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A Nonlinear State Space Model for the
Blood Glucose Metabolism of a Diabetic
Ein nichtlineares Zustandsraummodell für den Blutglukosemetabolismus eines
Diabetikers

Thomas Briegel and Volker Tresp

The blood glucose metabolism of a diabetic is a complex nonlinear process closely linked to
a number of internal factors which are not easily accessible to measurement. Based on acces-
sible information – such as occasional blood glucose measurements and information about
food intake and physical exercise – the system appears highly stochastic and the quantity of
main interest, the blood glucose concentration, is very difficult to model and to predict. In
this paper we describe a stochastic nonlinear state space model for modeling the blood glu-
cose concentration of a diabetic patient. The model structure is based on physiological prior
knowledge and the main nonlinearities are modeled using artificial neural networks. Offline
training of the model is performed using a newly developed Monte-Carlo generalized EM (ex-
pectation maximization) algorithm. Online prediction is performed using particle filters. Our
experimental results show that our approach provides better prediction results than a number
of competing approaches.

Der Blutglukosemetabolismus eines Diabetikers ist ein komplexer nichtlinearer Prozess, der
sehr stark von einer Reihe interner Einflussfaktoren abhängt, welche Messungen nicht leicht
zugänglich sind. Basierend auf zugänglicher Information – wie gelegentlicher Blutglukose-
messungen und Information über Nahrungsaufnahme und physikalische Betätigung –
erscheint das System hochgradig stochastisch und ist daher sehr schwierig zu modellieren. In
dieser Veröffentlichung beschreiben wir ein stochastisches nichtlineares Zustandsraummodell
zur Modellierung des Blutglukosemetabolismus eines Diabetikers. Die Modellstruktur ba-
siert auf physiologischem Vorwissen, wobei die Hauptnichtlinearitäten durch ein künstliches
Neuronales Netz modelliert werden. Offline Training wird mit Hilfe eines neu entwickelten
Monte-Carlo EM-Algorithmus (expectation maximization) durchgeführt. Zur Online Vorher-
sage verwenden wir ein Partikel-Filter. Unsere experimentellen Resultate zeigen, dass unser
Ansatz bessere Ergebnisse liefert als eine Vielzahl konkurrierender Verfahren.

1 Introduction

Diabetes mellitus is one of the most common chronic di-
seases. According to a recent study 5.6% of all women and
4.7% of all men in Germany in the age group between ages
18 and 70 years are affected [1]. In type I diabetes, the di-
sease is caused by the failure of the pancreas to produce
a sufficient amount of insulin which leads to an uncontrol-
led increase in blood glucose unless the patient administers
insulin, typically by subcutaneous injection. Slowly acting
(basal) insulin is administered to supply a baseline of in-
sulin concentration whereas fast acting (normal) insulin is
injected to accommodate for the increased demand of in-
sulin after the intake of food. In consultation with the

patient’s physician and based on irregular measurements
of the blood glucose, the exact time and amount of insu-
lin injection is determined by the patient her- or himself.
Although an experienced patient with a stable metabolism
can achieve sufficient control of her or his blood glucose
concentration, this is often not the case for unexperienced
patients or elderly patients. Consequently, a number of
computer-based approaches have been developed for sup-
porting the insulin treatment of diabetic patients [2–4]. In
addition to functions which are realized today, such as sim-
ple storage and display functions, computer-based support
could realize systems which are able to analyze past thera-
py, to predict future blood glucose levels, and to provide
therapy recommendations.
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One can distinguish between approaches based on expert
systems, model-based approaches, and black-box approa-
ches. In expert systems, one tries to derive recommen-
dations for improving the therapy of a patient based on
expert prior knowledge [5; 6]. This is a direct approach in
the sense that the expert system models the map between
the current state of the patient and the required treatment.
The other approaches are indirect in the sense that the state
of the patient is evaluated based on a model and therapy
improvements and predictions are based on this model as
well.

In a purely model-based approach one constructs a physio-
logical model of the blood glucose metabolism and derives
predictions and recommendations based on the state of the
patient using this physiological model [7–9]. In a black-box
approach one would use a statistical model such as a linear
predictive model, a nonparametric model or an artificial
neural network (in the following referred to as neural net-
works) to model the relevant dependencies purely based on
data obtained from patients [10; 11]. One might here make
a distinction between static and dynamical models where
the latter base their predictions at least partially on their
previous estimates, i.e., they contain a feedback loop.

All these approaches have their particular problems: expert
systems are typically inflexible in adapting to the particu-
lar physiology of a specific patient. In addition, extracting
and maintaining expert knowledge is known to be a difficult
process, particularly due to the fact that experts often base
their recommendations on information which cannot easily
be parameterized such as the general health state of the pa-
tient. In addition, the medical expert can take into account
background information and context knowledge which is
difficult to capture in an expert system. The problem with
physiological models is that they are derived in general
from measurements obtained in a clinical setting and the
derived models are not necessarily applicable to the daily
life of a patient. May be even more severe is the problem
that those model contain a large number of compartments
which might be accessible for measurement in a clinical
setting but cannot be measured in daily life. The problem
with black-box approaches is that they might be able to mo-
del the available data very well but often do not generalize
sufficiently to situations which are not represented well in
the data.

In this paper we pursue a hybrid “grey-box” approach in
which the main nonlinear dependency of a physiologically
motivated model is replaced with a neural network, thus
providing additional modeling flexibility. The inputs to the
model are all accessible to measurement in the normal daily
life of a patient. The resulting model is a stochastic non-
linear state space model. The stochasticity in the model
captures the unmodeled dynamics in the physiology of the
patient as well as measurement errors.

A particular advantage of state space models is that they
model the data generation process and as such can ea-
sily deal with missing data. Missing data are a major

problem in this application since the main quantity of in-
terest, the blood glucose concentration, is only measured
a few times a day during the normal life of a diabe-
tic patient. The model parameters are estimated based
on a set of measurements of a diabetic patient using
a newly developed Monte-Carlo generalized EM (expecta-
tion maximization) algorithm. Online prediction is perfor-
med using particle filtering which has become a popular
approach for online estimation in nonlinear state space
models.

The paper is organized as follows. In the next section we
introduce stochastic nonlinear state space models and de-
scribe a newly developed approach to training stochastic
nonlinear state space models based on a new Monte-Carlo
generalized EM (expectation maximization) algorithm, re-
viewing results reported in [12], [13], and [14]. Further-
more, we describe the particle filter which we used for
prediction. In Section 3 we briefly describe the main pro-
cesses in the blood glucose physiology and develop a phy-
siologically motivated compartment model and a hybrid
neuro-compartment state space model. The new contribu-
tion of this paper is the application of the Monte-Carlo
generalized EM algorithm and the particle filter in con-
text of blood glucose modeling. In Section 4 we describe
experimental results. Finally, in Section 5 we present an
evalution and conclusions.

2 The Stochastic Nonlinear State Space
Model

2.1 Model Formulation

Nonlinear state space models (NSSM) are a general frame-
work for representing nonlinear time series and processes.
Mathematically, a NSSM is described by the system equa-
tion

xt = fw(xt−1, ut)+ εt (1)

where xt denotes a hidden state variable, εt denotes zero-
mean uncorrelated Gaussian noise with covariance Qt

(written as εt ∼ N (0, Qt)) and ut is an exogenous known
input vector. All variables are in general multidimensional.
The time-series measurements yt are related to the unobser-
ved hidden states xt through the observation equation

yt = gv(xt, ut)+vt (2)

where vt is uncorrelated Gaussian noise with covariance Vt .
In the following we assume that the nonlinear mappings
fw(.) and gv(.) are modeled as neural networks or a simi-
lar flexible nonlinear model with weight vectors w and v,
respectively.1 The initial state x0 is assumed to be Gaus-
sian distributed with mean a0 and covariance Q0. The two
challenges in NSSMs are the interrelated tasks of inference
and learning. In inference we try to estimate the states of
unknown variables xs given some measurements y1, . . . , yt

1 In our experiments, we used the well known multilayer perceptron [15].
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(typically the states of past (s < t), present (s = t) or future
(s > t) values of xt) and in learning we want to adapt some
unknown parameters in the model (e.g., the neural network
weight vectors w and v) given a set of measurements. In
this paper we assume that training is performed based on
a fixed data set, i.e., we do not consider online learning.
This allows us to formulate the learning problem in a ma-
ximum likelihood framework. In the special case of linear
state space models with Gaussian noise, efficient algorithms
for inference and maximum likelihood learning exist. The
latter can be implemented using EM update equations in
which the E-step is implemented using forward-backward
Kalman filtering [16]. Inference in NSSMs consists of cal-
culating the distribution or the expected values of hidden
variables. If the system is nonlinear, however, the pro-
blem of inference and learning leads to complex integrals
which are usually considered intractable [17] unless suita-
ble approximations are made as we will do in the next
section.

2.2 The Gradients for Nonlinear State Space
Models

Given our assumptions we can write the joint probability of
the complete data for t = 1, . . . , T as2

p (XT , YT , UT ) =

p (UT ) p (x0)

T∏
t=1

p (xt |xt−1, ut)

T∏
t=1

p (yt |xt, ut) (3)

where UT = {u1, . . . , uT } is a set of known inputs which
means that p(UT ) is irrelevant in the following. Since only
YT = {y1, . . . , yT } and UT are observed, the log-likelihood
of the model is

log L = log
∫

p (XT , YT |UT )p(UT ) dXT

∝ log
∫

p(XT , YT |UT )dXT (4)

with XT = {x0, . . . , xT }. By inserting the Gaussian noise
assumptions we obtain the gradients of the log-likelihood
with respect to the neural network weight vectors w and v,
respectively [13; 18]

∂ log L

∂w
∝

T∑
t=1

∫ ∫
(xt − fw (xt−1, ut))

	 Q−1
t

× ∂ fw (xt−1, ut)

∂w
p (xt, xt−1|YT , UT ) dxt−1dxt (5)

∂ log L

∂v
∝

T∑
t=1

∫
(yt − gv (xt, ut))

	 V −1
t

× ∂gv (xt, ut)

∂v
p (xt |YT , UT ) dxt . (6)

2 In the following, each probability density is conditioned on the current
model. For notational convenience, we do not indicate this fact explicitly.

2.3 Monte-Carlo Generalized EM Learning

2.3.1 Approximating the E-step

The integrals in the previous equations can be solved using
Monte-Carlo integration which leads to the following lear-
ning algorithm [12; 13].

1. Generate S samples xs
T = {

xs
0|T , . . . , xs

T |T
}S

s=1 from
p(XT |YT , UT ) using the current model parameter esti-
mates wold and vold. (Monte-Carlo E-Step).

2. Treat those samples as real data and update

wnew = wold +η
∂ log L

∂w
and

vnew = vold +η
∂ log L

∂v
with stepsize η and

∂ log L

∂w
= 1

S

T∑
t=1

S∑
s=1

(
xs

t|T − fw
(
xs

t−1|T , ut
))	

(7)

× Q−1
t

∂ f

∂w

∣∣∣∣
xt−1=xs

t−1|T

∂ log L

∂v
= 1

S

T∑
t=1

S∑
s=1

(
yt − gv

(
xs

t|T , ut
))	

× V −1
t

∂g

∂v

∣∣∣∣
xt =xs

t|T
(8)

(generalized M-step). Go back to step one.

The second step is simply a stochastic gradient step. The com-
putational difficulties lie in the first step. Methods which pro-
duce samples from multivariate distributions such as Gibbs
sampling and other Markov chain Monte-Carlo methods have
(at least) two problems. Firstly, the sampling process has to
“forget” its initial condition which means that the first samples
have to be discarded and there are no simple analytical tools
available to determine how many samples must be discarded.
Secondly, subsequent samples are highly correlated which
means that many samples have to be generated before a suffi-
cient amount of independent samples is available. Since it is
so difficult to sample from the correct posterior distribution
p(XT |YT , UT ) the idea in this paper is to generate samples
from an approximate distribution from which it is easy to draw
samples. In the next sections we present two approximations
using multivariate Gaussians. The first one is based on the
extended Kalman filter and smoother and the second one on
a Fisher scoring algorithm.

2.3.2 Approximate Mode Estimation Using the Extended
Kalman Filter

Whereas the Kalman filter and smoother is an optimal state
estimator for linear state space models, the extended Kal-
man filter and smoother is a suboptimal state estimator for
NSSMs based on local linearizations of the non-linearities.3

3 Note that we do not include the parameters in the NSSM as additional
states to be estimated as done by other authors, e.g. [19].
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The extended Kalman filter and smoother (EKFS) algorithm
is a forward-backward algorithm and can be derived as an
approximation to posterior mode estimation for Gaussian er-
ror sequences [20]. Its application to our framework amounts
to approximating xmode

t ≈ xEKFS
t|T where xEKFS

t|T is the smoo-
thed estimate of xt obtained from forward-backward exten-
ded Kalman filtering over the set of measurements YT and
xmode

t is the mode of the posterior distribution p(xt|YT , UT ).
We use xEKFS

t|T as the center of the approximating Gaus-
sian. The EKFS also provides an estimate of the error co-
variance of the state vector at each time step t which can
be used to form the covariance matrix of the approxima-
ting Gaussian. The EKFS equations can be found in [17]. To
generate samples we recursively apply the following algo-
rithm. Given xs

t−1|T is a sample from the Gaussian approxi-
mation of p(xt−1|YT , UT ) at time t − 1, draw a sample xs

t|T
from p(xt|xt−1 = xs

t−1, YT , UT ). The last conditional density
is Gaussian with mean and covariance calculated from the
EKFS approximation and the lag-one error covariances deri-
ved in [16], respectively.

2.3.3 Exact Mode Estimation Using the Fisher Scoring
Algorithm

If the system is highly nonlinear, however, the EKFS can per-
form badly in finding the posterior mode due to the fact that
it uses a first order Taylor series expansion of the nonlineari-
ties fw(.) and gv(.). A useful – and computationally tractable
– alternative to the EKFS is to compute the “exact” posterior
mode by maximizing log p(XT |YT , UT ) with respect to XT .
A suitable way to determine a stationary point of the log pos-
terior, or equivalently, of p(XT , YT |UT ) (derived from (3) by
dropping p(UT )) is to apply Fisher scoring. With the current
estimate XFS,old

T we get a better estimate XFS,new
T = XFS,old

T +
ηδ for the unknown state sequence XT where δ is the solution
of

S
(

XFS,old
T

)
δ = s

(
XFS,old

T

)
(9)

with the score function

s(XT ) = ∂ log p(XT , YT |UT )

∂XT

and the expected information matrix4

S(XT ) = E

[
−∂2 log p(XT , YT |UT )

∂XT ∂X	
T

]
.

By extending the arguments given in [21] to nonlinear state
space models it turns out that solving equation (9) – i.e., to
compute the inverse of the expected information matrix –
can be performed by Cholesky decomposition in one for-
ward and backward pass.5 The forward-backward steps can
be implemented as a fast EKFS-like algorithm which has

4 Note that the difference between the Fisher scoring and the Gauss-Newton
update is that in the former we take the expectation of the information
matrix.

5 The expected information matrix is a positive definite block-tridiagonal
matrix.

to be iterated to obtain the maximum posterior estimates
xmode

t = xFS
t|T [12; 13]. Our experiments have shown that Fis-

her scoring is successful in finding the “exact” mode, the
EKFS algorithm is not. Samples of the approximating Gaus-
sian are generated in the same way as described in the last
section.

2.4 Prediction: Particle Filters

Particle filtering (a.k.a. condensation algorithm or sampling
importance resampling) is currently a very popular method
for prediction in nonlinear state space model. In particle fil-
tering, the conditional distribution p(xt−1|Yt−1, Ut−1) is re-
presented by S samples drawn from this distribution. Given
those samples, one draws samples according to the state tran-
sition probability and weights them with the probability of the
new measurement given the sample. One then produces S new
samples by resampling using those weights. We implemented
a version of particle filtering introduced by [22]:

Algorithm sequential importance resampling
Initialization: draw S samples from
xs

0 ∼ N (a0, Q0), c̃s
0 = 1/S

t = 1, 2, . . .

Predictor step: draw S samples
xs

t|t−1 ∼ N
(

fw(xs
t−1|t−1, ut), Qt

)
Corrector step:
s = 1, . . . , S
Evaluate the importance weights:

cs
t = cs

t−1 N
(
yt|gv(xs

t|t−1, ut), Vt
)

Normalize the importance weights:

c̃s
t = cs

t∑S
s̃=1 cs̃

t

Resampling stage:
if Seff > threshold

xs
t|t = xs

t−1|t
else

resample index s̃ from {xs
t|t−1, c̃s

t }
xs

t|t = xs̃
t−1|t

cs̃
t = 1/S

end
end

end

where N (z|µ,Σ) is a multivariate Gaussian density with
mean µ and covariance matrix Σ evaluated at z. In [22]
a mathematical proof is given that the above algorithm
creates samples according to the state prediction density
p(xt|Yt−1, Ut−1) and the filtering density p (xt |Yt, Ut).

3 Modelling the Blood Glucose
Metabolism

3.1 Diabetes Mellitus

Figure 1 shows a very simplified model of the glucose
metabolism. The digestive tract breaks down most of the
carbohydrates in the food into glucose and releases it into
the blood stream. Glucose is stored in the liver as gly-
cogen and released again if the blood glucose drops too
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Figure 1: A simplified model of the glucose metabolism. The arrows
indicate the transport of glucose. I+ and I- indicate glucose transports
which are promoted, respectively inhibited, by insulin in the blood.

low. The extraction of glucose from the blood stream by
the liver requires insulin, which suppresses indirectly the
inverse process, the release of glucose by the liver. Most
cells – including muscle cells – need insulin to absorb
glucose from the blood stream. The central nervous sys-
tem and the red blood cells rely completely on glucose for
their energy supply, but fortunately do not require insulin
to metabolize it. Glucose is lost in urine (renal clearance)
if the blood glucose level increases above the renal thres-
hold. The glucose metabolism and blood glucose level in
a healthy person are kept within tight tolerances and are
controlled by the secretion of insulin by the beta-cells of
the pancreas. In a person with type I diabetes mellitus,
the insulin production is either largely reduced or cea-
ses completely due to impairment or death of the beta
cells. Treatment consists of administering insulin by sub-
cutaneous injection, or more rarely, through an external
or implanted insulin pump. In modern “intensive therapy,”
the patient attempts to lead as normal a life as possi-
ble, adjusting her or his therapy to the daily schedule of
meals and exercise by monitoring her or his blood glucose
a few times a day. Essentially, the patient has to replace
an internal feedback mechanism with an external control
which can be done only imperfectly. Consequently, a pa-
tient’s blood glucose can often be outside of the desired
range.

Even the simplified depiction in Figure 1 illustrates why the
glucose metabolism of a diabetic is so unstable. If the insu-
lin concentration drops too low, glucose cannot be removed
from the blood sufficiently fast and the liver even releases
additional glucose. Blood glucose can rise far above its nor-
mal level, a state of hyperglycemia. In the opposite case,
if too much insulin is present in the blood (i.e., after an
injection of a high dosage of insulin), cells continue to ab-
sorb glucose rapidly from the blood and the liver glucose
production is blocked, leading to hypoglycemia. Note that
the blood normally only contains less than 6 g of glucose,
which approximately corresponds to three cubes of sugar.

Figure 2: Short time window (25 h) of the data set. The top part
shows the blood glucose measurements (unfilled circles) in mg/dl.
The average blood glucose level of a normal person is indicated by
the dashed line. The other plots show insulin injections (basal insu-
lin ut,1 (dashed peaks) and normal insulin ut,2 (continuous peaks),
respectively), food intake (ut,3 + ut,4 + ut,5) and exercise (ut,6 + ut,7),
respectively, as singletons in the lower part of the picture. As a reac-
tion to the severe hypoglycemia at 11 h and 12 h the patient stopped
to administer insulin. As a consequence the patient had a case of hy-
perglycemia at 16 h and he reacted with immediately injecting 10 units
of insulin.

Since the blood is not a large reservoir of glucose, several
times the amount of glucose normally present in the blood
can be added by the digestive tract and the liver and/or
removed by the cells of the body every hour. These ra-
pid changes in the blood glucose level make control and
prediction so difficult.

Our data set consists of the protocol of a male type I dia-
betic patient over a period of 63 days. During that time
period, times and dosages of insulin injections (basal insu-
lin ut,1 and normal insulin ut,2), the times and amounts of
food intake (fast ut,3, intermediate ut,4 and slow ut,5 carbo-
hydrates), the times and durations of exercise (regular ut,6

or intense ut,7) and the blood glucose level xt (measured
a few times a day) were recorded with 15 minute time re-
solution. The ut, j, j = 1, . . . , 7 are equal to zero except if
there is an event, such as food intake, insulin injection or
exercise. In the time period of 63 days, we only had 463
blood glucose measurements available in total which means
that at 92% of the time steps, the blood glucose is un-
known. Figure 2 shows a short time window (25 hours) of
our data set.

3.2 Nonlinear State Space Models for the Blood
Glucose Metabolism

In the following we discuss various approaches for mode-
ling the glucose metabolism of a diabetic patient.

3.2.1 Compartment Models

Compartment models are typically used for modeling com-
plex systems with dynamics that can be approximated
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well by a number of discrete subsystems which inter-
act by exchanging materials [23]. We have formulated
a compartment model using the different compartments
depicted in the simplified model of the glucose meta-
bolism of Figure 1, i.e., blood, liver, kidney, digestive
tract, insulin independent utilization and insulin dependent
utilization.

The effects of the inputs insulin, food and exercise on the
blood glucose are delayed and can be approximated by li-
near response functions [24–26]. Let dt, j describe the effect
at time t of past inputs {uτ, j}t

τ=0. The response dt,2 of nor-
mal insulin after injection is determined by the diffusion of
the subcutaneously injected insulin into the blood stream
and can be modeled by three first order compartments in
series or, as we have done, by a response function of the
form [24]

dt,2 =
t∑

τ=0

g2(t − τ)uτ,2 (10)

with

g2(z) = a2z2e−b2z . (11)

Figure 3 shows a typical impulse response g2(t − τ) to an
injection of 10 units of normal (soluble) insulin at time
τ = 0 on the blood glucose level. The same response curve
with different parameters were used also for basal insulin.
The time-dependent effects for the digestive tract and for
exercise are less well-known. In our experiments we follo-
wed [24] and used response functions of the above form as
well.

We consider in the following the functional block of
the response functions which perform the mapping from
ut = (ut,1, . . . , ut,7)

	 to dt = (dt,1, . . . , dt,7)
	 as one com-

partment module Md . The effects of the inputs now influ-
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Figure 3: The plot shows the effect of insulin on the blood glucose
level as a consequence of injecting 10 units of normal insulin at time
τ = 0 as simulated by our preprocessing module using impulse re-
sponse g2(t − τ). This time behavior is following approximately the
concentration of insulin in the blood stream as measured experimen-
tally.

ence the blood glucose concentration in a nonlinear way.
We model the dynamics of the blood glucose using a non-
linear autoregressive model with exogenous inputs of the
form

xt =xt−1 + c1(dt,3 +dt,4 +dt,5)+
c2

[
exp

(−c3(dt,1 +dt,2)
)− c4xt−1

]
− c5(dt,1 +dt,2)(xt−1 + c6)− c7

√
xt−1 − c8x3

t−1

− c9(dt,6 +dt,7)+ εt (12)

where xt is the blood glucose at time t and εt denotes
zero-mean uncorrelated Gaussian noise terms with variance
σ2

ε . The nonlinearity in the above time-series model was
derived from parameterizing published data describing the
dependencies [24; 25; 27]. The second term on the right
side of the difference equation describes the increase in
blood glucose due to carbohydrates in the food, the third
term approximates the insulin dependent glucose produc-
tion of the liver (if this term becomes negative, it is set to
zero), the fourth term describes the insulin dependent usage
of blood glucose, the fifth term describes the insulin inde-
pendent usage of blood glucose, the sixth term describes
the renal clearance (this term is set to zero if blood glucose
is below the renal threshold) and finally the last term term
describes the blood glucose lowering effect of exercise. Fi-
gure 4 shows how the functional forms in equation (12)
were obtained by fitting nonlinear maps to published data.
The functional block described by equation (12) is conside-
red a second compartment module Mn .

Figure 5 shows the overall compartment system containing
the functional blocks Md and Mn . In the experiments we
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Figure 4: The plots show the rate of change of the blood glucose as
a result of the insulin dependent glucose production (term three in
equation (12)), the insulin dependent utilization (term four), the insu-
lin independent glucose removal (term five), and renal clearance (term
six). The small circles indicate published data [27] and the solid lines
show the fitted parameterization used in equation (12). The plots for
insulin dependent glucose production and utilization, respectively are
shown for three (from top to down: 0 µU/ml, 10 µU/ml, 20 µU/ml),
respectively four (from top to down: 80 µU/ml, 40 µU/ml, 20 µU/ml,
10 µU/ml) different levels of active insulin in the blood.
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Figure 5: A compartment model approach, consisting of two compart-
ment modules Md and Mn. z−1 indicates a unit time delay.

initialized all parameters in Md , {ai, bi}7
i=1, and in Mn ,

{ci}9
i=1, with values derived from literature [24; 25; 27].

3.2.2 Neuro-Compartment State Space Models

Based on standard medical literature on diabetes [28] and
based on consultation with a physician, we conclude that
the functional form of the response functions in Md is suf-
ficient to capture the various delays of the inputs and can
be tuned to the physiology of the patient by varying the
parameters ai, bi . The nonlinear equation (12) in the se-
cond compartment module Mn , on the other hand, is based
on a number of uncertain physiological assumptions, and
we cannot necessarily expect that the true interactions can
be approximated by just adapting equation parameters. To
be able to capture more complex interactions, we replace
Mn by a neural network (multi-layer perceptron). The five
inputs to the network are insulin (int,1 = dt,1 +dt,2), food
(int,2 = dt,3 +dt,4 +dt,5), exercise (int,3 = dt,6 +dt,7) and the
current and previous estimates of the blood glucose. We
obtain now

xt = xt−1 + fw(xt−1, xt−2, int,1, int,2, int,3)+ εt (13)

where fw(.) in our experiments was a multi-layer percep-
tron with weight vector w.

3.2.3 Training

Both compartment model and the neuro-compartment state
space model contain parameters which are adapted using
the training data set. Although for the compartment model,
parameter values could have been derived from prior phy-
siological knowledge, significantly improved performance
could be achieved by adapting all parameters using the trai-
ning data here as well.

We applied the framework of the stochastic nonlinear state
space model approach6 from Section 2 and included the
measurement equation

yt = xt +vt (14)

to be able to handle noisy and missing blood glucose
measurement outputs where vt is zero-mean Gaussian mea-
surement noise with variance σ2

v . For missing measurement
we set σ2

v → ∞.

6 Equations (12) and (13) can easily be transformed into the state space
formulation (1).

Training was performed by applying the EM-type algo-
rithm from Section 2.3.1 with the Gaussian approximations
obtained from the extended Kalman filter and smoother
(RNN-EKFS) and the Fisher scoring algorithm (RNN-FS)
of Section 2.3.2. Correspondingly, we adapted the compart-
ment model using the Fisher scoring algorithm (CM-FS).
The training process was started with S = 50 samples per
time step and the sample size was increased to S = 250
when the EM-type algorithm started to converge. Fisher
scoring was performed with a stepsize parameter η = 0.07
and typically needed about 13−20 iterations to converge
to the posterior mode estimate. The measurement variance
was initialized from prior knowledge about the measure-
ment error levels of typical blood glucose meters which is
about 15% [28]. The variance of the noise terms εt was set
to the above “patient noise” level.

4 Experiments

Our data set consists of the protocal of a male type∼I dia-
betic patient over a period of 63 days with a total of 463
blood glucose measurements. We used the first 42 days of
the data set for training the models (containing 312 mea-
surements of the blood glucose) and the following 21 days
for testing (containing 151 blood glucose measurements).
The blood glucose prediction on the test set was obtained
by using the particle filter described in Section 2.4 such that
the prediction of a blood glucose value is based on all pre-
viously measured blood glucose values in the test set. The
particle filter used S = 500 samples per time step. Figure 6
shows the explained variance on the test set for different
predictive models. The explained variance on the test set is
defined [in percent] as 100 × (1 −MSEM/MSEmean). Here,
MSEM is the mean squared prediction error on the test set
of the specific model M and MSEmean is the mean squa-
red one-step ahead prediction error of a trivial model which
simply predicts the mean value of the time series.

Figure 6: The explained variance on the test set for the various ap-
proaches. The error bars are calculated based on the χ2-distribution
with 151 degrees of freedom. They indicate the region with 68 % of
the probability mass corresponding to the region within two standard
deviations in the normal distribution.
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The model RNN-EKFS corresponds to the neural state
space model trained with the Monte Carlo generalized
EM-type algorithm using a Gaussian approximation where
center and width of the Gaussian posterior are derived from
the extended Kalman filter and smoother algorithm (Sec-
tion 2.3.2). This model achieved 42.5% explained variance
when used for prediction. The RNN-FS model, which uses
Fisher scoring instead of the extended Kalman filter (Sec-
tion 2.3.3), achieved the best prediction performance with
an explained variance of 45.7%.

The compartment model shows somewhat worse perfor-
mance when adapted within a state space model approach
using the Fisher scoring posterior approximation (CM-FS):
it explains about 10% less variance than its neural network
based counterpart.

For comparison, we also show the performance of a linear
model (LM-KF) which was embedded into a linear state
space framework and trained with the EM algorithm gi-
ven in [16]. This model achieved an explained variance of
31.2%.

We have also included results using techniques not introdu-
ced here, but are described in detail elsewhere [26; 29–31].

LM, CM, RNN-FR, and RNN-TF correspond to determi-
nistic linear, compartment and neural network models, i.e.,
neither measurement noise nor process noise is included in
the model. In RNN-TF measured blood glucose values are
substituted whenever available, otherwise predicted values
are used. The bad performance of those models illustrates
the need for the inclusion of appropriate error models.

NFIR-HL, NFIR-SC, and NFIR-AD show the results from
various approaches where we used a neuro-fuzzy prepro-
cessing step approximating the dynamics of the system by
solely relying on past inputs thus avoiding a feedback loop
in the model. The results in Figure 6 show that the various
recurrent models are superior to these models. The particu-
lar neuro-fuzzy architectures and the corresponding training
algorithms can be found in [31].

5 Evaluation and Conclusions

Nonlinear time-series models with exogenous inputs, em-
bedded into a state space representation and trained with
the Monte Carlo generalized EM-type algorithm from Sec-
tion 2 are powerful tools for blood glucose prediction
and outperformed neuro-fuzzy time series models, linear,
and nonlinear autoregressive time-series models. The better
performance of the neural network based model in compa-
rison to the compartment model might be attributed to the
greater flexibility obtained using a neural network model
which relies less on prior physiological assumptions than
a compartment model. The better results in comparison to
the neuro-fuzzy time series model approach might be ex-
plained by the fact that autoregressive or recurrent neural

networks better represent dynamical systems than models
whose predictions solely depend on past inputs. The ex-
plained variance of the best model is approximately 46%
which corresponds to 50 mg/dl unexplained variations and
is slightly better than the inherent patient noise of 54 mg/dl
mentioned in [32]. This is a promising result but, by itself,
says little about the usefulness of our model.

Future work will concentrate on the question if useful the-
rapy recommendations can be derived from our model.
Another important aspect is non-stationarity. There is evi-
dence that insulin sensitivity changes over the course of
the day and is typically at its high point in the morning.
Furthermore, it is generally assumed that the physiologi-
cal parameters change with a time constant on the order
of days. This might be modeled by slowly changing hid-
den parameters. Whereas fast changing hidden states are
typically modeled as noise (as in our approach) slowly
changing hidden states are taken into account by having eit-
her an online adaptive system or by explicitly introducing
hidden states as in a hidden Markov model. Recent work on
switching dynamical systems might be an interesting direc-
tion as well. Of course, both for an online adaptive system
and for a system with hidden states, the small number of
measurements of the blood glucose concentrations might
pose a problem. Further work will also focus on developing
error models for the input measurements (for example, the
calory intake is typically estimated with great uncertainty).

Potential future aims are, first, the development of a sys-
tem for making recommendations to optimize the patient’s
therapy, second, or a system which is able to warn the
patient of dangerous metabolic states, and third, a system
which can be used in the design of a stabilizing control sys-
tem for blood glucose regulation, a so-called “artificial beta
cell” [24].
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