
Predictive Modeling using Features derived
from Paths in Relational Graphs

Yi Huang (1), Volker Tresp (2), Stefan Hagen Weber (2)

(1) Ludwig-Maximilian University Munich, Germany
(2) Siemens AG, Corporate Technology

Information and Communications
Learning Systems, Munich, Germany

Technical Report as a Deliverable in the THESEUS Project

June, 2007

Abstract

This paper is concerned with supervised learning in relational do-
mains. As relational framework, we use the Resource Description
Framework (RDF) that is the basis for representing information about
resources in the World Wide Web. The fundamental RDF structure
is a relational graph such that feature derivation can be formulated in
a simple graphical context. We present learning solutions for literal
prediction, classification and relation prediction. We discuss feature-
based learning and kernel-based learning. We present experimental
results using a bio-informatics data set and a recommendation data
set.

1 Introduction

Due to the increasing relevance of interconnected networked domains, rela-
tional learning is an area of growing interest. Past approaches were often
based on relational data bases [5], entity relationship models [8] or first-
order logic [4, 14, 3]. A more recent relational representation is the Resource
Description Framework (RDF), which is a simple scalable general-purpose

1



syntax for representing information about resources that can be identified
on the World Wide Web [11], and is considered the basis for the Semantic
Web [11]. RDF is also a useful model for other relational domains and might
become the basis for a general information framework, similarly as XML
is for simply structured data. Thus it can be expected that an increasing
amount of data will be offered in the form of RDF statements; large RDF
databases for RDF triples have already been developed.

In RDF, the central structure is a labeled connection between two re-
sources, i.e. the RDF-triple of the form (s, p, o) where s, p, o stands for sub-
ject, predicate (or property), and object. Based on a set of triples, a complete
knowledge base can be represented as a directed (potentially cyclic) graph
where subjects and objects are nodes and a property is a directed labeled
edge from subject to object. Thus relational queries and relational learning
can be formulated in the context of a very simple scalable structure, i.e., the
RDF-graph, which is an important advantage if compared to other more com-
plex representations. Higher order relations are handled by introducing blank
nodes thus reducing higher order relations to simple triples. Every resource
is an instance of one class or potentially several classes as specified by type
properties. Furthermore, classes are organized into class hierarchies. Since
properties are defined as classes, they might be organized hierarchically, e.g.
closed friend might be a subproperty of friend. The RDF vocabulary descrip-
tion language is RDF-Schema (RDFS) and describes a detailed set of classes,
subclass relations, properties and sub-property relations of a given domain.
Furthermore, RDFS defines the type constraints of the subject (domain) and
the object (range) of RDF-triples. Note that certain triples are entailed by
RDFS such that if a resource belongs to a class via the type property then it
is also belongs to each parent class, again via a type property. Entailment can
be implemented by adding these triples explicitly. In this paper we assume
that all entailed triples have been added. A very interesting feature is that
both RDF and RDFS form one joint graph: RDFS is also RDF. Figure 1
shows an excerpt of a simple RDF graph example.

Every RDF node is either a resource with a unique identifier or a constant,
called a literal.1 In this paper a resource will always stand for a resource with
a unique identifier. Character string literals are plain literals whereas typed
literals might be floats, booleans, integers, etc.. A subject must always be
a resource whereas an object in an RDF triple can either be a resource or a
constant.

RDF is the basis for the Semantic Web and learning in RDF-descriptions

1We will not describe the RDF-formalism explicitly but will simply assume that re-
source with a unique identifier can uniquely be identified.

2



Figure 1: Example of an RDF-Graph excerpt describing relatives and inter-
ests of Bill. Note that the lower part shows RDFS.

might become increasingly relevant. The fact that an RDF knowledge base
is represented in form of a directed graph makes this representation espe-
cially suitable for learning, in particular for extracting meaningful features
(see Section 2). There are many potential learning tasks. In this paper we
consider two learning tasks. The first one considers the prediction of the
state of typed literals with classification as a special case. The second case
consists of the prediction of the existence of an RDF-triple where subject and
object are resources. In contrast to other approaches [5, 8, 3] the focus here
is supervised learning. Furthermore, the focus is predictive accuracy but not
explanation as in many other approaches to relational learning [13].

The paper is organized as follows. In the next section we will consider
literal prediction and in Section 3 we will discuss relational prediction. In
Section 4 we discuss suitable learning approaches. Section 5 discusses re-
lated work and Section 6 describes our experiments. In Section 7 we present
conclusions.

3



2 Literal Prediction

2.1 Boolean Literals

First, we consider the case that all literals are boolean.2 If in the triple
(s, p, o) o is a boolean literal, we can simplify this triple to (s, p) and remove
the boolean literals from the RDF-graph.3 The corresponding property is
denoted as a boolean property. The non-existence of a statement will imply
that the boolean property is not true (closed-world assumption).

Now we consider the case that we want to predict the probability that a
particular resource si possesses the target boolean property pj. We assume
that the RDF-schema (RDFS) as well as the type of each resource are known.
Also note that in the following we operate in the RDF-graph and that we
assume that all triples entailed by RDFS have been added. In general, we
will deal with one connected RDF-graph (the domain graph) but it is also
conceivable that the RDF-graph can be partitioned into several disconnected
graphs. In the following we will assume one connected graph. A test case
concerns the prediction of the existence of one unknown boolean literal in
the RDF-graph.

We make the following modeling assumption: the existence of a boolean
literal pj can be predicted solely based on features derived for the subject si

of that literal

pj|Fi

where Fi is a suitable set of features describing the subject si. In a given
application, this dependency pj|Fi might be modeled by any suitable proba-
bilistic or non-probabilistic classifier (see Section 4).

We now consider the generation of the training set. Since we assume that
the RDFS is known, the domain for the target property pj is known. The
training set is defined by all resources in the RDF graph that belong to the
specified domain excluding the test case.4 These resources define the training
instances.

The most challenging problem is now to generate suitable features. In
a preprocessing step, we add to each triple the inverse triple, if it does not

2Note, that there are a number of ways of how a non-boolean literal (discrete, contin-
uous) can be turned into a set of boolean variables. As an example, (Person, hairColor,
color) might be turned into a boolean representation by replacing it with (Person, has-
BlondHair), (Person, hasBlackHair), etc.. For plain literals, e.g., the name of a person, we
only indicate if that particular plain literal exists or not but don’t represent its content.

3Or introduce a dummy object node to maintain RDF-conformity.
4Application specific, we might reduce that set.

4



yet exist. Thus, if (s, p, o) is a triple and if o is not a literal, we add the
triple (o, p̄ = inverse(p), s). Note that (s, inverse(p̄), o) = (s, p, o). Due to
its simple structure, introducing an inverse relation is straightforward in the
RDF-graph but much more involved in other relational representations.

Let’s consider a particular training instance si. As it is a typical as-
sumption in other domains with connected data, e.g., time-series problems
or image processing, we assume that primarily a local environment of si in
the graph will have predictive power. Consequently, we will derive features
which describe the local environment of instances in the training set. In a
first step, starting from si (start node) we generate all possible paths up to a
predefined length K, where K is an important tuning hyperparameter.5. In
graph theory, a path in a graph is a sequence of nodes such that from each of
its nodes there is an edge to the next vertex in the sequence. The length of
a path K is the number of edges that the path uses. We define a legal path
lpath to be a tuple constructed by all properties and resources collected on
the path, thus the k-th path for subject si

Lpathi,k = (si, pi,k,1, ri,k,1, pi,k,2, ri,k,2, ..., ri,k,l−1(, pi,k,l)) l ≤ K

where r.,.,. is a resource on the legal path and where p.,.,. is a property trans-
versed from subject to object, i.e., following the direction of the arc, and
might be an original property or an inverse property as inserted previously.
Note, that a legal path can be terminated by a resource or by a property. We
apply the following two restrictions on a legal path. First, a legal path cannot
reverse: thus if (s, p, o) is in the legal path, then (o, inverse(p), s) cannot.
Second, a particular (s, p, o) cannot be included more than once. Finally,
we apply the following procedure, if a cycle is encountered: If a resource is
encountered that is already present on the legal path, then another copy of
the legal path is added to the set and is terminated by an inserted property
of the form equal(m) where m is the position in the legal path where the
identical resource was encountered the first time. Note that all prefix legal
paths are also legal paths.

For each training instance si we now introduce new derived boolean proper-
ties p̃, which come in two types. Type 1 corresponds to p̃i,k = pi,k,1, pi,k,2, ..., pi,k,l

and represents the concatenation of all properties in a legal path. Type 2
corresponds to the case that the last element in a legal path is a resource
rm and is written as p̃i,k,m = pi,k,1, pi,k,2, ..., pi,k,l, rm. Now a boolean RDF
statement (si, p̃) is introduced for each p̃ that could be derived from a legal
path starting at si. Thus we have reduced graphical information local to si

to a set of simple boolean properties of si!

5Application specific, we might chose a different criteria.

5



It is now simple to define the feature set. Consider the set of all p̃ gener-
ated from all training instances and potentially the test instance. For each
distinct p̃ we introduce a feature; the value of that feature in training instance
si indicates how often that p̃ exists for that si.

Note, that we don’t represent all possible paths as feature variables but
only those actually present in the RDF-graph.

The procedure allows us to generate a number of interesting and ex-
pressive features. Here are some examples for derived boolean properties
for a subject si: (hairColorBlond); (bought,GoneWithTheWind)6; (hasChild,
Jack, hasChild) (3 times); (hasChild,Jack); (sister,friend,boyfriend, equal(1))
This describes a blond-haired person who bought the book titled ”Gone With
the Wind”, who has one child named Jack, Jack has 3 children, the initial
person has a sister who has a friend and the boyfriend of this friend is the
person (subject).

2.2 Discussion: Complex Features, Feature Selection,
Postprocessing, and Complexity

Note that we have derived local properties p̃ but we have not derived more
complex logical sentences (for example, by AND-ing properties) as it is done
by FOIL-based learning approaches [9, 10]. The search for suitable logical
sentences can be time-consuming; our philosophy is that this step, if neces-
sary, should be the task of the learning machine using the features.

The most obvious tuning parameter is K, the maximum length of the
paths to be explored. Features that are nonzero only once (resp. a minimum
number of times) can naturally be removed. Similarly it might make sense to
remove complete feature classes. Naturally, features can be further processes,
for example binarized by thresholding, etc..

With a branching factor upper bounded by N the number of possible
Type 1 derived boolean properties p̃ is upper bounded by NK . Thus in prob-
lems suitable for our approach, both numbers should not be too large. With
L objects in the range-type we obtain NK ×L possible features derived from
Type 2 properties. Since L is often large, care has to be taken not to include
features derived from uninformative Type 2 derived boolean properties p̃.

2.3 Non-boolean Literals

If the target property is a non-boolean typed literal then we simply have to
select a machine learning approach being able to deal with such targets, e.g.,

6URI to the book resource with the title ”Gone With the Wind”

6



continuous, multi-valued, ... targets.
For the non-target non-boolean literals, i.e., when non-boolean typed lit-

erals appear on legal paths, an appropriate form of aggregation might be
used.

Consider the derived properties (Jack, child, age, 7), (child, age, 10),
(child, age, 11), (child, age, 15) The aggregated features might now be (child,
averageAge, 14.3) and (child, minimumAge, 7).

For plain literals (strings) we only indicate if that particular plain literal
exists or not.

3 Relation Prediction

We consider now an RDF-triple (si, pj, ok) where ok now is a resource (and
not a literal, as in the last section). The prediction problem is that given
two resources si and ok, what is the probability that the triple (si, pj, ok) is
present.

3.1 One-sided Prediction

Consider a target triple (si, pj, ok). We might define a specific boolean prop-
erty pj,k for each training object under consideration, similar as we have
done in the case of Type 2 derived property p̃ in the last section. Only
here we perform that operation on the target triple. Having this target
boolean property the methods described in the last section can be applied.
As an example consider triples of the form (person, bought, book). Depen-
dent on the book to predict, the new target boolean property might be then
(person, boughtGoneWithTheWind), (person, boughtShining), etc.. Note,
that we have turned one classification problem into many simpler ones.

3.2 Two-sided Prediction

One-sided prediction might not always be suitable. Again, we consider an
RDF-triple (si, pj, ok) where ok now is a resource. The prediction problem
is that given two resources si and ok, what is the probability that the triple
(si, pj, ok) is present.

We assume a model where this probability is independent of all other ev-
idence given features describing the involved resources si and ok and features
derived from their mutual relation and thus is modeled as

(si, pj, ok)|Fi,Fk,Fi,k

7



Now consider the generation of the training set. Considering the property
pj, the training set consists of all pairs si, ok where si is in the domain of pj

and ok is in the range of pj. Note, that the train set size is typically much
larger than the training set considered in one-sided prediction. Fi and Fk

are features generated for si resp. ok as described in the last section.
Now consider a legal path originating from si and terminating at ok (or

vice versa). In this case this legal path is removed from the set of paths
originating from si and is added to the set of joint relational legal paths. The
terminal resource ok is replaced by the property equalToObject. Equivalently
to before a corresponding boolean property p̃ is introduced and a feature is
added to Fi,k which is true when (si, p̃) exists.

The representation of joint features Fi,k permits the learning of the prop-
erty (si, grandFather, ok) using the path (starting from si) (parent, parent,
equalToObject). The learning machine has to AND the corresponding feature
of ok with boolean literal: (male).

4 Learning Algorithms

4.1 Literal Prediction and One-sided Relational Pre-
diction

For literal prediction, any appropriate machine learning approach that can
handle the typically large feature set can be used. E.g., if the literal is
boolean, a binary classifier might be appropriate. Needless to say that the
same applies to one-sided relational prediction.

4.2 Two-sided Relation Prediction

Relation prediction can be performed by any suitable binary classifier. Recall
that the feature set and the training data set will be considerably larger than
for one-sided prediction. For example, if R is the number of features for si

resp. ok, then in the two-sided approach we have 2R features and up to
R2 training instances. Thus typically we can only apply learning machines,
which can handle large feature sets and large training sets.

Simple classifiers might often have problems to exploit clustering struc-
ture in the data such as that some females might prefer romantic movies and
some males might like action movies. Only the nonlinear combination of the
features of movies and users will produce an appropriate feature representa-
tion. To facilitate learning we might want to pre-structure the features. If a

8



kernel-based approach is chosen, we might select as appropriate kernel

k((si, ok), (si′ , ok′)) = ks(si, si′)ko(ok, ok′) + ks,p(si, si′ , ok, ok′) (1)

where k(si, si′) is a kernel based solely on Fi, ko(ok, ol′) a kernel solely based
on Fk, and where ks,p(si, si′ , ok, ol′) is a kernel solely based on Fi,k. A kernel
product has a conjunctive character. 7

5 Related Work

Due to the novelty of the RDF framework there has been little work on rela-
tional learning using RDF-graphs. There is some recent activity on learning
on the Semantic Web [16], but the focus so far has been mostly on document
annotation, ontology learning and content management. Considering that
we are essentially solving learning tasks in relational domain, our work is
closely related to inductive logic programming (ILP) [4]. Although classi-
cally concerned with the learning of rule sets (a classical paper here is [13]),
recent extensions have combined the rule selection algorithms of ILP algo-
rithms with statistical classification [9, 10, 2, 6]. Those approaches have
advantages if the dependency to be learned is close to deterministic, requires
an explanation component and is potentially complex and justifies extensive
search, whereas we see advantages in our approach in more statistical set-
tings where the prediction can only be done with considerable uncertainty
and explanation of dependencies is not of prime importance. The work on
Statistical Relational Learning (SRL) [7, 8, 3, 12] is also quite related but
focusses on the development of joint probabilistic models whereas we focus
on supervised learning. One of the simplest interesting relational domains
is collaborative filtering with resources users and items. Most approaches
perform what we have coined one-sided relational prediction. One of the few
two-sided approaches we are aware of is described in [17]. That approach is
limited to considering local properties and relations and requires expensive
learning of the kernel in a hierarchical Bayesian framework.

6 Experiments

We evaluated our approach using two data sets. The first one concerns a
movie recommendation system. Recommendations are made based on pre-

7Alternatively in a feature-based approach we might want to add product features to
the representation, i.e., if fi,m and fk,n are features for subject and object, we add the
feature fi,mfk,n. Recall that a product of kernels corresponds to the mutual product of
all features.

9



vious ratings and user and movie attributes. The second one concerns the
prediction of gene functions based on gene attributes and gene interactions.
We performed experiments with various classifiers. The classifiers are: näıve
Bayes classifier (NB), logistic regression (LogR), support vector machines
(SVMs, implemented using the SV M light package), Gaussian process classi-
fication (GPC) and kernel smoothing (ksm). For the latter three methods
various kernels were tried: a linear kernel (lin), a cosine kernel (cos), a Gaus-
sian RBF-kernel (RBF), a second degree polynomial kernel (poly), and an ex-
ponential linear kernel (expl). The latter is defined as k(xi, xj) = exp AxT

i xj,
where A > 0 is a tuning parameter. In the experiment the results were not
very sensitive to A and we selected A = 0.2.

6.1 Recommendation System

The first data set we used is MovieLens [15]. We binarized the ratings and
generated RDF triples of the form (user, likes,movie). In addition there are
triples with typed literals describing attributes of users and movies such as
age, gender and occupation for users and publishedY ear, genres and so on
for movies. All attributes were represented as boolean variables. We selected
a subset with 156 users, 603 movies and 17,336 ratings, such that each movie
has at least 30 ratings and each user rated more than 6 movies. We report
average accuracy on 10 different test sets where each test set contains one
unknown movie rating from each user. For each user the following properties
were derived: (young), (mediumAge), ..., (female), ... for user attributes,
and (likesMoviei) for all movies. Finally, (likes,MovieAttr) aggregates
the attributes of the movies that a user likes. For example, the feature
derived from (likes, action) aggregates how many action movies a user likes.
Equivalently, for each movie features are generated from movie attributes,
from the identity of the users who liked the movie and from their aggregated
attributes (e.g., how many older persons liked the movie, ...).

We performed experiments with one-sided and two-sided relational pre-
diction. For user-sided prediction a separate model is trained for each movie
(603) and for movie-sided prediction, a separate model is trained for each user
(156). In two-sided relational prediction, only one global model is trained.
For kernels, the product kernel in Equation 1 was used.

Table 1 shows averaged test set accuracy. If one compares the two one-
sided approaches, then movie-sided prediction is superior to user-sided pre-
diction. In the user-sided prediction, previous ratings are more informative
than user attributes. Performance cannot be improved by adding user at-
tributes or aggregated movie attributes. The exception is the SVM where
we see improvements for two kernels. In movie-sided prediction, also past

10



Table 1: Experimental results (accuracy) on the recommendation data set.
user-sided movie-sided two-sided

U Ru Ru+U Ru+U+M M Rm Rm+M Rm+M+U M+U Ru,m Ru,m+M+U
NB 55.5±0.4 59.5±1.1 59.2±1.1 59.2±1.1 58.5±1.1 58.8±0.8 59.1±1.0 62.1±0.8 56.5±0.6 61.7±1.0 61.3±0.9
SVM, lin 59.1±0.8 63.4±1.1 62.3±1.0 61.7±1.0 59.4±1.0 61.9±1.0 61.5±0.8 62.1±1.1 N/A N/A N/A
SVM, RBF 59.5±0.9 61.3±1.0 61.3±1.0 61.2±1.1 61.3±1.0 63.5±1.2 63.9±1.2 64.1±1.1 N/A N/A N/A
SVM, poly 56.8±1.0 59.5±1.3 60.8±1.2 62.2±1.3 60.2±0.8 62.1±0.8 62.4±1.0 65.3±1.0 N/A N/A N/A
SVM, expl 55.9±0.9 59.7±1.3 60.8±1.2 60.0±1.3 52.6±1.1 54.8±0.7 56.3±1.2 61.4±1.1 N/A N/A N/A
ksm, lin 60.8±1.2 64.6±1.1 62.3±1.5 62.7±1.2 62.9±1.0 64.6±1.1 63.6±1.4 66.3±1.0 60.8±1.2 62.8±1.3 57.8±1.2
ksm, cos 60.9±1.3 65.7±1.3 63.3±1.4 62.2±1.4 63.0±1.3 64.6±1.2 64.4±1.4 66.6±0.8 57.8±1.2 62.8±1.1 57.8±1.2
ksm, expl 61.0±1.2 63.3±1.2 63.6±1.3 62.2±1.5 63.1±1.2 65.2±1.2 65.5±1.2 66.9±1.1 59.5±1.0 66.4±1.0 64.7±1.2
GPC, cos 61.1±1.2 64.8±1.1 62.4±1.5 62.8±1.2 63.1±1.4 64.9±1.1 63.6±1.4 66.2±1.0 N/A N/A N/A
LogR 61.1±1.2 65.2±1.2 63.0±1.4 62.7.7±1.3 62.6±1.1 65.2±1.2 65,1±1.4 67.6±1.0 59.6±0.9 65.5±1.3 65.6±1.0

rating information is more informative than movie attributes. Adding movie
attributes to the rating information in most cases does not lead to an im-
provement. Quite surprising is that adding aggregated user information im-
proves performance significantly. For the two-sided experiments, again the
rating information is more relevant than movie and user attributes. If we
compare systems with only relational information, the kernel smoother with
the exponential linear kernel performs best. Adding attribute information
does not improve performance in two-sided prediction. When we compare
methods, logistic regression performs best, followed by the kernel smoothers,
SVM and näıve Bayes. N/A experiments were not performed due to run-time
problems.

It is instructive to compare our approach and our results to previous ap-
proaches to recommender systems. Most previous approaches are systems
which are purely rating based, either user-sided or movies sided. Some re-
searchers have added content information, user attributes when user-sided
and movie attributes when movie-sided. As in our experiments adding this
information does not, in general, improve performance. Surprisingly in our
experiments is that adding aggregated user attributes to movie-sided predict-
ing boosts performance. We believe that this is quite an interesting outcome
of our general approach to relational modeling. Our approach to two-sided
prediction is novel. Although so far not the overall best approach, it is inter-
esting to note that the product kernel is quite effective for kernel smoothing
in two-sided prediction.

6.2 Gene Data

We briefly want to report ongoing work on the analysis of gene data set of
KDD Cup 2001 [1]. A gene is described by a number of attributes including
chromesome, essential, phenotype, motif , class and function. In addition
genes can interact leading to triples where both subject and object are genes.
Our task is to predict functions of genomes. Totally 1243 genes are contained

11



in the data set and split into training set (862) and test set(381). The chal-
lenge of the data is that only a small number of gene interaction relations
are known. In one set of experiments, gene functions where treated as inde-
pendent attributes to be predicted. Best performance here could be achieved
using a SVM with RBF kernel based on gene attributes, gene interactions
and aggregated interactions achieving an accuracy of 80.5 %. Much better
results were achieved by treating the functions as resources and using two-
sided prediction. With product kernels based on exponential linear kernels,
we achieved an accuracy of 93.2 %. This large improvement can be explained
by the collaborative effect between genes and functions, which means that
unknown functions can be predicted from other known functions,i.e., func-
tions are partially correlated.

7 Conclusions

We have presented a novel approach to learning in relational graphs. We
focussed on literal prediction, classification and relation prediction. The crit-
ical problem in supervised relational learning is the generation of appropriate
features. Our proposed method for feature generation is straightforward to
apply and does not involve complex search procedures. The experimental
results demonstrate that the presented approach gives competitive perfor-
mance in challenging problems. Many well known approaches, e.g., many
learning approaches for recommender systems, are special cases of our ap-
proach putting them into a larger framework. Our approach can motivate
novel features as the aggregated user attributes in our experiment. Our ap-
proach puts two-sided relational prediction into a novel framework, which
needs to be explored further. We believe that our experimental results on
the movie recommendation system and on the genomic data are quite inter-
esting.
Acknowledgements: We acknowledge funding by the German Federal Min-
istry of Economy and Technology (BMWi) under the THESEUS project and
by the EU FP 7 Large-Scale Integrating Project LarKC.

References

[1] Jie Cheng, Christor Hatzis, Hisashi Hayashi, Mark-A. Krogel, Shinichi Mor-
ishita, David Page, and Jun Sese. KDD cup 2001 report. SIGKDD Explo-
rations, 3(2):47–64, 2002.

12



[2] J. Davis, I. Ong, J. Struyf, E. Elizabeth Burnside, D. David Page, and
V. Santos-Costa. Change of representation for statistical relational learning.
Proceedings of the 20th International Joint Conference on Artificial Intelli-
gence (IJCAI), 2007.

[3] P. Domingos and M. Richardson. Markov logic networks. Machine Learning,
62, 2006.

[4] S. Dzeroski and N. Lavrac, editors. Relational Data Mining. Springer, Berlin,
2001.

[5] N. Friedman, D. Getoor, L. Koller, and A. Pfeffer. Learning probabilistic
relational models. In Proc. 16th IJCAI, pages 1300–1309. Morgan Kaufmann,
1999.

[6] T. Gaertner, J.W. Lloyd, and P.A. Flach. Kernels and distances for structured
data. Machine Learning, 2004.

[7] L. Getoor, D. Koller, and N. Friedman. From instances to classes in proba-
bilistic relational models. In Proc. ICML 2000 Workshop on Attribute-Value
and Relational Learning, 2000.

[8] D. Heckerman, C. Meek, and D. Koller. Probabilistic models for relational
data. Technical Report MSR-TR-2004-30, Microsoft, 2004.

[9] N. Landwehr, K. Kersting, and L. De Raedt. nfoil: Integrating naive bayes
and foil. Journal of Machine Learning Research, 2007.

[10] N. Landwehr, A. Passerini, L. De Raedt, and P. Frasconi. kfoil: Learning
simple relational kernels. AAAI 2006, 2006.

[11] F. Manola and E. Miller. RDF Primer. W3C Recommendation.

[12] J. Neville and D. D. Jensen. Dependency networks for relational data. Pro-
ceedings of the Fourth IEEE International Conference on Data Mining, 2004.

[13] J. R. Quinlan. Learning logical definitions from relations. Machine Learning,
5, 1990.

[14] Luc De Raedt and K. Kersting. Probabilistic logic learning. SIGKDD Explor.
Newsl., 5(1):31–48, 2003.

[15] Badrul M. Sarwar, George Karypis, Joseph A. Konstan, and John Riedl.
Analysis of recommendation algorithms for e-commerce. In ACM Conference
on Electronic Commerce, pages 158–167, 2000.

[16] S. Staab. Position statement: An overview on machine learning for the se-
mantic web. Dagstuhl Seminar on Machine Learning for the Semantic Web,
2005.

13



[17] K. Yu, W. Chu, S. Yu, V. Tresp, and Z. Xu. Stochastic relational models for
discriminative link prediction. NIPS 2006, 2006.

14


