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Abstract

In this paper we consider supervised learn-
ing on large-scale graphs, which is highly de-
manding in terms of time and memory costs.
We demonstrate that, if a graph has a bi-
partite structure that contains a small set
of nodes separating the remaining from each
other, the inference can be equivalently done
over an induced graph connecting only the
separators. Since each separator influences
a certain neighborhood, the method essen-
tially explores the block structure of graphs
to improve the scalability. In the next step,
instead of identifying the bipartite structure
in a given graph, which is often difficult, we
propose to construct a set of separators via
two methods, one is adjacency matrix fac-
torization and the other is mixture models,
which both naturally ends up with a bipar-
tite graph and meanwhile preserves the orig-
inal data structure. Finally we report results
of experiments on a toy problem and an in-
trusion detection problem.

1. Introduction

Recent years have seen considerable interests in graphs
built on the pairwise relationships (e.g. similarity) of
data objects. Though those relationships are rather lo-
cal, the diffusion of information along with a graph of-
ten induces a global structure of the data distribution.
One important area of exploring this global structure
is to make use of unlabeled data in supervised learning,
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which is called semi-supervised learning.

In many supervised learning problems, collecting mea-
surements is expensive, while vast amounts of unla-
beled (or unmeasured) data are often readily available.
These unlabeled data often offer some additional infor-
mation, which is the situation where semi-supervised
learning is useful. The graph based on the similar-
ities of labeled and unlabeled data offers an elegant
way to explore the additional information. Examples
of recent work in this direction include Markov ran-
dom walks (Szummer & Jaakkola, 2002), cluster ker-
nels (Chapelle et al., 2003), regularization on graphs
(Belkin & Niyogi, 2003; Zhu et al., 2003; Zhou et al.,
2004), and directed graphs (Zhou et al., 2005).

In this paper we consider supervised learning on a
large graph that corresponds to a large-size of data
set. Since the number of unlabeled data is often
very large, the situation is very common in real-world
applications but highly demanding in terms of time
and memory costs. Previous approaches rarely con-
sidered the scalability issue and typically handled at
most thousands of data points. In this paper we take
two steps to solve the problem. First, we demon-
strate that, if a graph has a bipartite structure that
contains a small set of nodes separating the remain-
ing from each other, the inference can be equivalently
done over an induced smaller graph connecting only
the separators. Since each separator influences a cer-
tain neighborhood, the method essentially explores the
block structure of graphs to improve the efficiency;
Second, instead of identifying the bipartite structure
in a given graph, which is often very difficult, we pro-
pose to construct a set of separators via two alter-
native ways, one is symmetric nonnegative factoriza-
tion of the adjacency matrix and the other is mixture
modeling, which both naturally ends up with a bipar-
tite graph and meanwhile preserves the original data
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structure. Once such a bipartite graph is constructed,
supervised inference can be done efficiently with the
computational cost O(m3), much smaller than O(n3)
in the original graph. The benefits are more notable
if various learning problems are frequently run on the
same set of data, since the factorization needs to be
done only once. Finally we report encouraging results
of experiments on a toy problem and an intrusion de-
tection problem.

The rest of this paper is organized as the following. In
Sec. 2 we introduce the notion of harmonic functions.
In Sec. 3 we describe an efficient learning algorithm on
graphs which have a small set of separators to make up
a bipartite structure. Then we explain how to produce
a bipartite graph by factorization of adjacency matrix
in Sec. 4. Finally we report the empirical study in
Sec. 7 and conclude in Sec. 8.

2. Preliminaries

In this section we first review the notion of harmonic
functions on general undirected graphs. Let G(V,E)
be a graph with vertices V and edges E, where [i, j] ∈
E denotes an edge from vertex vi to vj . An adja-
cency matrix W ∈ Rn×n

+ describes the strengths of
connections between vertices, satisfying wi,j = wj,i,
wi,j ≥ 0, and wi,j = 0 if [i, j] /∈ E. Let di =

∑
j wi,j

be the degree of vertex vi, and D a diagonal matrix
with (D)i,i = di. Then the combinatorial Laplacian is
defined as 4 = D−W, which operates on real-valued
functions H = {f : V → R} and yields

(4f)i = difi −
∑

j

wi,jfj , i = 1, . . . , n.

f ∈ H is said to be a harmonic function if

4f = (D−W)f = 0. (1)

The notion of harmonic functions is related to the
potential theory (Kellogg, 1969) and important in
many phenomena in physics. One can think G as
an electrical circuit, f as voltages on vertices and
wi,j = 1/Ri,j as the inverse resistance of edge [i, j],
based on Ohm’s law the current entering vj from vi is
Ii,j = (fi − fj)/Ri,j = wi,j(fi − fj). Kirchoff’s cur-
rent law says that the sum of incoming currents at any
vertex in a circuit must equal to zero, namely∑

j

Ii,j =
∑

j

wi,j(fi − fj) = (4f)i = 0.

In above situation we say that f is harmonic at vertex
vi. The property of harmonic functions has been ex-
plored in (Zhu et al., 2003) for supervised learning on
general undirected graphs.

3. Inference on Bipartite Graphs

Now we consider a special type of graphs, called bi-
partite graph, which contains a set of vertices Z that
separate the remaining vertices V from each other.
The separators Z reflect the block structure of graphs.
Our work is inspired by an intuition that block-wise al-
gorithms should be faster than vertex-wise algorithms
if the size of Z is small.

Formally, let G(V,Z,E) be a bipartite graph with two
vertex sets V = {vi}n

i=1 and Z = {zk}m
k=1, and edges

[i, k] ∈ E connecting vi to zk. Note that there is no
intra connections within V or Z. Let A ∈ Rn×m

+ be the
adjacency matrix such that ai,k describes the strength
of the connection between vi and zk, satisfying ai,k =
ak,i, ai,k ≥ 0, and ai,k = 0 if [i, k] /∈ E. Let dv

i =∑
k ai,k be the degree of vertex vi, dz

k =
∑

i ai,k the
degree of vertex zk, and Dv and Dz the corresponding
diagonal matrices.

Let Hv = {f : V → R} and Hz = {g : Z → R} be
the two spaces of real-valued functions. Based on the
harmonic property that function values on each vertex
equals to the weighted average of function values on
neighbor vertices, if f and g are both harmonic there
are relationships

f = D−1
v Ag and g = D−1

z A>f.

Combining the two equations, it is not difficult to have
the forms similar to Eq. (1)

(Dv −AD−1
z A>)f = 0

(Dz −A>D−1
v A)g = 0

Then we define two combinatorial Laplacians 4v :
Hv → Rn

+ and 4z : Hz → Rm
+ respectively as

4v = Dv −AD−1
z A> (2)

4z = Dz −A>D−1
v A (3)

3.1. Pointwise Inference

Now we consider the semi-supervised problem on bi-
partite graphs. Without loss of generality, we assume
that f is partially observed and want to estimate the
whole function f . The measurements are referred as
boundary conditions in the potential theory. To state
formally, let yl be the measurements of f on a subset
Vl = {vi}nl

i=1, and Vu = V − Vl the set of unmea-
sured vertices. The boundary condition is one side
since there is no observations on g.

It is usually impossible to directly probe into a phys-
ical process and exactly obtain the target quantity.
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To underlie this, we attach to each vi ∈ Vl an extra
boundary vertex bi ∈ B , where the measuring truly
takes place, and assign a weight a0 to the edge con-
necting bi and vi. Intuitively a0 is large if the yl are
precise. Then the harmonic property for f should be

fi =

{
1

dv
i +a0

( ∑
k ai,kgk + a0yi

)
, if vi ∈ Vl

1
dv

i

∑
k ai,kgk, if vi ∈ Vu

(4)

The above function can be easily justified again by the
Kirchoff’s laws, where bi are the instruments measur-
ing the voltages on vi, a0 stands for the inverse of some
resistance caused by, for example, the contact resis-
tance between bi and vi, and yi are the voltage values
read on bi. The harmonic property for g remains the
same, but can be written differently

gk =
1
du

k

∑
i

ai,kfi (5)

Insert Eq. (5) into Eq. (4), one obtains

fi =

{
1

dv
i +a0

(
aiD−1

z A>f + a0yi

)
, if vi ∈ Vl

1
dv

i
aiD−1

z A>f, if vi ∈ Vu

(6)

where ai is the i-th row vector of A.

Theorem 3.1. Eq. (6) is the sufficient and neces-
sary condition of f∗ ∈ Hv, which solves the variational
problem

f∗ = arg min
f
‖f l − yl‖2 + λf>4vf (7)

where f l are f ’s values on Vl, and λ = 1
a0

.

Proof. Let

f =
[
f l

fu

]
and 4v =

[
4ll

v 4lu
v

4ul
v 4uu

v

]
.

The partial derivative of the cost in Eq. (7) with re-
spect to f gives

f l − yl + λ4ll
v f l + λ4lu

v fu = 0 (8)

4ul
v f l +4uu

v fu = 0 (9)

where Eq. (8) easily drives the first part of Eq. (6)
if λ = 1

a0
and Eq. (9) gives the second part. Thus

Eq. (6) is the necessary condition. The convexity of
the optimization problem Eq. (7) further suggests that
Eq. (6) is also the sufficient condition.

Theorem 3.1 indicates that the harmonic function un-
der the one-side boundary condition is the solution to
a regularized regression problem with the regularizer

f>4vf and square loss. The regularization ensures f
to be sufficiently smooth with respect to the bipartite
graph. Based on Eq. (8) and Eq. (9), the estimated
function is given by

f∗ =
[
I + λ4ll

v λ4lu
v

λ4ul
v λ4uu

v

]−1 [
yl

0

]
(10)

3.2. Blockwise Inference

In case m � n, it is much more efficient to deal with
g than f . Since each separator zk influences a cer-
tain neighborhood of vertices vi, we essentially explore
the block structure of graphs. Inserting Eq. (4) into
Eq. (5), we obtain

g = D−1
z A>

[
a0I + Dll

v 0
0 Duu

v

]−1

Ag + D−1
z g′ (11)

where Dll
v and Duu

v are respectively the blocks in Dv

corresponding to Vl and Vu, and

g′ = A>
l

[
a0I + Dll

v

]−1
a0yl (12)

Eq. (11) can be rewritten as

(Dz −A′
z)g = g′ (13)

where

A′
z = A>

[
a0I + Dll

v 0
0 Duu

v

]−1

A (14)

Finally we get the estimate of g as

g∗ = (Dz −A′
z)
−1g′ (15)

Note that it is easy to check that (Dz−A′
z) is positive

definite, thus its inverse exists. The the estimate of f
is given by

f∗ = D−1
v Ag∗ (16)

Compared with the solution Eq. (10), the computation
here is much faster when m � n, since we only need
to invert a much smaller matrix.

4. Adjacency Matrix Factorization

In Section 3 we discussed how to make inference on the
bipartite graph G(V,Z,E). In this section we investi-
gate how to construct such a bipartite graph based on
a general undirected graph.
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4.1. Symmetric Nonnegative Matrix
Factorization

Let us follow the notation in Section 2 with graph
G(V,E) and adjacency matrix W ∈ Rn×n

+ . In the
graph factorization problem, we aim to seek m (m <
n) latent nodes {zk}m

k=1 = U and build the bipartite
graph with adjacency matrix A ∈ Rn×m

+ , which ap-
proximate the adjacency matrix W defined between
pairs (vi, vj):

wij ≈
m∑

k=1

aikajk

dz
k

= AD−1
z A>,

where dz
k =

∑n
l=1 alk sum over the kth column of A.

The idea behind this formulation is that the n×m ma-
trix A accounts for the adjacency relationships given
in W. For a concrete example, if the nodes in V are
text documents, latent nodes z could be the latent top-
ics that underlie the graph and connect documents.

Mathematically, we are solving the following optimiza-
tion problem:

min
A∈Rn×m

+

l(W,AD−1
z A>) (17)

s.t. hik ≥ 0,Dz = diag(dz
1, . . . , d

z
m), dz

k =
n∑

i=1

hik,

where l(·, ·) defines a distance function for two matri-
ces, e.g., l(P,Q) = ‖P −Q‖2F . Denote H = AD−1/2

z

as the adjacency factor of graph G, we can change
Eq. (17) into the following equivalent problem:

min
H∈Rn×m

+

l(W,HH>) (18)

s.t. hik ≥ 0.

This is seen as a nonnegative matrix factorization
(NMF) problem (Lee & Seung, 2000), and is not con-
vex in H. Various numerical methods can be used here
to find a local minima for this problem, and in this pa-
per we focus on a special gradient descent method for
two kinds of distance functions:
Theorem 4.1. (i) If the distance in Eq. (18) is

Frobenius norm l(P,Q) = ‖P−Q‖2F , the distance
is non-increasing under the update rule

h̃ik = hik
(WH)ik

(HH>H)ik

. (19)

(ii) If the distance in Eq. (18) is divergence l(P,Q) =∑
ij

(
pij log pij

qij
− pij + qij

)
, the distance is non-

increasing under the update rule

h̃ik =
hik∑
j hjk

∑
j

wij

(HH>)ij

hjk. (20)

In both cases, the distance is invariant under the up-
date if and only if H is at a stationary point of the
distance.

The theorem provides a method of symmetric non-
negative matrix factorization (SNMF), which can be
derived via a modification to NMF in (Lee & Seung,
2000). For both objective functions, the update is a
gradient descent method with a specific step size. It
can be easily checked that the update is unity when
W = HH>. Due to nonnegative constraints, a graph
is decomposed to a set of additive components, which
represents clusters or blocks on the graph.

After H is obtained, adjacency matrix A can be easily
calculated as A = HΛ, where Λ = diag(λ1, . . . , λm)
and λk =

∑n
i=1 hik. This is easily checked by equat-

ing
∑n

i=1 hik =
∑n

i=1 hik/
√

dz
k =

√
dz

k since H =
AD−1/2.

While both of the distance functions in Theorem 4.1
can be applied, we prefer the divergence function be-
cause in Eq. (20) we only need to sum over all nonzero
terms of wij for a new update. This is extremely
efficient if W is sparse, and the time complexity of
Eq. (20) is O(m2nL) with L the number of nonzero
entries in W.

5. Mixture Models and Bipartite
Graphs

Interestingly, a mixture density model has a natural
bipartite structure, which implies a combination of the
results from Sec. 3 and Sec. 4 with mixture models,
and offers a principled way to handle new data points
inductively .

Let X = {xi}n
i=1 be the set of samples that are gener-

ated from a mixture density

p(x) =
m∑

k=1

πkp(x|θk) (21)

where πk are the probability mass of components ck,
satisfying

∑
k πk = 1, θk are the parameters of ck, and

p(x|θk) are the conditional density of a random sample
x given ck.

To build the connection to bipartite graphs, we treat
samples xi as vertices vi, components ck as vertices zk,
and the adjacency matrix A as

ai,k = p(xi, ck) = p(xi|θk)πk (22)

A mixture model also induces a similarity measure be-
tween data objects. To see this, let wi,j between vi

43



Figure 1. Semi-supervised learning on the two-moon data: mixture models (upper rows) and learned functions (lower
rows). Three results are obtained with 8 (left), 12 (middle) and 22 (right) components. For each Gaussian component
the covariance structure is plotted. The learned functions show the classification decisions on the test points (with colors
and markers) and function values in the whole input space (with gray levels).

and vj be the marginalized kernel (Tsuda et al., 2002),
then we have

wi,j = p(vi, vj) =
∑

k

p(xi|θk)p(xj |θk)πk (23)

=
∑

k

p(xi, ck)p(xj , ck)
πk

= (AD−1
z A>)i,j

where (Dz)k = dz
k = πk are the marginal probabilities

of ck. Furthermore, based on Eq. (21) it is not difficult
to see that the degree of vertex vi corresponds to the
density of xi

dv
i = p(xi) =

∑
k

ai,k =
∑

j

wi,j . (24)

The connections between mixture models and bipar-
tite graphs can also be explained from the random walk
point of view, where the conditional probabilities cor-
respond to the transition probabilities.

The messages obtained from the above analysis are
mainly two folds. First, a mixture model can be
treated as a bipartite graph. Then the learning al-
gorithms built on bipartite graphs in Sec. 3 can be
directly applied on mixture models, which actually ex-
plores the structure of the input density in supervised
learning; Second, a bipartite graph can be parameter-
ized into a mixture model. Since the posterior proba-
bilities p(ck|xi) = wi,k/dv

i are given, the whole graph

factorization can be seen as a E-step of an EM algo-
rithm. At the next, we just need to perform an M step
to estimate the parameters θk of the mixture model.
In practice, one can either directly estimate a mix-
ture model based on labeled and unlabeled data, or
first factorize the similarity graph of data and then fit
a mixture model. We found that the second choice
works better when the dimensionality of data is high.

As an advantage of mixture models, an inductive learn-
ing algorithm can be derived. For any new test point
x, its joint probability with each component ck can be
easily computed. While for a bipartite graph, comput-
ing w(x, ck) requires an iterative procedure. Based on
Eq. (16) the prediction is given by

f∗(x) =
1

p(x)

∑
k

p(x, ck)g∗(ck) =
∑

k

p(ck|x)g∗(ck)

(25)

6. Related Work

The proposed work in this paper makes connections to
two categories of semi-supervised learning algorithms.
The first category typically explores the clustering
structure of data (or mixture models) in supervised
learning, under the assumption the data in the same
cluster are likely to have similar labels. Nigam et al.
(2000) applied the EM algorithm on mixture models
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for text data and showed better classification results
than pure supervised methods. A good survey cover-
ing mixture models for learning with unlabeled data
can be found in (Seeger, 2000).

The other category contains recent developments of
information diffusion over graphs (Belkin & Niyogi,
2003; Zhu et al., 2003; Zhou et al., 2004). The meth-
ods typically use a similarity graph of data to capture
the local and global structure of distribution. Once
some data get labeled, the label information propa-
gates along with the graph, which explores the global
geometry of the data structure. It turns out the meth-
ods having roots in the spectral graph theory (Chung,
1997), which essentially performs supervised learning
on graphs with a regularization caused by the graph
Laplacian.

Our method combines essentially the both ideas in the
sense that we assume data in the same cluster (or mix-
ture component) are likely to have similar labels, and
meanwhile, allow the diffusion of label information fol-
lowing the similarities of clusters.

In the literature, several researchers have explored
the information diffusion over bipartite graphs. One
notable work is the “hub-authority” idea for model-
ing hyperlinks of webpages for building search engines
(Kleinberg, 1999). Recently Zhou et al. (2005) applied
the “hub-authority” idea in semi-supervised learning
on directed graphs, which essentially turns directed
graphs into undirected graphs. In the paper we de-
rive the learning algorithms from the harmonic func-
tion point’s of view and the main focus is to derive a
blockwise algorithm.

7. Experiments

7.1. The Two-Moon Problem

We test the proposed algorithm on the two-moon data
set (Zhou et al., 2004). Mixture of gaussian models are
trained to model the density distribution of input data.
We used the variational Bayesian methods described in
(Yu et al., 2005), the freedom of birthing new compo-
nents in data fitting is dependent on a hyper parame-
ter. Instead of optimizing the hyper-parameters using
the evidence framework in (Yu et al., 2005), we set dif-
ferent values to see the sensitivity of semi-supervised
learning with respect to the number of mixture com-
ponents. The results are shown in Fig. 1, where for
each class one label is given. Three results are ob-
tained with 8 (left), 12 (middle) and 22 (right) com-
ponents. For each Gaussian component the covariance
structure is plotted. The learned functions show the
classification decisions on the test points (with colors

and markers) and function values in the whole input
space (with gray levels). In all the cases classification
results are quite good, indicating that the number of
components m is not very critical to the performance.
Actually as m increases, the model is approaching to
the graph-based algorithms like (Zhu et al., 2003) and
(Zhou et al., 2004). Interestingly, in the last case where
m = 22, a gray area indicates that a small group of
data points are somewhat different from others.

7.2. Intrusion Detection

In the last experiment, we test on an intrusion detec-
tion problem based on the KDDCup 1999 data set.
The data set consist of connection record data col-
lected in 1998 DARPA IDS (intrusion detection sys-
tems) evaluation. The data applied here was from
(Pavel et al., 2004) and contains 50,000 data points
with 500 attacks that belong to 37 intrusion types.
We are only interested in finding the attacks thus the
problem becomes a binary classification task. In each
run, we randomly pick up l ∈ [37, 200] intrusions, at
least one for each class, and select 20,000 unlabeled
points. Usually semi-supervised learning algorithms
do not scale to such a big sample size. Our algorithm
is trained on the selected labeled and unlabeled data
and used to predict all the unlabeled points. The pre-
diction accuracy is evaluated by false-alarm rate, miss-
alarm rate, and ROC score. The experiments are re-
peated by 200 times and spot plots are shown in Fig. 2.
Based on the false-alarm rate the semi-supervised al-
gorithm performs similar as support vector machines,
while in terms of miss-alarm rate and ROC score our
algorithm performs much better than support vector
machines.

8. Conclusion and Future Work

In this paper we proposed a blockwise supervised
learning approach on undirected graphs, which ex-
plores the bipartite structure of graphs. Compared to
previous algorithms on graphs, the proposed algorithm
simulates the information diffusion over blocks instead
of vertices and is thus much more scalable to large
graphs. We also proposed two approaches to construct
bipartite graphs for capturing the distribution struc-
ture of data, one is to approximate an arbitrary undi-
rected graph via nonnegative adjacency matrix factor-
ization, and the other is mixture density modeling.
The algorithm was initially tested on a toy problem
and an intrusion detection data. In the near future,
more empirical study should be done. Also, it is de-
sired to investigate how to choose the size of clusters
in order to obtain a good bipartite approximation.
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Figure 2. 200 random repeats of intrusion detection with DARPA data. Each repeat corresponds a spot.
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