half of them are classified incorrectly by the first neural network. The
third network is trained only on data on which network one and two disagree. The classification
is then achieved by a majority vote of the three neural networks. Note that the second network
obtains 50% of patterns for training which were misclassified by network one and that network
three only obtains critical patterns in the sense that network one and two disagree on those
patterns. The original motivation for boosting came out of PAC-learning theory (PAC stands
for probably approximately correct). The theory only requires that the committee members
are weak learners, i.e., that that the learners with high probability produce better results than
random classification.
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Boosting by filtering requires an oracle or at least a very large training data set: one needs, for
example, a large training data set to obtain K patterns on which network one and two disagree.
AdaBoost (adaptive boosting) is a combination of the ideas behind boosting and bagging and
does not have a demand on a large training data set [15]. Many variants of AdaBoost have been
suggested in the literature. Here, we present the algorithm in the form described by Breiman [7]
which is an instance of boosting by subsampling:

Let {P (1), . . . , P (K)} be a set of probabilities defined for each training pattern.
Initialized with P (j) = 1/K.
FOR i = 1, . . . , M

1. Train the i-th member by taking bootstrap samples from the original training data set with
replacement following probability distribution {P (1), . . . , P (K)}.

2. Let d(j) = 1 if the jth pattern was classified incorrectly and zero otherwise

3. Let

εi =
K∑

j=1

d(j)p(j) and βi = (1 − εi)/εi

4. The updated probabilities are

P (j) = cP (j)βd(j)
i

where c normalizes the probabilities.

END.
The committee output is calculated as a majority vote

̂class(x) = arg max
j

M∑
i=1

log(βi)fi,class=j(x)

with weight log(βi).
As in bagging, committee members are trained using bootstrap samples, but here, the prob-

ability of selecting a sample depends on previously trained classifiers. If a pattern j was misclas-
sified by the previous classifier (d(j) = 1), it will be picked with higher probability for training
the following classifier. Also, if the previous classifier performed in general well (indicated by
a large βi) the probabilities will be shifted more stringently to favor misclassified samples. Fi-
nally, the weight of the i-th classifier in the committee voting is log βi, putting more emphasis
on well-performing committee members.

Table 1 shows results from Breiman [7]. Committee members consisted of CART decision
trees. It can be seen that AdaBoost typically outperforms bagging except when a significant
overlap in the classes exists, as in the diabetes data set. Here, AdaBoost tends to assign
significant resources to learn to predict outliers. This is in in accordance with results reported
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in [10]. There it was shown that AdaBoost provides better performance in settings with little
classification noise, but that bagging is superior, when class labels are ambiguous.

Another variant of AdaBoost is boosting by reweighting. In this deterministic version, the
{P (1), . . . , P (K)} are not used for resampling but are used as weights for data points. In [13],
several variants of this deterministic version are described. Furthermore, Adaboost can be used
in context with classifiers which produce “confidence-rates” predictions (e.g. class probabilities)
and can also be applied to regression [16].

Table 1: Test set error in %
Data Set AdaBoost Bagging

heart 1.1 2.8
breast cancer 3.2 3.7
ionosphere 6.4 7.9
diabetes 26.6 23.9
glass 22.0 23.2
soybean 5.8 6.8
letters 3.4 6.4
satellite 8.8 10.3
shuttle .007 .014
dna 4.2 5.0
digit 6.2 10.5

Recent research shows that there is a connection between AdaBoost and large margin clas-
sifiers (i.e., the support vector machine (SVM), see the corresponding book chapter): both
methods find a linear combination in a high-dimensional space which has a large margin on the
instances in the sample [17, 18]. A large margin provides superior generalization for the case that
classes don’t overlap. For noisy data, Rätsch et al. have introduced regularized AdaBoost [19]
and ν-Arc [20]. Both are boosting algorithms which tolerate outliers in classification and display
improved performance for cases with overlapping classes.

It was also recently shown that AdaBoost can be seen as performing gradient descent in
an error function with respect to the margin, resp. that AdaBoost can be interpreted as an
approximation to additive modeling by performing gradient descent on certain cost- function-
als [22, 21, 13, 23, 16].1

2.5 Concluding Remarks

The generalization performance for the various committee machines is certainly impressive.
Committee machines improve performance when the individual members have low bias and are
decorrelated. The particular feature of boosting is that it reduces both bias and variance. Due
to its superior performance, boosting (in the form of AdaBoost) is currently the most frequently
used algorithm of the ones described.

1The population version of AdaBoost of Friedman et al. [13] builds an additive logistic regression model via

Newton-like updates for minimizing E(e−yt̂(x)) where E is the expectation taken over the population.
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Figure 1: The ME architecture. The outputs of the gating network modulate the outputs of the
expert neural networks.

Finally, we also would like to mention stacking which is one of the earliest approaches to
committee machines. In stacking, the weights gi are determined after training the commit-
tee members, typically by using leave-one-out cross validation. Stacking was introduced by
Wolpert [24] and extended by Breiman. The general perception is that the results using stack-
ing are somewhat mixed.

3 The Mixture of Experts and its Variants

3.1 Mixtures of Experts

The initial motivation for developing the mixture of experts (ME) approach was to design a
system in which different neural networks are responsible for modeling different regions in input
space. This modularity leads to greater modeling capability and potentially to a meaningful
and interpretable segmentation of the map. In the ME approach, the weights become input-
dependent weighting functions [25]

t̂(x) =
M∑
i=1

gi(x)fi(x). (5)

The committee members fi(x) are “expert” neural networks and the gi(x) —which are positive
and sum to one— are generated using a gating network. The gating network determines which
expert is responsible for the different regions in input space. Figure 1 illustrates how the gating
network and the expert neural networks interact.
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The most important training algorithm for the ME is derived using the following probabilistic
assumptions. Given an input x, expert network i is selected with probability gi(x). An output
is generated by adding Gaussian noise with variance σi(x)2 to the output of the expert network
fi(x). Since it is unknown in the data which expert network produced the output, the probability
of an output given the input is a mixture distribution of the form

P (y|x) =
M∑
i=1

gi(x) G
(
y; fi(x), σi(x)2

)
which yields E(y|x) =

M∑
i=1

gi(x) fi(x),

where G
(
y; fi(x), σi(x)2

)
is the notation for a Gaussian probability density centered at fi(x),

with variance σi(x)2, evaluated at y. By looking at the previous equations, it becomes clear that
the ME can also be considered to be a flexible model for conditional probability densities [26, 27].
Note that in this most general formulation, the outputs of the gating network, the expert neural
networks and the noise variance are functions of the input. To ensure that the gi(x) are positive
and sum to one and that the standard deviation is positive one parameterizes

gi(x) =
exp hi(x)∑M

j=1 exp hj(x)
and σi(x) = exp(si(x))

where the functions hi(x) and si(x) are typically modeled as neural networks. For training the
ME system, a maximum likelihood error function is used. The contribution of the j-th pattern
to the log-likelihood function is

lj = log
M∑
i=1

gi(xj)G
(
yj ; fi(xj), σi(xj)2

)
.

Following the derivation in [27], the gradients of lj with respect to the outputs of the various
networks become

∂lj
∂fi(xj)

= P (i|xj , yj)
yj − fi(xj)

σi(xj)2

∂lj
∂hi(xj)

= P (i|xj , yj) − gi(xj)

∂lj
∂si(xj)

= P (i|xj , yj)

(
(yj − fi(xj))2

σi(xj)2
− 1

)

where the probability that the i-th expert generated data point (xj , yj) is calculated as

P (i|xj , yj) =
gi(xj) G

(
yj ; fi(xj), σi(xj)2

)∑M
i=1 gi(xj) G (yj ; fi(xj), σi(xj)2)

using the current parameter estimates.
The adaptation rules simplify if both hi(x) and fi(x) are linear functions of the inputs [28].

In [29] a variant is described in which both hi(x) and fi(x) are modeled using Gaussian processes.
For the fi(x), Gaussian processes with different bandwidths are used such that, input dependent,
the expert with the appropriate bandwidth is selected by the gating network.
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3.2 Extensions to the ME Approach

3.2.1 Hierarchical Mixtures of Experts

The hierarchical mixtures of experts (HMEs) have two (or more) layers of gating networks and
their output is calculated as

t̂(x) =
M∑
i=1

gi(x)
N(i)∑
j=1

gi,j(x)fi,j(x). (6)

where

gi,j(x) =
exp hi,j(x)∑N(i)

j=1 exp hi,j(x)
.

In the HME, a weighted combination of the outputs of M ME networks is formed. N(i) is the
number of experts in the i-th ME network. In the HME approach, hi(x), hi,j(x) and fi(x) are
typically linear functions. By using several layers of gating networks in the HME, one obtains
large modeling flexibility despite the simple linear structure of the expert networks. On the
other hand, by using linear models, the HME can be trained using a expectation maximization
(EM) algorithm which exhibits fast convergence.

The HME can be seen as a soft decision tree and (hard) decision tree learning algorithms,
such as the CART algorithm, can be used to initialize the HME. The HME was developed by
Jordan and Jacobs [30]. A very extensive discussion of the HME is found in [28].

3.2.2 Alternative Training Procedures

A number of variations of the architecture and the training procedure for the ME have been
reported. The learning procedure of the last section produces competing MEs in the sense that
the committee members compete for the responsibility for the data. The cooperating MEs are
achieved if the squared difference between output data and predictions

∑K
j=1(yj − t̂(xj))2 is

minimized. Here, the solutions are typically less modular and the model has a larger tendency
to overtraining.

Another variant starts from the joint probability model

P (i)P (x|i)P (y|x, i)

where P (i) is the prior probability of expert i, P (x|i) is the probability density of input x for
expert i and P (y|x, i) is the probability density of y given x and expert i. If we assume that the
latter is modeled as before, we obtain Equation 5 with

gi(x) = P (i|x) =
P (i)P (x|i)∑M

j=1 P (j)P (x|j) . (7)

In some applications the experts are trained a priori on different data sets. In this case we can
estimate P (i) as the fraction of data used to train expert i, and P (x|i) as the input density of
the data used to train expert i. In [32] it was suggested to model the latter as a mixture of
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Gaussians. In [33] and [34], approaches to generating the HME model based on joint probability
models are described.

A very simple ME variant is obtained by modeling the joint input-output probability of
(x, y)′ as a mixture of Gaussians. If we calculate the expected value of y given x, we obtain
an ME network with linear experts and the gating network of Equation 7 where all conditional
probability densities are Gaussians. The advantage of this simple variant is that it can be
described in terms of simple probabilistic rules which can be formulated by a domain expert.
Various combinations of the ME network with domain expert knowledge are described in [31, 33].

3.3 Concluding Remarks

The ME is typically not used if the only goal is prediction accuracy, but is applied in cases where
its unique modeling properties, interpretability and fast learning (in the case of the HME), are
of interest. The capability of the ME to model a large class of conditional probability densities
is useful in the estimation of risk [27], in optimal control and portfolio management [26], and
in graphical models [35]. In some applications, the ME has been shown to lead to interesting
segmentations of the map, as in the cognitive modeling of motor control [36].

Of the many generalizations of the ME approach, we want to mention the work of Jacobs and
Tanner [37] who generalize the ME approach to a wider class of statistical mixture models, i.e.,
mixtures of distributions of the exponential family, mixtures of hidden Markov models, mixtures
of marginal models, mixtures of Cox models, mixtures of factor models, and mixtures of trees.

4 A Bayesian Committee Machine

Consider the case that a large training data set is available. It is not obvious that a neural
network trained on such a large data set makes efficient use of all the data. It might make
more sense to divide the data set into M data sets, train M neural networks on the data sets
and then to combine their predictions using a committee machine (see Figure 2, left). This
approach is even more appropriate if the estimators are kernel based systems such as Gaussian
process regression systems, smoothing splines or support vector machines. Parameter estimation
for those systems requires operation whose computational complexity grows quickly with the
size of the training data set such that those systems are not well suited for large data sets.
An obvious solution would be to split the training data set into M data sets, train individual
estimators on the partitioned data sets and then combine their predictions. The computationally
complexity of such an approach grows only linearly with the size of the training data set if M
grows proportional to the size of the training data set. Important questions are: does one
loose prediction performance by this procedure and what is a good combination scheme. In this
section we analyze this approach from a Bayesian point of view. It turns out that the optimal
combining weights can be calculated based on the covariance structure and that for the optimal
prediction of the committee at a given input x, the prediction of the members at inputs other
than x can be exploited. Note that in previous sections only predictions at x were used in the
committee machines. A main result of this work is that the quality of the predictions depends
critically on the number of different inputs which contribute to the prediction. If this number is
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identical to the effective number of parameters then the performance of the committee machine
is very close to the performance of one system trained on all data.

This section is different in character than the previous sections. Whereas in previous sections,
we provided an overview of the state of the art of the respective topics, this section almost
exclusively presents recent results of the author [38, 39].

4.1 Theoretical Foundations

Let x be a vector of input variables and let y be the output variable. We assume that,
given a function f(x), the output data are (conditionally) independent with conditional density
P (y|f(x)).

Furthermore, let Xq = {xq
1, . . . , x

q
NQ

} denote a set of NQ test points (superscript q for query)
and let f q = (f q

1 , . . . , f q
NQ

) be the vector of the corresponding unknown response variables. Note
that we query the system at a set of query points (or test points) at the same time which will
be of importance later on.

As indicated in the introduction, we now assume a setting where instead of training one
estimator using all the data, we split up the data into M data sets D = {D1, . . . , DM} (of
typically approximately same size) and train M estimators on the partitioned training data
sets. Let D̄i = D \ Di denote the data which are not in Di.

Then we have in general2

P (f q|D̄i, Di) ∝ P (f q)P (D̄i|f q)P (Di|D̄i, f q).

Now we would like to approximate

P (Di|D̄i, f q) ≈ P (Di|f q). (8)

This is not true in general unless f q contains the targets at the input locations of all the
training data: only then all outputs in the training data are independent. The approximation
in Equation 8 becomes more accurate when

• NQ is large — since then f q determines f everywhere

• the correlation between the outputs in D̄i and Di is small, for example if inputs in those
sets are spatially separated from each other

• when the size of the data set in Di is large since then those data become more independent
on average.

Using the approximation and applying Bayes’ formula, we obtain

P (f q|Di−1, Di) ≈ const × P (f q|Di−1)P (f q|Di)
P (f q)

(9)

such that we can achieve an approximate predictive density

P̂ (f q|D) = const ×
∏M

i=1 P (f q|Di)
P (f q)M−1

(10)

2We assume that inputs are given.
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where const is a normalizing constant. The posterior predictive probability densities are simply
multiplied. Note that since we multiply posterior probability densities, we have to divide by
the priors M − 1 times. This general formula can be applied to the combination of any suitable
Bayesian estimator.

4.2 The BCM

In the case that the predictive densities P (f q|Di) and the prior densities are Gaussian (or can
be approximated reasonably well by a Gaussian), Equation 9 takes on an especially simple form.
Let’s assume that the a priori predictive density at the NQ query points is a Gaussian with zero
mean and covariance Σqq and the posterior predictive density for each committee member is a
Gaussian with mean E(f q|Di) and covariance cov(f q|Di). In this case we achieve [38] (Ê and
ĉov are calculated with respect to the approximate density P̂ )

Ê(f q|D) =
1
C

M∑
i=1

cov(f q|Di)−1E(f q|Di) (11)

with

C = ĉov(f q|D)−1 = −(M − 1)(Σqq)−1 +
M∑
i=1

cov(f q|Di)−1. (12)

We recognize that the predictions of each committee member i are weighted by the inverse
covariance of its prediction. But note that we do not compute the covariance between the
committee members but the covariance at the NQ query points! This means that predictive
densities at all query points contribute to the prediction of the BCM at a given query point (see
Figure 2, right). This way of combining the predictions of the committee members is named
the Bayesian committee machine (BCM). An intuitive appealing effect is that by weighting the
predictions of the committee members by the inverse covariance, committee members which
are uncertain about their predictions are automatically weighted less than committee members
which are certain about their predictions.

4.3 Experiments

In the experiments, we applied the BCM to Gaussian process regression. Gaussian process
regression is particularly suitable since prior and posterior densities are Gaussian distributed
and the covariance matrices which are required for the BCM are easily calculated. A short
introduction into Gaussian process regression can be found in the Appendix.

Figure 3 (right) shows results of applying the BCM to Gaussian process regression for a large
artificial data set [38]. Note that the BCM with K = 60000 training data points achieves results
unobtainable with simple Gaussian process regression which is limited to a training data set of
approximately K = 1000.

4.4 Concluding Remarks

The previous discussion on the BCM has focussed on regression. In the form of the generalized
BCM (GBCM), the approach has been extended towards classification, the prediction of counts,
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Figure 2: Left: In the BCM, data sets are partitioned and the committee members estimate
the targets based on the partitioned data sets. The prediction of the committee is formed by
a weighted combination of the predictions. Right: In most committee machines, the prediction
at a given input is calculated by a combination of the predictions of the committee members at
the same input (vertical continuous line). In the BCM, predictions at other inputs are also used
(vertical dashed lines).
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Figure 3: Left: The mean squared query-set error as a function of the number of query points
NQ with K = 1000 training data points and for K/M = 100 data points in the training data
set of each committee member. Note that for small NQ, the performance deteriorates.
Right: The test of the BCM algorithm using an artificial data set. The continuous line is the
mean squared query-set error for NQ = 1000 and K/M = 1000 as a function of the size of
the training data set K. The dash dotted line shows the error of Gaussian process regression
(M=1) with K = 1000, approximately the largest training data size suitable for Gaussian process
regression. Note the great improvement with the BCM which can use the larger data sets.
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the prediction of lifetimes, and other applications which can be derived from the exponential
family of distributions [39]. The support vector machine is closely related to Gaussian processes
and can also be used in the BCM [40]. Furthermore, it is possible to derive online Kalman filter
versions of the BCM which only requires one path through the data set and only requires the
storage of a matrix of the dimension of the number of query or test points [38]. After training,
the prediction at additional test points only requires resources dependent on the number of
query points but is independent of the size of the training data set. An interesting question
is how many query points ideally are required. It turns out that the number of query points
should be equal to or larger than the effective number of parameters of the map. If this is the
case the query points uniquely define the map (if appropriately chosen) and approximation in
Equation 8 becomes an equality [38] (see Figure 3, left).

Since the BCM has the form of a committee machine, it might be possible to further improve
performance by connecting it with ideas from Section 2. The issue of boosting the BCM is a
focus of current work.

Finally, it is also possible to derive the BCM solution from a non-Bayesian perspective where
the covariance matrices are derived from variations over repeated experiments (i.e., variations
over data sets). The goal is to form a linear combination of the predictions at the query points

f̂ q
i =

M∑
k=1

NQ∑
j=1

gi,k(xj)f
q
k (xj)

such that the expected error is minimum. Here, f̂ q
i is the estimate of the committee for input

xi, gi,k(xj) is the weight of query point j of committee member k to predict query point i and
f q

k (xj) is the prediction of committee member k for input xj . We use the assumption that
the individual committee members are unbiased and enforce the constraint that the combined
system is unbiased by requiring that

M∑
k=1

gi,k(xi) = 1 and
M∑

k=1

gi,k(xj) = 0 ∀ j 6= i.

As solution we obtain the BCM with (Σqq)−1 → 0 (negligible prior). Details can be found in [38].

5 Conclusions

The research on committee machines is still very young but has already produced a number of in-
teresting architectures and algorithms. Due to the limited space, we naturally could not provide
a comprehensive overview covering all aspects of committee machines. As examples, boost-
ing has been analyzed from the perspectives of PAC-learning, game theory and “conventional”
statistics. Furthermore, committee machines have been applied to density estimation [41, 42],
hidden Markov models and a variety of statistical mixture models. Also, we completely left out
approaches to committee machines originating from statistical physics and modular approaches
for sensory fusion and control. Finally, there are interesting common aspects between committee
machines and biological systems: Committee machines, in general, are very tolerant versus the
breakdown of any of its components and, similarly to biological systems, system performance
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only deteriorates dramatically if a large number of committee members (as neural modules) are
malfunctioning.

In their many facets, committee machines have made important contributions to various
branches of neural computation, machine learning, and statistics and are becoming increasingly
popular in the KDD-community. They have opened up a new dimension in machine learning
since committees can be formed using virtually any prediction system. As demonstrated by the
numerous contributions from various communities, committee machines can be understood and
analyzed from a large number of different view points, often revealing new interesting insights.
We can expect numerous novel architectures, algorithms, applications and theoretical insights
for the future.
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6 Appendix: Gaussian Process Regression

In contrast to the usual parameterized approach to regression, in Gaussian process regression
we specify the prior model directly in function space. In particular, we assume that a priori f is
Gaussian distributed (in fact it would be an infinite-dimensional Gaussian) with zero mean and
a covariance cov(f(x1), f(x2)) = σx1,x2 . We assume that we can only measure a noisy version
of f

y(x) = f(x) + ε(x)

where ε(x) is independent Gaussian distributed noise with zero mean and variance σ2
ψ(x).

Let (Σmm)ij = σxm
i ,xm

j
be the covariance matrix of the measurements, Ψmm = σ2

ψ(x)I be
the noise variance between the outputs, (Σqq)ij = σxq

i ,xq
j

be the covariance matrix of the query
points and (Σqm)ij = σxq

i ,xm
j

be the covariance matrix between training data and query data. I

is the K-dimensional unit matrix.
Under these assumptions, the conditional density of the response variables at the query

points is Gaussian distributed with mean

E(f q|D) = Σqm(Ψmm + Σmm)−1ym, (13)

and covariance

cov(f q|D) = Σqq − Σqm (Ψmm + Σmm)−1 (Σqm)′. (14)

Note that for the i−th query point we obtain

E(f q
i |D) =

K∑
j=1

σxq
i ,xm

j
vj (15)

where vj is the j−th component of the vector (Ψmm + Σmm)−1ym. The last equation describes
the weighted superposition of kernel functions bj(x

q
i ) = σxq

i ,xm
j

which are defined for each train-
ing data point and is equivalent to some solutions obtained for kriging, regularization neural

18



networks and smoothing splines. The experimenter has to specify the positive definite covariance
matrix. A common choice is that σxi,xj = exp(−1/(2γ2)||xi − xj ||2) with γ > 0 such that we
obtain Gaussian basis functions, although other positive definite covariance functions are also
used.
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