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Abstract

Structure and parameters in a Bayesian net-
work uniquely specify the probability distri-
bution of the modeled domain. The locality
of both structure and probabilistic informa-
tion are the great benefits of Bayesian net-
works and require the modeler to only spec-
ify local information. On the other hand
this locality of information might prevent the
modeler —and even more any other person—
from obtaining a general overview of the im-
portant relationships within the domain. The
goal of the work presented in this paper is to
provide an “alternative” view on the knowl-
edge encoded in a Bayesian network which
might sometimes be very helpful for pro-
viding insights into the underlying domain.
The basic idea is to calculate a mixture ap-
proximation to the probability distribution
represented by the Bayesian network. The
mixture component densities can be thought
of as representing typical scenarios implied
by the Bayesian model, providing intuition
about the basic relationships. As an addi-
tional benefit, performing inference in the
approximate model is very simple and intu-
itive and can provide additional insights. The
computational complexity for the calculation
of the mixture approximations critically de-
pends on the measure which defines the dis-
tance between the probability distribution
represented by the Bayesian network and
the approximate distribution. Both the KL-
divergence and the backward KL-divergence
lead to inefficient algorithms. Incidentally,
the latter is used in recent work on mixtures
of mean field solutions to which the work pre-
sented here is closely related. We show, how-
ever, that using a mean squared error cost
function leads to update equations which can

be solved using the junction tree algorithm.
We conclude that the mean squared error
cost function can be used for Bayesian net-
works in which inference based on the junc-
tion tree is tractable. For large networks,
however, one may have to rely on mean field
approximations.

1 Introduction

One of the appealing aspects of Bayesian networks is
their modularity; the modeler has to specify only local
information and may thus generate a complex model
step by step. As a drawback of local modeling one
might very soon loose the overview of the relation-
ships in the joint model. The goal of the work pre-
sented in this paper is to provide an “alternative” view
on the domain knowledge encoded in a Bayesian net-
work which might sometimes be very helpful for pro-
viding insights into the underlying domain. The basic
idea is to calculate a mixture approximation to the
probability distribution represented by the Bayesian
network. The mixture component densities can be
thought of as representing typical scenarios as com-
ponents of the joint distribution thus providing intu-
ition about the basic relationships in the domain. It
can be argued that reasoning in terms of cases or sce-
narios is very close to the human approach to deal-
ing with complex domains. This idea was explored
by Druzdzel and Henrion (1990) who used as sce-
narios the most likely configurations given some ev-
idence (although they didn’t provide efficient algo-
rithms for finding those). A mixture of ‘scenarios’ can
be computed both for the joint distribution encoded
by the Bayesian net and for a conditional distribu-
tion given evidence. In the latter case our approach
can illustrate the relationships in the joint distribution
of the unknown variables given the evidence which is
not straightforward in the standard evidence propaga-
tion algorithms which primarily only calculate simple



marginals. The challenge in our approach lies in cal-
culating the optimal parameters in the mixture mod-
els. It turns out that the computational complexity
for the calculation of the mixture approximations crit-
ically depends on the measure which is used for calcu-
lating the distance between the probability distribu-
tion represented by the Bayesian network and the ap-
proximate distribution. We show that finding the best
approximation using the most natural metric, i.e. the
Kullback-Leibler (KL-) distance is computationally in-
feasible. The same is true if the backward KL-distance
is used. Haft, Hofmann and Tresp (1997, 1999) have
shown that for the latter case, a reasonable approxima-
tion can be found by first finding the local minima of
the backward KL-distance between the Bayesian net-
work model and one mixture component (which cor-
responds to solving the mean field equations) and by
forming the mixture model in a second step by using a
small overlap assumption. A new approach pursued in
this paper is to replace the KL-distance as a distance
measure by the mean squared distance between the
probability distribution described by the Bayesian net-
work model and the mixture approximation. We can
show that if either the mean squared distance or the
expected mean squared distance is used, the resulting
equations can be solved using the junction tree algo-
rithm (Lauritzen and Spiegelhalter, 1988, Jensen, Lau-
ritzen and Olsen, 1990). The algorithms are therefore
exactly then efficient, when inference in the Bayesian
network itself is efficient. The ideas here are devel-
oped for binary Bayesian networks but can easily be
generalized to general graphical models, discrete mod-
els and Gaussian graphical models. In the next Sec-
tion we develop and discuss the different algorithms for
obtaining mixture approximations in the joint proba-
bility distribution. In the following Section we show
how evidence can be taken into account. In Section 4
we perform a mixture analysis of the well-known chest
clinic example. We demonstrate how typical scenarios
can be extracted, how inference can be performed in
the approximate model and how simple probabilistic
rules can be extracted. Finally, in Section 5 we present
conclusions.

2 Theory

Assume a Bayesian network with N variables with
probability distribution P (x) which factorizes as

P (x) =
N∏

j=1

P (xj |Πj).

As stated in the introduction our goal is to find a mix-
ture approximation to P (x) of the form

P (x) ≈ Q(x) =
M∑
i=1

Q(i, x) =
M∑
i=1

qi Q(x|i). (1)

For simplicity, we focus in this paper on the case that
x = (x1, . . . , xN )′ is a vector of binary variables xj ∈
{0, 1} and that the mixture component distributions
factorize into binomial distributions

Q(x|i) =
N∏

j=1

q
xj

ij (1 − qij)1−xj . (2)

The goal is now to determine the model parameters
{qij}M

i=1
N

j=1 and {qi}M
i=1 such that we obtain a good

approximation to P (x). First, we need to define a dis-
tance measure which specifies what exactly we mean
by a “good” approximation. In the next sections we
will define different distance measures and we will show
that the complexity of the resulting update equations
very much depends on the distance measure which is
selected.

2.1 KL-divergence

The KL-divergence has the form

KL(P (x)||Q(x)) = −
∑

x

P (x) log
Q(x)
P (x)

.

This cost function might be considered the most nat-
ural cost function since it corresponds to drawing an
infinite number of samples from P (x) and to then do
a maximum likelihood mixture modeling approach of
the data.

The KL-distance can be minimized using an EM-
algorithm. The E-step calculates ∀i and ∀ configu-
rations of x

Q(i|x) =
Q(x|i)qi∑M
i=1 Q(x|i)qi

and the M-steps update ∀i, j

qij =

∑
x,xj=1 P (x)Q(i|x)∑

x P (x)Q(i|x)

and ∀i

qi =
∑

x P (x)Q(i|x)∑
x

∑M
i P (x)Q(i|x)

.

Since the summations in the update equations are over
exponentially many states of x and since Q(i|x) can-
not be easily decomposed, the update equations are
infeasible for large networks. The only exception is if



M = 1, since then the M-step reduces to q1j = P (xj)
and simply calculates the marginal distributions which
can be calculated efficiently using the junction tree al-
gorithm.

A simple approximate solution can be obtained by
generating a large number of samples from a given
Bayesian network and by then calculating the model
which maximizes the likelihood w.r.t. the data us-
ing the corresponding EM-algorithm. In this case, the
sums in the previous EM-equations contain only as
many terms as data are generated. Although this ap-
proach should be feasible in most cases, if some mix-
ture components only obtain small probabilities, one
might have to generate a large number of samples to
obtain good parameter estimates.

2.2 The Backward KL-divergence

There is a clear asymmetry in the KL-distance w.r.t
the two distributions P (x) and Q(x). It is therefore
also common to optimize the “backward” KL-distance
defined as

BKL(P (x)||Q(x)) = KL(Q(x)||P (x))

= −
∑

x

Q(x) log
P (x)
Q(x)

.

Note that the role of Q(x) and P (x) is interchanged
and the expectation is calculated with respect to the
simpler approximate distribution Q(x). For M = 1
(i.e. only one component), minima of BKL can be
found by iterating the associated mean field equations
which for the binary case (2) read

q1,j = sig


∑

Mj

Q(Mj) log
[

P (xj = 1|Mj)
1 − P (xj = 1|Mj)

]
 .

The previous equation is iterated repeatedly for all j
until convergence where Mj ⊂ x denotes the elements
in the Markov blanket of xj and

sig(x) = [1 + exp(−x)]−1.

The previous update equation is efficient since it re-
quires the summation only over the elements in the
Markov blanket of xj and therefore only involves lo-
cal computations. Haft, Hofmann and Tresp (1999)
have shown that for Bayesian networks the update
equations can further be simplified. Note, that –as
for example in the mean field approximation to the
Boltzmann machine— the sigmoid transfer function
is a result of using the mean field approximation and
was not postulated as in the work on sigmoid belief
networks (Saul, Jaakkola and Jordan, 1996).

Although the previous mean field update equations
can be used to find local optima in the BKL-distance,
calculating the optimal best mixture approximation —
as for the KL-distance— involves the summation over
all states of the Bayesian network. Haft, Hofmann and
Tresp (1999) have therefore suggested to find M local
optima of the BKL-distance and use those as compo-
nents in the mixture model. The mixture weights can
then be calculated using a small overlap assumption
as

qi =
1
C

exp


−

M∑
j=1

∑
xj ,Πj

Q(xj ,Πj |i) log
Q(xj |i)

P (xj |Πj)




where C normalizes the qj and Q(xj |i) = q
xj

ij (1 −
qij)1−xj . Note, that again only local computations are
required.

Further approximate solutions have been derived by
Bishop, Lawrence, Jaakkola and Jordan (1998), and
Lawrence, Bishop and Jordan (1998) for special graph-
ical models such as Boltzmann machines and sigmoid
belief networks.

2.3 The Mean Squared Error

Let’s consider the squared error cost function

SE(P (x)||Q(x)) =
∑

x

(P (x) − Q(x))2

=
∑

x

P (x)2 +
M∑
i=1

M∑
k=1

∑
x

qiqkQ(x|i)Q(x|k)

−2
M∑
i=1

∑
x

P (x) qiQ(x|i). (3)

The advantage now is that the cost function is a sim-
ple quadratic expression in the the parameters of the
approximating mixture distribution (1). The SE cost
function can be motivated by considering a Taylor ex-
pansion to the KL-distance which yields as a distance
measure

∑
x(P (x) − Q(x))2/P (x). By taking a closer

look at Equation 3 we notice that all sums over x have
the form ∑

x

P (x)A
N∏

j=1

fj(xj) (4)

where A is an integer and fj is a function of xj only,,
∀j.

We make the following observation:

Observation 1 All summations of the form of Equa-
tion 4 can be calculated efficiently using, e.g., the junc-
tion tree algorithm, as long as the distribution P itself
can be handled efficiently.



To see this it is sufficient to note that the structure
of the sum (4) is still that of the original Bayesian
network and therefore can be factorized the same way.
To be explicit,

∑
x

P (x)A
N∏

j=1

fj(xj) =
∑

x

N∏
j=1

P (xj |Πj)Afj(xj). (5)

Formally, fj(xj) assumes the role of soft evidence in
a Bayesian network defined by the potentially un-
normalized conditional probabilities P (xj |Πj)A (Ap-
pendix 6.1).

We can calculate update equations by setting the
derivatives of the cost function with respect to the pa-
rameters to zero. We obtain

qij =
1

2q2
i

∑
x\xj

Q(i, x \ xj)2
× (6)

(∑
x

(2xj − 1)P (x)Q(i, x \ xj) +
∑
x\xj

Q(i, x \ xj)2

+
∑
l,l 6=i

(1 − 2qlj)
∑
x\xj

Q(xj |l) Q(i, x \ xj) Q(j, x \ xj)
)

where Q(i, x \ xj) = qi

∏N
k=1,k 6=j qxk

ik (1 − qik)1−xk . All
summations can be calculated efficiently by using Ob-
servation 1. Updating the parameters using Equa-
tion 6 performs component wise minimization of the
cost function.

The optimization of the component weights qi is a low
dimensional quadratic optimization problem with con-
straints qi > 0 and

∑M
i=1 qi = 1. The gradient of SE

with respect to a mixture component can also be cal-
culated efficiently using Observation 1.

Note that since we can evaluate the distance measure
SE efficiently, we can easily decide if we supplied a
sufficient number of mixture components for obtaining
a good approximation.

2.4 The Expected Mean Squared Error

Alternatively, we might consider the expected mean
squared error

ESE(P (x)||Q(x)) =
∑

x

P (x)(P (x) − Q(x))2.

Similar as in the previous section, we obtain the fixed
point equations for the qij ,

qij =
1∑

x P (x)Q(i, x \ xj)2
× (7)

(∑
x

(2xj−1)P (x)2Q(i, x\xj)2+
∑

x,xj=0

P (x)Q(i, x\xj)2

+
∑
l,l 6=i

∑
x

(1−2xj)P (x) Q(xj |l) Q(i, x\xj) Q(l, x\xj)
)

All sums can be calculated efficiently using Observa-
tion 1.

3 Evidence and Inference

If evidence is entered into the Bayesian network we can
obtain a mixture approximation to the conditional dis-
tribution of the remaining variables given the evidence
in the same way as described in the previous section.
The mixture distribution for the unknown nodes may
then be viewed as defining possible scenarios given our
state of information.

Having already computed a mixture approximation to
the joint distribution there is of course a much simpler
way to obtain a mixture model for the conditional dis-
tribution. Rather than propagating the evidence in the
exact model and then reapproximating the conditional
distribution with new mixture components and mixing
weights, one can perform approximate inference in the
mixture model directly:

Q(u|e) =
∑M

i=1 qi Q(e|i)Q(u|i)∑M
i=1 qi Q(e|i)

with
Q(e|i) =

∏
xj∈e

q
xj

ij (1 − qij)1−xj

and
Q(u|i) =

∏
xj∈u

q
xj

ij (1 − qij)1−xj

where e ⊂ x are the variables with evidence and
u = x\e are the remaining variables. The above equa-
tion shows that the conditional distribution Q(u|e) is
still a mixture distribution composed of the same ‘un-
conditional scenarios’, but the new mixture weights
are proportional to

qiQ(e|i).

That is, the effect of evidence is just a reweighting of
the known scenarios, which makes the effects of the
evidence clearly visible. Each mixture component is
weighted by the product of qi (as before) and the prob-
ability of the evidence Q(e|i) for that mixture compo-
nent.

4 Experiments

4.1 Modeling

The goal of our experiments was to test the quality
of the mixture solutions found by the different cost



functions and algorithms. As a test case we used the
well known chest clinic example. The chest clinic is
a well documented Bayesian network (Lauritzen and
Spiegelhalter, 1988) consisting of the 8 variables visit
to asia (1), smoker (2), tuberculosis (3), lung cancer
(4), bronchitis (5), tuberculosis or lung cancer (6), pos-
itive x-rays (7) and dyspnoea (8). In this domain with
only eight variables the algorithms for all cost func-
tions could be executed in reasonable time. The net-
work structure is defined in Appendix 6.2.

In the first experiment the EM-algorithm using the
KL-distance measure as described in Section 2.1 was
used. Figure 1 shows the KL-distance between the true
probability distribution and the approximate distribu-
tion using different number of components. A small
KL-divergence is reached for only 4 mixture compo-
nents. If more components are used, the description
is further refined but the KL-divergence does not im-
prove significantly.

In the next experiment, the mixture parameters were
calculated by minimizing the KL-distance and the SE
and ESE distance measures using four and five mixture
components. Table 1 and 2 show that for four or five
mixture components only three mixture components
obtain weights of more than 1% for all approaches.

Figure 2 and 3 plot qij (the probability for a positive
finding of node j in scenario i) for the solutions ob-
tained by the three algorithms. Tables 1 and 2 show
the mixture weights and the KL-distance of the mix-
ture approximations to the true probability distribu-
tion. We see that approximately half of the weight is
assigned to a scenario describing healthy patients with
a very low probability of any symptom and with ap-
proximately 30% probability of being a smoker. This
mixture component really models two scenarios: one
in which the healthy patient is a smoker and one where
he or she is not a smoker. Approximately 40% prob-
ability mass is assigned to a group of patients with
very high probability of bronchitis, high probability
of dyspnoea and above average probability of being a
smoker. Similarly as for the healthy patient, this mix-
ture component can be thought of as modeling four
patient groups all of which have bronchitis but vary
in the four possible configurations of being smokers
and having dyspnoea.1 Approximately 5% probability
mass is assigned to a group of patients with a very
high probability of a positive x-ray, dyspnoea, a very
high probability of lung cancer and a high probability
of having bronchitis. In the model with five mixture

1Note, that given the states of the remaining variables
in this configuration, smoker and dyspnoea are likely to be
independent; otherwise the mixture approximation would
have had the tendency to assign more than one component
to the bronchitis scenario.

Table 1: KL-divergence and component weights for the
four component model.
Approach KL-dist q1 q2 q3 q4
KL 0.0021 0.530 0.405 0.055 0.010
SE 0.0055 0.522 0.415 0.053 0.001
ESE 0.1090 0.516 0.415 0.052 0.004

components about 1% or less probability mass is as-
signed to a group of persons with tuberculosis, slightly
higher than normal probability of having visited asia,
and with a high probability of having a positive x-ray
and dyspnoea. In the four component model, both
the KL-distance model and the SE model have also
converged to this solution.

Interestingly, the mixture components really “make up
their mind” and converge to clearly identifiable sce-
narios. The solutions from the different approaches
all agree in the scenarios which have obtained consid-
erable probability mass. In terms of KL-divergence
(recall that KL-divergence is only minimized for one
approach) the SE solution performs very well whereas
the ESE-solution is considerably worse. This might
be explained by the fact that ESE does not tend to
penalize errors for states with small probabilities.

Based on these experiments we might conclude that
the SE-approach can provide solutions very simi-
lar both qualitatively and quantitatively to the KL-
solution.

Figure 4 displays the results using the mixture of mean
field solutions approach (Haft, Hofmann and Tresp,
1999). First of all it is interesting to note that there
are exactly three optima of the mean field equations.
Approximately 91% of the probability mass is here as-
signed to the “normal” patient group with an average
probability for smoking and bronchitis. The main dif-
ference to the first scenario of Figure 2 is that here the
probability for bronchitis is higher. The second com-
ponent with approximately 7% of probability mass is
almost identical to the third component in the previ-
ous solutions. Finally, the third solution with approx-
imately 1% of probability mass is very similar to the
fourth component in the previous five component mod-
els. It appears that the main difference to the previous
solutions is that the first component of the mean field
solution approximates the first two components of the
mixture approximations in the previous experiments.

4.2 Evidence and Inference

When we enter evidence as described in Section 3 the
scenarios are correspondingly re-weighted. Table 3 de-
scribes the new mixture weights when the evidence
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Figure 1: The mixture approximation using the KL-
distance. The x-axis indicates the number of mixture
components and the y-axis the KL-distance between
the mixture model and the Bayesian network.

Table 2: KL-divergence and component weights for the
five component model.
Appr. KL-dist q1 q2 q3 q4 q5

KL 0.0020 0.517 0.404 0.055 0.010 0.014
SE 0.0056 0.522 0.415 0.043 0.009 0.012
ESE 0.0360 0.513 0.422 0.052 0.005 0.008

“dyspnoea=yes” and “smoker=yes” is entered. One
can see, for example, that for the SE metric the first
scenario (healthy person) has lost and the second (per-
son with bronchitis) and third (sick smoker) scenarios
have gained weight as a result of the evidence — if
compared to unconditional weights in Table 1. Ta-
ble 4 shows the marginal posterior probabilities com-
puted from the different mixture models. As could be
expected from the low KL-distances between the ex-
act and all mixture models, the estimated probabilities
are very close to the true probabilities. The KL-metric
shows the best and the ESE-metric the worst approxi-
mation, but all three are within around one percentage
point from the exact posteriors for all variables.

Table 5 and Table 6 show the same experiment for
the unlikely evidence “visit to Asia=yes” and “x-
ray=positive” which has a probability of only 0.15% in
the model. Even though the KL-distance between the
exact (unconditioned) model and the mixture models
is low, the KL-distance of the corresponding condi-
tioned models can be large, because a small absolute
error in the estimated probability of an unlikely event
causes only a small KL-distance, but a large relative er-
ror in the probability of that event. This, however, can
lead to a large absolute error in the probabilities con-
ditioned on that event. We therefore expect stronger
deviations in the probabilities for this second example.
Table 6 shows indeed stronger deviations than Table 4.
The KL-model is still extremely good, the SE-model
shows deviations in the range of 5% percentage points,
whereas the ESE-model is completely wrong in its es-
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Figure 2: The component parameters qij for the mix-
ture model with four components i = 1, 2, 3, 4. The
filled bars show the result using the KL-divergence,
the gray bars using the SE error function, and the
empty bars using the ESE-error function.
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Figure 3: Same as in Figure 2 but with five compo-
nents.
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Figure 4: The solution obtained by the mean field ap-
proximation. There are exactly three solutions. The
mixture weights are 0.919 (component 1), 0.069 (com-
ponent 2) and 0.012 (component 3). The KL-distance
between the true probability distribution and the mix-
ture approximation is 0.304.

Table 3: Reweighted mixture weights for evidence
“dyspnoea=yes” and “smoker=yes”.
Appr. q1 q2 q3 q4
KL 0.0715 0.7434 0.1692 0.0159
SE 0.0705 0.7445 0.1704 0.0147
ESE 0.0621 0.7724 0.1655 0.0000

timation of the probability of TBC. This is probably
due to the fact that deviations from the exact model
in regions of low probability have a particularly low
weight in the ESE-metric. So both the KL- and the
SE-model still give useful results even in this case of
unlikely evidence.

5 Conclusions

We have demonstrated that a mixture approximation
can give interesting new insights into the relationships
between the variables in a probability domain mod-
eled by a Bayesian network. Furthermore, we have
shown that the complexity of the computational cost
for calculating the parameters in the mixture mod-
els depends critically on the distance measure. For
a quadratic distance measure, parameter optimization
can be executed efficiently using the junction tree al-
gorithm. We have show that experimentally, the so-

Table 5: Reweighted mixture weights for the (unlikely)
evidence “visit to Asia=yes” and “x-ray=positive”.
Appr. q1 q2 q3 q4
KL 0.1749 0.1338 0.3670 0.3242
SE 0.2127 0.1650 0.3595 0.2627
ESE 0.2321 0.4921 0.2045 0.0714

lutions found by minimizing the KL-distance (which
is computationally infeasible for large networks) and
a squared error cost function are basically identical.
The significant components in each mixture model
clearly make up their mind and are very different. We
have compared these results to those obtained using
multiple mean field solutions. Here, maxima in the
backward KL-distance are found and form the mix-
ture components. The mean field solutions have been
used recently for approximate inference and learning in
various large intractable networks, for example by Pe-
terson and Anderson (1987), Saul, Jaakkola and Jor-
dan (1996), Kappen and Rodriguez (1997), Bishop,
Lawrence, Jaakkola and Jordan (1998), Lawrence,
Bishop and Jordan (1998) and Haft, Hofmann and
Tresp (1999). For those large networks in which the
junction tree algorithm is computationally infeasible,
mean field approximations are still the only viable op-
tion for inference, besides Monte Carlo methods. For
smaller networks in which the junction tree algorithm
can be used, the algorithms presented here are applica-
ble. Finally, we have shown how the mixture approxi-
mation can be used to obtain both a mixture model for
the unknown nodes composed of reweighted scenarios
and approximations to conditional probabilities. The
inference based on the mixture approximation appears
to be reasonable precise, as long as the inference does
not depend on a very accurate model of the underlying
probability distribution; the latter is the case when the
evidence entered into the model is very unlikely.
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6 Appendix

6.1 Interpretation of fj(xj) as Soft Evidence

Consider the last term in Equation 3. If network we
add soft evidence nodes ej with conditional densities
P (ej |xj) ∝ qiQ(xj |i) to the original we obtain for the
joint probability distribution P (x)

∏
j P (ej |xj). The

likelihood of the evidence is

P (e) =
∑

x

P (x)
∏
j

P (ej |xj)

and can be calculated efficiently using the junction tree
algorithm.

6.2 The Chest Clinic

Figure 5: The chest clinic network. The parameters for
this standard network can be downloaded, e.g., form
http://www.hugin.dk/networks.


