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Abstract

We consider neural network models for stochastic nonlinear dynamical
systems where measurements of the variable of interest are only avail-
able at irregular intervals i.e. most realizations are missing. Dif£culties
arise since the solutions for prediction and maximum likelihood learn-
ing with missing data lead to complex integrals, which even for simple
cases cannot be solved analytically. In this paper we propose a spe-
ci£c combination of a nonlinear recurrent neural predictive model and
a linear error model which leads to tractable prediction and maximum
likelihood adaptation rules. In particular, the recurrent neural network
can be trained using the real-time recurrent learning rule and the linear
error model can be trained by an EM adaptation rule, implemented us-
ing forward-backward Kalman £lter equations. The model is applied to
predict the glucose/insulin metabolism of a diabetic patient where blood
glucose measurements are only available a few times a day at irregular
intervals. The new model shows considerable improvement with respect
to both recurrent neural networks trained with teacher forcing or in a free
running mode and various linear models.

1 INTRODUCTION

In many physiological dynamical systems measurements are acquired at irregular intervals.
Consider the case of blood glucose measurements of a diabetic who only measures blood
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glucose levels a few times a day. At the same time physiological systems are typically
highly nonlinear and stochastic such that recurrent neural networks are suitable models.
Typically, such networks are either used purely free running in which the networks predic-
tions are iterated, or in a teacher forcing mode in which actual measurements are substituted
if available. In Section 2 we show that both approaches are problematic for highly stochas-
tic systems and if many realizations of the variable of interest are unknown. The traditional
solution is to use astochasticmodel such as a nonlinear state space model. The problem
here is that prediction and training missing data lead to integrals which are usually con-
sidered intractable (Lewis, 1986). Alternatively, state dependent linearizations are used for
prediction and training, the most popular example being the extended Kalman £lter. In this
paper we introduce a combination of a nonlinear recurrent neural predictive model and a
linear error model which leads to tractable prediction and maximum likelihood adaptation
rules. The recurrent neural network can be used in all generality to model the nonlinear
dynamics of the system. The only limitation is that the error model is linear which is not
a major constraint in many applications. The £rst advantage of the proposed model is that
for single or multiple steppredictionwe obtain simple iteration rules which are a combi-
nation of the output of the iterated neural network and a linear Kalman £lter which is used
for updating the linear error model. The second advantage is that for maximum likelihood
learning the recurrent neural network can be trained using the real-time recurrent learning
rule RTRL and the linear error model can be trained by an EM adaptation rule, imple-
mented using forward-backward Kalman £lter equations. We apply our model to develop a
model of the glucose/insulin metabolism of a diabetic patient in which blood glucose mea-
surements are only available a few times a day at irregular intervals and compare results
from our proposed model to recurrent neural networks trained and used in the free running
mode or in the teacher forcing mode as well as to various linear models.

2 RECURRENT SYSTEMS WITH MISSING DATA
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Figure 1: A neural network predicts the next value of a time-series based on the latest two
previous measurements (left). As long as no measurements are available (t = 1 to t = 6),
the neural network is iterated (un£lled circles). In a free-running mode, the neural network
would ignore the measurement at timet = 7 to predict the time-series at timet = 8. In a
teacher forcing mode, it would substitute the measured value for one of the inputs and use
the iterated value for the other (unknown) input. This appears to be suboptimal since our
knowledge about the time-series at timet = 7 also provides us with information about the
time-series at timet = 6. For example the dotted circle might be a reasonable estimate. By
using the iterated value for the unknown input, the prediction of the teacher forced system
is not well de£ned and will in general lead to unsatisfactory results. A sensible response
is shown on the right where the £rst few predictions after the measurement are close to the
measurement. This can be achieved by including a proper error model (see text).

Consider a deterministic nonlinear dynamical model of the form

yt = fw(yt−1, . . . , yt−N , ut)
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Figure 2: Left: The proposed architecture. Right: Linear impulse response.

of orderN , with inputut and wherefw(.) is a neural network model with parameter-vector
w. Such a recurrent model is either used in a free running mode in which network predic-
tions are used in the input of the neural network or in a teacher forcing mode where mea-
surements are substituted in the input of the neural network whenever these are available.1

Both can lead to undesirable results when many realizations are missing and when the sys-
tem is highly stochastic. Figure 1 (left) shows that a free running model basically ignores
the measurement for prediction and that the teacher forced model substitutes the measured
value but leaves the unknown states at their predicted values which also might lead to un-
desirable responses. The traditional solution is to include a model of the error which leads
to nonlinear stochastical models, the simplest being

yt = fw(yt−1, . . . , yt−N , ut) + εt

whereεt is assumed to be additive uncorrelated zero-mean noise with probability den-
sity Pε(ε) and represents unmodeled system dynamics. For prediction and learning with
missing values we have to integrate over the unknowns which leads to complex integrals
which, for nonlinear models, have to be approximated, for example, using Monte Carlo
integration.2 In general, those integrals are computationally too expensive to solve and, in
practice, one relies on locally linearized approximations of the nonlinearities typically in
form of the extended Kalman £lter. The extended Kalman £lter is suboptimal and summa-
rizes past data by an estimate of the means and the covariances of the variables involved
(Lewis, 1986).

In this paper we pursue an alternative approach. Consider the model with state updates

y∗
t = fw(y∗

t−1, . . . , y
∗
t−N , ut) (1)

xt =
K∑

i=1

θixt−i + εt (2)

yt = y∗
t + xt = fw(y∗

t−1, . . . , y
∗
t−N , ut) +

K∑
i=1

θixt−i + εt (3)

and with measurement equation
zt = yt + δt. (4)

whereεt andδt denote additive noise. The variable of interestyt is now the sum of the
deterministic response of the recurrent neural networky∗

t and a linear system error model
xt (Figure 2).zt is a noisy measurement ofyt. In particular we are interested in the special
cases thatyt can be measured with certainty (variance ofδt is zero) or that a measurement
is missing (variance ofδt is in£nity). The nice feature is now thaty∗

t can be considered
a deterministic input to the state space model consisting of the equations (2)− (3). This

1An alternative algorithm has recently been proposed by Bengio & Gingras (1996) where missing
data are £lled in based on a “discriminant” approach.

2For maximum likelihood learning of linear models we obtain EM equations which can be solved
using forward-backward Kalman equations (see Appendix).



means that for optimal one-step or multiple-step prediction, we can use thelinear Kalman
£lter for equations (2)− (3) and measurement equation (4) by treatingy∗

t as deterministic
input. Similarly, to train the parameters in the linear part of the system (i.e.{θi}N

i=1) we can
use an EM adaptation rule, implemented using forward-backward Kalman £lter equations
(see the Appendix). The deterministic recurrent neural network is adapted with the residual
error which cannot be explained by the linear model, i.e.targetrnn

t = ym
t − ŷlinear

t
whereym

t is a measurement ofyt at timet and wherêylinear
t is the estimate of the linear

model. After the recurrent neural network is adapted the linear model can be retrained
using the residual error which cannot be explained by the neural network, then again the
neural network is retrained and so on until no further improvement can be achieved.

The advantage of this approach is that all of the nonlinear interactions are modeled by
a recurrent neural network which can be trained deterministically. The linear model is
responsible for the noise model which can be trained using powerful learning algorithms
for linear systems. The constraint is that the error model cannot be nonlinear which often
might not be a major limitation.

3 BLOOD GLUCOSE PREDICTION OF A DIABETIC

The goal of this work is to develop a predictive model of the blood glucose of a person with
type 1 Diabetes mellitus. Such a model can have several useful applications in therapy:
it can be used to warn a person of dangerous metabolic states, it can be used to make
recommendations to optimize the person’s therapy and, £nally, it can be used in the design
of a stabilizing control system for blood glucose regulation, a so-called “arti£cial beta cell”
(Tresp, Moody and Delong, 1994). We want the model to be able to adapt using patient data
collected under normal every day conditions rather than the controlled conditions typical
of a clinic. In a non-clinical setting, only a few blood glucose measurements per day are
available.

Our data set consists of the protocol of a diabetic over a period of almost six months. Dur-
ing that time period, times and dosages of insulin injections (basal insulinu1

t and normal
insulin u2

t ), the times and amounts of food intake (fastu3
t , intermediateu4

t and slowu5
t

carbohydrates), the times and durations of exercise (regularu6
t or intenseu7

t ) and the blood
glucose levelyt (measured a few times a day) were recorded. Theuj

t , j = 1, . . . , 7 are
equal to zero except if there is an event, such as food intake, insulin injection or exercise.
For our data set, inputsuj

t were recorded with 15 minute time resolution. We used the £rst
43 days for training the model (containing 312 measurements of the blood glucose) and the
following 21 days for testing (containing 151 measurements of the blood glucose). This
means that we have to deal with approximately 93% of missing data during training.

The effects on insulin, food and exercise on the blood glucose are delayed and are approx-
imated by linear response functions.vj

t describes the effect of inputuj
t on glucose. As an

example, the responsev2
t of normal insulinu2

t after injection is determined by the diffusion
of the subcutaneously injected insulin into the blood stream and can be modeled by three
£rst order compartments in series or, as we have done, by a response function of the form
v2

t =
∑

τ g2(t−τ)u2
τ with g2(t) = a2t

2e−b2t (see £gure 2 for a typical impulse response).
The functional mappingsgj(.) for the digestive tract and for exercise are less well known.
In our experiments we followed other authors and used response functions of the above
form.

The response functionsgj(.) describe the delayed effect of the inputs on the blood glucose.
We assume that the functional form ofgj(.) is suf£cient to capture the various delays of the
inputs and can be tuned to the physiology of the patient by varying the parametersaj ,bj .
To be able to capture the highly nonlinear physiological interactions between the response



functionsvj
t and the blood glucose levelyt, which is measured only a few times a day, we

employ a neural network in combination with a linear error model as described in Section 2.
In our experimentsfw(.) is a feedforward multi-layer perceptron with three hidden units.
The £ve inputs to the network were insulin (in1

t = v1
t + v2

t ), food (in2
t = v3

t + v4
t + v5

t ),
exercise (in3

t = v6
t + v7

t ) and the current and previous estimate of the blood glucose. To be
speci£c, the second order nonlinear neural network model is

y∗
t = y∗

t−1 + fw(y∗
t−1, y

∗
t−2, in

1
t , in

2
t , in

3
t ) (5)

For the linear error model we also use a model of order 2

xt = θ1xt−1 + θ2xt−2 + εt (6)

Table 1 shows the explained variance of the test set for different predictive models.3

In the £rst experiment (RNN-FR) we estimate the blood glucose at timet as the output
of the neural network̂yt = y∗

t . The neural network is used in the free running mode for
training and prediction. We use RTRL to both adapt the weights in the neural network as
well as all parameters in the response functionsgj(.). The RNN-FR model explains 14.1
percent of the variance. The RNN-TF model is identical to the previous experiment except
that measurements are substituted whenever available. RNN-TF could explain more of the
variance (18.8%). The reason for the better performance is, of course, that information
about measurements of the blood glucose can be exploited.

The model RNN-LEM2 (error model with order 2) corresponds to the combination of the
recurrent neural network and the linear error model as introduced in Section 2. Here,
yt = xt + y∗

t models the blood glucose andzt = yt + δt is the measurement equation
where we set the variance ofδt = 0 for a measurement of the blood glucose at timet and
the variance ofδt = ∞ for missing values. Forεt we assume Gaussian independent noise.
For prediction, equation (5) is iterated in the free running mode. The blood glucose at time
t is estimated using a linear Kalman £lter, treatingy∗

t as deterministic input in the state
space modelyt = xt + y∗

t , zt = yt + δt. We adapt the parameters in the linear error model
(i.e. θ1, θ2, the variance ofεt) using an EM adaptation rule, implemented using forward-
backward Kalman £lter equations (see Appendix). The parameters in the neural network
are adapted using RTRL exactly the same way as in the RNN-FR model, except that the
target is nowtargetrnn

t = ym
t − ŷlinear

t whereym
t is a measurement ofyt at timet and

whereŷlinear
t is the estimate of the linear error model (based on the linear Kalman £lter).

The adaptation of the linear error model and the neural network are performed alternatingly
until no signi£cant further improvement in performance can be achieved.

As indicated in Table 1, the RNN-LEM2 model achieves the best prediction performance
with an explained variance of 44.9% (£rst order error model RNN-LEM1: 43.7%). As
a comparison, we show the performance of just the linear error model LEM (this model
ignores all inputs), a linear model (LM-FR) without an error model trained with RTRL and
a linear model with an error model (LM-LEM). Interestingly, the linear error model which
does not see any of the inputs can explain more variance (12.9%) than the LM-FR model
(8.9%). The LM-LEM model, which can be considered a combination of both can ex-
plain more than the sum of the individual explained variances (31.5%) which indicates that
the combined training gives better performance than training both submodels individually.
Note also, that the nonlinear models (RNN-FR, RNN-TF, RNN-LEM) give considerably
better results than their linear counterparts, con£rming that the system is highly nonlinear.

Figure 3 (left) shows an example of the responses of some of the models. We see that
the free running neural network (dotted line) has relatively small amplitudes and cannot
predict the three measurements very well. The RNN-TF model (dashed line) shows a

3MSPE(model) is the mean squared prediction error on the test set of the model and
MSPE(mean) is the mean squared prediction error of predicting the mean.



Table 1: Explained variance on test set [in percent]:100 ·
(
1 − MSPE(model)

MSPE(mean)

)

MODEL % MODEL %

mean 0 RNN-TF 18.8
LM 8.9 LM-LEM 31.4
LEM 12.9 RNN-LEM1 43.7
RNN-FR 14.1 RNN-LEM2 44.9

better response to the measurements than the free running network. The best prediction of
all measurements is indeed achieved by the RNN-LEM model (continuous line).

Based on the linear iterated Kalman £lter we can calculate the variance of the prediction.
As shown in Figure 3 (right) the standard deviation is small right after a measurement is
available and then converges to a constant value. Based on the prediction and the estimated
variance, it will be possible to do a risk analysis for the diabetic (i.e a warning of dangerous
metabolic states).
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Figure 3: Left: Responses of some models to three measurements. Note that the prediction
of the £rst measurement is bad for all models but that the RNN-LEM model (continuous
line) predicts the following measurements much better than both the RNN-FR (dotted) and
the RNN-TF (dashed) model. Right: Standard deviation of prediction error of RNN-LEM.

4 CONCLUSIONS

We introduced a combination of a nonlinear recurrent neural network and a linear error
model. Applied to blood glucose prediction it gave signi£cantly better results than both
recurrent neural networks alone and various linear models. Further work might lead to a
predictive model which can be used by a diabetic on a daily bases. We believe that our re-
sults are very encouraging. We also expect that our speci£c model can £nd applications in
other stochastical nonlinear systems in which measurements are only available at irregular
intervals such that in wastewater treatment, chemical process control and various physio-
logical systems. Further work will include error models for the input measurements (for
example, the number of food calories are typically estimated with great uncertainty).



Appendix: EM Adaptation Rules for Training the Linear Error Model

Model and observation equations of a general model are4

xt = Θxt−1 + εt zt = Mtxt + δt. (7)

whereΘ is theK×K transition matrix of theK-order linear error model. TheK×1 noise
termsεt are zero-mean uncorrelated normal vectors with common covariance matrixQ. δt

is m-dimensional5 zero-mean uncorrelated normal noise vector with covariance matrix
Rt. Recall that we consider certain measurements and missing values as special cases of
noisy measurements. The initial state of the system is assumed to be a normal vector with
meanµ and covarianceΣ.

We describe the EM equations for maximizing the likelihood of the model. De£ne the
estimated parameters at the (r+1)st iterate of EM as the valuesµ,Σ,Θ, Q which maximize

G(µ,Σ,Θ, Q) = Er(log L|z1, . . . , zn) (8)

wherelog L is log-likelihood of the complete datax0, x1, . . . , xn, z1, . . . , zn andEr de-
notes the conditional expectation relative to a density containing therth iterate values
µ(r),Σ(r),Θ(r) andQ(r). Recall that missing targets are modeled implicitly by the de£-
nition of Mt andRt.

For calculating the conditional expectation de£ned in (8) the following set of recursions
are used (using standard Kalman £ltering results, see (Jazwinski, 1970)). First, we use the
forward recursion

xt−1
t = Θxt−1

t−1

P t−1
t = ΘP t−1

t−1 Θ> + Q
Kt = P t−1

t M>
t (MtP

t−1
t M>

t + Rt)−1

xt
t = xt−1

t + Kt(y∗
t − Mtx

t−1
t )

P t
t = P t−1

t − KtMtP
t−1
t

(9)

where we takex0
0 = µ andP 0

0 = Σ. Next, we use the backward recursion

Jt−1 = P t−1
t−1 Θ>(P t−1

t )−1

xn
t−1 = xt−1

t−1 + Jt−1(xn
t − Θxt−1

t−1)
Pn

t−1 = P t−1
t−1 + Jt−1(Pn

t − P t−1
t )J>

t−1

Pn
t−1,t−2 = P t−1

t−1 J>
t−2 + Jt−1(Pn

t,t−1 − ΘP t−1
t−1 )J>

t−2

(10)

with initializationPn
n,n−1 = (I − KnMn)ΘPn−1

n−1 . One forward and one backward recur-
sion completes the E-step of the EM algorithm.

To derive the M-step £rst realize that the conditional expectations in (8) yield to the fol-
lowing equation:

G = − 1
2 log |Σ| − 1

2 tr{Σ−1(Pn
0 + (xn

0 − µ)(xn
0 − µ)>)}

−n
2 log |Q| − 1

2 tr{Q−1(C − BΘ> − ΘB> − ΘAΘ>)}
−n

2 log |Rt| − 1
2 tr{R−1

t

∑n
t=1[(y

∗
t − Mtxt)(y∗

t − Mtxt)> + MtP
n
t M>

t ]}
(11)

where tr{.} denotes the trace,A =
∑n

t=1(P
n
t−1 + xn

t−1x
n>
t−1),

B =
∑n

t=1(P
n
t,t−1 + xn

t xn>
t−1) andC =

∑n
t=1(P

n
t + xn

t xn>
t ).

4Note that any linear system of orderK can be transformed into a £rst order linear system of
dimensionK.

5m indicates the dimension of the output of the time-series.



Θ(r + 1) = BA−1 andQ(r + 1) = n−1(C − BA−1B>) maximize the log-likelihood
equation (11).µ(r + 1) is set toxn

0 andΣ may be £xed at some reasonable baseline level.
The derivation of these equations can be found in (Shumway & Stoffer, 1981).

The E- (forward and backward Kalman £lter equations) and M-steps are alternated repeat-
edly until convergence to obtain the EM solution.
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