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Abstract. We present a novel approach to structure learning for graph-
ical models. By using nonparametric estimates to model clique densities
in decomposable models, both discrete and continuous distributions can
be handled in a unified framework. Also, consistency of the underlying
probabilistic model is guaranteed. Model selection is based on predictive
assessment, with efficient algorithms that allow fast greedy forward and
backward selection within the class of decomposable models. We show
the validity of this structure learning approach on toy data, and on two
large sets of gene expression data.
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1 Introduction

Recent years have seen a wide range of new developments in the field of graphical
models [1, 2], in particular in the area of Bayesian networks, and in the use
of graphical models for probabilistic inference in complex systems. Graphical
models can either be constructed manually, by referring to the (assumed) process
that underlies some system, or by learning the graphical model structure from
sample data [3]. In this article, we present a novel method for learning the
structure of a decomposable graphical model from sample data. This method
has been developed particularly for decomposable models on continuous random
variables. Yet, through its use of nonparametric density estimates, it can also
handle discrete random variables within the same framework.

The major motivation for this work was to develop a structure learning ap-
proach that can be used without discretization of the data, but does not make
strong distributional assumptions (most previous approaches assume joint Gaus-
sianity [1, 4, 5], exceptions are [6, 7]). In Sec. 4, we will consider the problem of
learning the structure of functional modules in genetic networks from DNA mi-
croarray measurements. In this important application domain, it has been noted
that discretization needs to be conducted very carefully, and may lead to a large
loss of information [8].

In the field of molecular biology, it seems particularly reasonable to use de-
composable graphical models. Functional modules are considered to be a criti-
cal level of biological organization [9]. We see a close relationship between the



cliques of a decomposable model (that is, a fully connected subgraph) and the
functional modules of the genetic network. A clique is interpreted as a set of
functionally correlated genes. The structure of cliques then describes the rela-
tionships between individual functional modules. As opposed to simple clustering
approaches, the graphical model structure can also represent the fact that some
genes contribute to many of these functional modules.

We proceed by first giving a brief introduction to decomposable models and
structure learning in Sec. 2. Sec. 3 presents nonparametric decomposable models,
which are decomposable models based on nonparametric density estimation, and
the according structure learning methodology. In Sec. 4 we demonstrate the
performance of the algorithm on toy data, and then apply it to estimate the
structure of functional modules in two different microarray data sets.

2 Decomposable Models

A graphical model (or, probabilistic network) describes a family of probabilistic
models, based on a directed or undirected graph G = (V,E). Nodes V in the
graph represent random variables, whereas the edges E stand for probabilistic
dependencies. Common classes of graphical models [1, 2] are Bayesian networks
(based on graphs with directed edges), Markov networks (based on graphs with
undirected edges), decomposable models (undirected chordal graphs) and chain
graphs (graphs with both undirected and directed edges).

To define decomposable models, we assume a set of n random variables
{x1, . . . , xn}, represented in an undirected graphical model with nodes V =
{1, . . . , n}. The absence of an edge (i, j) between variables xi and xj implies
that xi and xj are independent, conditioned on all other random variables (con-
ditional independence), denoted by xi⊥⊥xj |x{1,...,n}\{i,j}, the pairwise Markov
property. If the graph G describes a decomposable model (see the definition
below), the joint density can be written in terms of marginal densities of the
random variables contained in cliques of the graph (fully connected subgraphs),

p(x) =
∏

C∈K p(xC)∏
S∈S p(xS)

. (1)

Here, K denotes the set of cliques in graph V , and S the set of separators (that
is, the intersections of two neighboring cliques).

This factorization is only possible if and only if G describes a decomposable
model, that is, if and only if the graph G is a chordal graph (see Ch. 4 of [2]), or,
equivalently, if the graph G can be represented in the form of a join tree3. The
join tree of a graph G is a tree T = (K, F ) with the clique set K as its node set
and edges F , that satisfies the clique intersection property: For any two cliques
C1, C2 ∈ K, the set C1 ∩ C2 is contained in every clique on the (unique) path
between C1 and C2 in T . From the adjacent cliques in the join tree, we can also
compute the separators S required in (1).

3 Also called the junction tree, or clique tree



Structure Learning: In general, the problem of finding optimal graphical models
from data under a non-trivial scoring function is NP-hard [10]. A large number
of (heuristic) approaches has been developed to estimate graphical models from
data, such as constraint-based methods [11], frequentist [1] and fully Bayesian ap-
proaches [12]. We will subsequently use a scoring function based method, where
we combine a function that estimates the model quality (the scoring function)
with a suitable search strategy through model space.

3 Nonparametric Decomposable Models

Previous structure learning approaches for continuous variables often assume
that all of the involved random variables have a joint multivariate Gaussian
distribution. While being computationally attractive, we believe that this can
only be observed in very limited domains, and thus wish to develop structure
learning for continuous variables with general probability distributions. In our
representation we employ kernel density estimates [13] for each clique in the
decomposable model.

This choice brings some specific advantages: Provided that a suitable kernel
function is chosen, no re-fitting of the density models is necessary after the model
structure has been changed. Also, clique density models will remain consistent
(that is, corresponding marginal distributions match, see [6] for an approach
where this caused numerous problems).

For a set of m samples D = {x1, . . . ,xm} (each xi ∈ Rn) from a probability
distribution over random variables {x1, . . . , xn}, a kernel density estimate [13] is

p(x | D,θ) =
1
m

m∑
i=1

g(x;xi,θ). (2)

As the kernel function g, we chose a Gaussian,

g(x;xi,θ) = (2π)−n/2|diag θ|−1/2 exp
(
−1

2
(x− xi)>(diag θ)−1(x− xi)

)
, (3)

with the variance along the jth dimension given by θj , j = 1, . . . , n.
For the proposed nonparametric decomposable models, we require models for

each clique and separator in Eq. 1, and thus model all clique marginal distribu-
tions by nonparametric density estimates. Denoting by xC the vector of random
variables appearing in clique C, and DC = {x1

C , . . . ,xm
C }, the clique marginal

model for clique C is

p(xC | DC ,θC) =
1
m

m∑
i=1

g(xC ;xi
C ,θC), (4)

Note that choosing this form of nonparametric density estimates in Eq. 1
automatically ensures an essential property of density models in this context:
With constant parameter vector θ, all clique and separator marginal models are



consistent, by means of the properties of the Gaussian kernel function. Consis-
tency means that, when considering clique models p(x1, x2) ad p(x2, x3), the
marginals p(x2) that can be computed from both clique models will match.

Choosing Kernel Parameters: In our experiments, we choose the variance pa-
rameters θ for the nonparametric density models in Eq. 4 by maximizing the
leave-one-out log likelihood of the data D,

θ̂ = arg max
θ

m∑
i=1

log p(xi | D \ xi,θ), (5)

via a conjugate gradient algorithm. Setting the parameters θ is done once at the
beginning of structure learning, θ remains fixed thereafter.

3.1 Learning: Scoring Functions

For learning the structure of nonparametric decomposable models, we used a
scoring-based learning strategy, with model scoring based on predictive assess-
ment. The key idea of predictive assessment model scores is to evaluate the
model on data not used for model fitting. The advantage of such scores lies
in its computational simplicity (for example, marginal likelihood is most of-
ten very difficult and time-consuming to compute) and in its insensitivity to
possibly incorrect model assumptions. Commonly used variants of predictive as-
sessment are cross-validation (asymptotically equivalent to maximum likelihood
with AIC complexity term, [2]) and prequential validation (ML with BIC com-
plexity term). We chose predictive assessment with 5-fold cross-validation as our
scoring function.

The joint density function of a nonparametric decomposable model is given in
Eq. 1. Taking logs, Eq. 1 splits into the sum of clique and separator contributions,
such that the 5-fold cross-validation can be evaluated separately on cliques and
separators. The contribution of a single clique C (resp. separator S) to the total
cross-validation log-likelihood is denoted by the clique score L(C),

L(C) = L(DC) =
5∑

k=1

∑
xC∈Dk

C

log p
(
xC | DC \ Dk

C

)
(6)

By this we mean that data D = {x1, . . . ,xm} are split into 5 disjoint sets
D1, . . . ,D5. Parzen density estimates are built from all data apart from Dk,
and evaluated on the data in Dk. The subscript C denotes a restriction of all
quantities to the random variables contained in clique C.

The overall cross-validation log-likelihood (model score) for the decompos-
able model, given by its set of cliques K = {C1, . . . , CA} and separators S =
{S1, . . . , SB}, simply becomes

L(K,S) =
A∑

j=1

L(Cj)−
B∑

k=1

L(Sk) (7)



Scores after Model Change: Based on the model score in Eq. 7, it is straight-
forward to derive the change of model score if an edge is inserted into the model.
In particular, the difference of scores can be computed from local changes only,
i.e., it is only necessary to consider the cliques involved in the insert operation.

Consider inserting an edge (u, v), thereby connecting cliques Cu and Cv. In
the current model G, the contribution of these two cliques and their separator
Suv = Cu ∩ Cv to the model score is L(Cu) + L(Cv) − L(Suv). Inserting edge
(u, v) creates a model G′ with a new clique Cw = Suv ∪ {u, v} and separators
Suw = Cu ∩ Cw = Suv ∪ {u} and Svw = Cv ∩ Cw = Suv ∪ {v}. The change of
model score from G to G′ thus simply becomes

∆uv = L(Suv) + L(Suv ∪ {u, v})− L(Suv ∪ {u})− L(Suv ∪ {v}) (8)

One can easily verify that this equation also holds for the case of merging cliques,
i.e., the case when Cu and/or Cv are no longer maximal in G′ and merge with
Cw.

[14] prove that the number of edge scores that need to be re-computed after
inserting an edge has a worst case bound of O(n). In practice, most of the edge
scores remain unchanged after an edge insertion, and only few edge scores need
to be recomputed. For example, in a problem involving 100 variables, 5 edge
scores were recomputed on average. We observed in our experiments that the
average number of edge scores to recompute seems to grow under linear.

3.2 Learning: Search Strategy

In searching for a model that matches well with data (i.e., has a high scoring
function), we traverse the space of decomposable models using a particular search
strategy. Commonly used search strategies are greedy forward selection (start
from an initially empty graph, iteratively add edges that brings the highest
improvement in terms of scoring function) or greedy backward elimination (start
from a fully connected graph, iteratively delete edges). In our approach, we use
a combination of forward and backward search, starting from an empty graph.
We either add or delete edges, depending on which operation brings the largest
improvement of scoring function.

The search for candidate models still needs to be restricted to the class of
decomposable models: In the current decomposable model graph G = (V,E), we
can attempt to either insert or delete an edge (u, v) to obtain graph G′. Is edge
(u, v) a valid edge, in that the new model G′ is still a decomposable model? [14]
presented a method that is suitable for use with greedy forward selection. We use
an approach inspired by dynamic algorithms for chordal graphs [15]. With this
approach, enumerating all valid edges can be performed in O(n2 log n) amortized
time. As a further advantage over [14], the information about separators and
cliques of the graph (required for computing the model score) is always available.

Checking Decomposability of G′: To check chordality of G′, we define a weight
function w : K × K → N0, that assigns each edge e = (C1, C2) of the join tree



a weight w(e) = w(C1, C2) = |C1 ∩ C2|. The following theorem [15] now checks
whether we can insert an edge (u, v) while maintaining decomposability:

Theorem 1. Let G be a chordal graph without edge (u, v). Let T be the join
tree of G, and let Cu, Cv be the closest nodes in T such that u ∈ Cu, v ∈ Cv.
Assume (Cu, Cv) 6∈ T . There exists a clique tree T ′ of G′ with (Cu, Cv) ∈ T ′

iff the minimum weight edge e on the path between Cu and Cv in T satisfies
w(e) = w(Cu, Cv).

Checking whether deleting edge (u, v) maintains decomposability is a bit easier:

Theorem 2. Let G be a chordal graph with edge (u, v). G\(u, v) is decomposable
if and only if G has exactly one maximal clique containing (u, v).

Splay Tree Representation for the Join Tree: In the above theorems, the ma-
jor operation on the join tree is searching for the closest cliques that contain
the variables u and v. [16] present a representation for trees that allows a par-
ticularly efficient implementation of shortest path searches, with only O(log n)
operations per search. We use this data structure to maintain the join tree T .
The representation is based on self-adjusting binary search trees, the so-called
splay trees. It can be shown that all standard tree operations (in particular, the
link, cut and shortest path search operations required for the decomposability
check) have an amortized time bound of O(log n) for a splay tree with n nodes.
A chordal graph on n nodes has a join tree with at most n cliques, thus all join
tree operations can be implemented in O(log n).

4 Experiments

4.1 Toy Data

In a first experiment, we investigate whether the structure learning algorithm
presented in the previous sections can indeed recover the true structure of some
data. To this aim, we draw 50 samples from a decomposable model over 8 vari-
ables, where each clique is modelled by a randomly initialized Gaussian mixture
model with 10 components (with consistency between cliques ensured). In Fig. 1
the model score L(D |K,S), as defined in Eq. 7, is plotted as more and more
edges are added to the model. We found that the algorithm recovers the true
structure of the generating decomposable model when L(D |K,S) is at its max-
imum.

4.2 Learning from DNA Microarray Measurements

We used our method two learn the structure from two gene expression data
sets. To also estimate the confidence of each of the learned structures, we used
a 20-fold bootstrap scheme: For each of the perturbed bootstrap data sets D(i),
we use the structure obtained when the model score Eq. 7 is at its maximum.
In the analysis, we only consider edges that have a confidence of 90% or above
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Fig. 1. Test of the structure learning algorithm on a toy model, where 50 samples were
drawn from a decomposable model with known structure. The plot shows the model
score, as defined in Eq. 7, when edges are added successively. The structure found
when the model score is at its maximum is exactly the structure of the generating
model (shown top left). Shown bottom left is a structure that also obtains a high
model score

(edges that were found in at least 18 out of the 20 runs). Yet, thresholding by
edge confidence may lead to a non-decomposable result model. To again obtain
a decomposable model, we implemented the following greedy insertion scheme:
Maintain a list L of all edges with a bootstrap confidence estimate of 90% or
above. Sort the list by ascending confidence value. Start with an empty re-built
model (denoted by G′ in the following). Consider now the highest confidence edge
in list L. If this edge can be inserted into G′ without loosing decomposability
of G′ (using the test described in Sec. 3.2), then insert the edge into G′ and
delete it from L. Otherwise, proceed with the next edge in L. The algorithm
terminates if L is empty, or if no edge can be inserted into G′ without loosing
decomposability.

St. Jude Leukemia Data Set We first applied our approach on data obtained
from measuring gene-expression levels in human bone marrow cells of 7 different
pedriatric acute lymphoblastic leukemia (ALL) subtypes [17]. Out of the 12.000
measured genes, those are selected that best define the individual subtypes using
a Chi-square test. For each of the 7 subtypes the 40 most discriminative genes are
chosen yielding to a set of 280 genes. 9 genes show a discriminative behavior for
more than one subtype but were included only once resulting in a final dataset
of n = 327 samples and p = 271 genes.

The learned network topology [18] (with restriction to high confidence edges,
as described in the previous section) shows a few highly connected genes, with
most edges connecting genes that are known to belong to the same ALL sub-
type. Thus, most genes are conditionally independent from each other, given
one of these highly connected genes. Biologically speaking, the expression be-
havior of many genes only depends on a set of few genes, which therefore are



supposed to play a key role in the learned domain. Since the structure is inferred
from leukemia data, a high connectivity may indicate a potential importance for
leukemogenesis or for tumor development in general. In fact, as shown in Tab. 1,
highly connected genes are either known to be genes with an oncogenic char-
acteristic or known to be involved in critical biological processes, like immune
response (HLA-DRA), protein degradation (PSMD10), DNA repair (PAPR1) or
embryogenesis (SCML2). PSMD10, for example, is known to act as a regulatory
subunit of the 26S proteasome. PSMD10 connects most cliques that contain
genes which are altered in ALL subtype hyperdipl>50. The dominant role of
PSMD10 in the hyperdipl>50 subtype seems reasonable, since the 26S protea-
some is involved in general protein degradation and its hyperactivity is likely to
be a response to the excessive protein production caused by the hyperdiploidy.
HLA-DRA, the most highly connected gene belongs to the major histocompati-
bility complex class 2 (MCH II) which has been reported to be associated with
leukemia and various other cancer types. The other seven members of the MCH
complex which are present in the analyzed data set are either part of the same
clique as HLA-DRA or part of an adjacent clique. The compact representation
of this functional module emphasizes the capability of our approach to learn
functional groups within a set of expression data.

Gene Affymetrix ID # of connections Annotation

HLA-DRA 37039 at 29 major histocompatibility complex, class
II, DR alpha

PSMD10 37350 at 23 proteasome (prosome, macropain) 26S
subunit, non-ATPase, 10

PAPR1 1287 at 17 poly (ADP-ribose) polymerase family,
member 1

SCML2 38518 at 15 sex comb on midleg-like 2 (Drosophila)

Table 1. Genes with highest connectivity in the graphical model structure learned
from the ALL data set (expression patterns in bone marrow cells of leukemia).

Spira data set We next analyzed gene expression data derived from human
epithelial cells of current, former and never smoking subjects (101 in total) taken
from [19]. The 96 most discriminative probes were selected, then structure learn-
ing was applied as described in the previous section. Tab. 2 lists the three highest
degree genes in the learned decomposable model. All of the highest connected
genes have detoxifying and antioxidant properties. The NQO1 gene, for exam-
ple, serves as a quinone reductase in connection with conjugation reactions of
hydroquinons involved for example in detoxification pathways. Its high connec-
tivity seems reasonable as it prevents the generation of reactive oxygen radicals
and protects cells from oxidative challenges such as the exposure to cigarette
smoke. Fig. 2 shows the NQO1 subgraph, plotted with the radius of each gene
node proportional to its connectivity. Besides the central role of NQO1, note



that multiply appearing genes are grouped into cliques (for example, the three
probes that correspond to the UGTA1A6 gene are all put into one clique).

Fig. 2. The NQO1 subgraph obtained from the Spira data set. The area of each gene
node is proportional to its degree.

Gene Affymetrix ID # of connections Annotation

NQO1 210519 s at 8 NAD(P)H dehydrogenase, quinone 1
CX3CL1 823 at 4 chemokine (C-X3-C motif) ligand 1
MTX1 208581 x at 4 metaxin 1

Table 2. The three highest connected genes in the graphical model structure learned
from the Spira data set (expression patterns in epithelial cells of smokers and non-
smokers)

5 Conclusions

We presented a novel approach to learning a decomposable graphical model from
data with continuous variables. Key issues for this algorithm are nonparametric
kernel density estimates for each clique, and an efficient method for restricting
search to the class of decomposable models. The method permits working di-
rectly with continuous data, without discretization as a pre-processing step. Our
experiments on toy data and two gene expression data sets confirmed that the
structure learning method does find meaningful structures.

We are currently applying our approach to larger sets of gene expression
data. Graphical models are used increasingly in bioinformatics, and we believe
that the structure learning approach presented in this article has a wide range
of applications there. In particular, we plan to use the results of decomposable
model learning as hypothesis structures for more detailed modelling. Currently,
detailed modelling of regulatory processes in cells (including dynamical effects) is
a very active research topic. These methods are often computationally intensive,
and can only be applied to networks with a small number of genes. Thus, it is
important to first find hypothesis networks, that are in turn modelled in more
detail. We believe that the structure learning method presented in this paper
can serve this purpose very well.
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