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Abstract

We provide a survey on relational models. Relational models describe
complete networked domains by taking into account global dependencies
in the data. Relational models can lead to more accurate predictions if
compared to non-relational machine learning approaches. Relational mod-
els typically are based on probabilistic graphical models, e.g., Bayesian
networks, Markov networks, or latent variable models. Relational models
have applications in social networks analysis, the modeling of knowledge
graphs, bioinformatics, recommendation systems, natural language pro-
cessing, medical decision support, and linked data.

1 Glossary

Entities are (abstract) objects. We denote an entity by a lowercase e. An actor
in a social network can be modeled as an entity. There can be multiple
types of entities in a domain (e.g., individuals, cities, companies), entity
attributes (e.g., income, gender), and relationships between entities (e.g.,
knows, likes, brother, sister). Entities, relationships and attributes are
defined in the entity-relationship model, which is used in the design of a
formal relational model

Relation A relation or relation instance I(R) is a set of tuples. A tuple t
is an ordered list of elements (e1, e2, . . . , earity), which, in the context of
this discussion, represent entities. The arity of a relation is the number
of elements in each of its tuples, e.g., a relation might be unary, binary
or higher order. R is the name or type of the relation. For example,
(Jack, Mary) might be a tuple of the relation instance knows, indicating
that Jack knows Mary. A database instance (or world) is a set of relation
instances. For example, a database instance might contain instances of
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the unary relations student, teacher, male, female, and instances of the
binary relations knows, likes, brother, sister (see Figure 1)

Predicate A predicate R is a mapping of tuples to true or false. R(t) is a ground
predicate and is true when t ∈ I(R), otherwise it is false. Note that we do
not distinguish between the relation name R and the predicate name R.
Example: knows is a predicate and knows(Jack, Mary) returns True if it
is true that Jack knows Mary, i.e., that (Jack, Mary) ∈ I(knows). The
convention is that relations and predicates are written in lowercase and
entities in uppercase

Probabilistic Database A (possible) world corresponds to a database in-
stance. In a probabilistic database, a probability distribution is defined
over all possible worlds under consideration. Probabilistic databases with
potentially complex dependencies can be described by probabilistic graph-
ical models. In a canonical representation, one assigns a binary random
variable XR,t to each possible tuple t in each relation R. Then

t ∈ I(R) ⇔ R(t) = True ⇔ XR,t = 1

and
t /∈ I(R) ⇔ R(t) = False ⇔ XR,t = 0.

The probability for a world x is written as P (X = x) where X = {XR,t}R,t

is the set of random variables and x denotes their values in the world (see
Figure 1)

Triple Database A triple database consists of binary relations represented as
subject-predicate-object triples. An example of a triple is: (Jack, knows,
Mary). A triple database can be represented as a knowledge graph with
entities as nodes and predicates as directed links, pointing from the subject
node to the object node. The Resource Description Framework (RDF) is
triple based and is the basic data model of the Semantic Web Linked Open
Data. In social network analysis, nodes would be individuals or actors and
links would correspond to ties

Linked Data Linked Open Data describes a method for publishing structured
data so that it can be interlinked and can be exploited by machines. Linked
Open Data uses the RDF data model

Collective learning refers to the effect that an entity’s relationships, attributes
or class membership can be predicted not only from its attributes but also
from its (social) network environment

Collective classification A special case of collective learning: The class mem-
bership of entities can be predicted from the class memberships of enti-
ties in their (social) network environment. Example: Individuals’ income
classes can be predicted from those of their friends
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Relationship prediction The prediction of the existence of a relationship be-
tween entities, for example friendship between individuals. A relationship
is typically modeled as a binary relation

Entity resolution The task of predicting if two constants refer to the same
entity

Homophily The tendency of an individual to associate with similar others

Graphical models A graphical description of a probabilistic domain where
nodes represent random variables and edges represent direct probabilistic
dependencies

Latent Variables Latent variables are quantities which are not measured di-
rectly and whose states are inferred from data

2 Definition

Relational models are machine learning models that are able to truthfully rep-
resent some or all distinguishing features of a relational domain such as long-
range dependencies over multiple relationships. Typical examples for relational
domains include social networks and knowledge bases. Relational models con-
cern nontrivial relational domains with at least one relation with an arity of
two or larger that describes the relationship between entities, e.g., knows, likes,
dislikes. In the following we will focus on nontrivial relational domains.

3 Introduction

Social networks can be modeled as graphs, where actors correspond to nodes and
where relationships between actors such as friendship, kinship, organizational
position, or sexual relationships are represented by directed labeled links (or
ties) between the respective nodes. Typical machine learning tasks would
concern the prediction of unknown relationship instances between actors, as
well as the prediction of actors’ attributes and class labels. In addition, one
might be interested in a clustering of actors. To obtain best results, machine
learning should take an actors’ network environment into account. Thus, two
individuals might appear in the same cluster because they have common friends.

Relational learning is a branch of machine learning that is concerned with
these tasks, i.e., to learn efficiently from data where information is represented
in the form of relationships between entities.

Relational models are machine learning models that truthfully model some
or all distinguishing features of relational data such as long-range dependencies
propagated via relational chains and homophily, i.e., the fact that entities with
similar attributes are neighbors in the relationship structure. In addition to
social network analysis, relational models are used to model knowledge graphs,
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preference networks, citation networks, and biomedical networks such as gene-
disease networks or protein-protein interaction networks. Relational models can
be used to solve the aforementioned machine learning tasks, i.e., classification,
attribute prediction, and clustering. Moreover, relational models can be used
to solve additional relational learning tasks such as relationship prediction and
entity resolution. Relational models are derived from directed and undirected
graphical models or latent variable models and typically define a probability
distribution over a relational domain.

4 Key Points

Statistical relational learning is a subfield of machine learning. Relational mod-
els learn a probabilistic model of a complete networked domain by taking into
account global dependencies in the data. Relational models can lead to more ac-
curate predictions if compared to non-relational machine learning approaches.
Relational models typically are based on probabilistic graphical models, e.g.,
Bayesian networks, Markov networks, or latent variable models.

5 Historical Background

Inductive logic programming (ILP) was maybe the first machine learning effort
that seriously focused on a relational representation. It gained attention in the
early 1990s and focusses on learning deterministic or close-to-deterministic de-
pendencies, with representations derived from first-order logic. As a field, ILP
was introduced in a seminal paper by Muggleton [21]. A very early and still
very influential algorithm is Quinlan’s FOIL [29]. ILP will not be a focus in
the following, since social networks exhibit primarily statistical dependencies.
Statistical relational learning started around the beginning of the millennium
with the work by Koller, Pfeffer, Getoor, and Friedman [17, 9]. Since then,
many combinations of ILP and relational learning have been explored. The Se-
mantic Web and Linked Open Data are producing vast quantities of relational
data and [39, 27] describe the application of statistical relational learning to
these emerging fields. Relational learning has been applied to the learning of
knowledge graphs, which model large domains as triple databases. [24] is a re-
cent review on the application of relational learning to knowledge graphs. An
interesting application is the semi-automatic completion of knowledge graphs
by analyzing information from the Web and other sources, in combination with
relational learning, which exploits the information already present on the knowl-
edge graph [5].
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6 Machine Learning in Relational Domains

6.1 Relational Domains

Relational domains are domains that can truthfully be represented by relational
databases. The glossary defines the key terms such as a relation, a predicate,
a tuple, and a database. Nontrivial relational domains contain at least one
relation with an arity of two or larger that describes the relationship between
entities, e.g., knows, likes, dislikes. The main focus here is on nontrivial rela-
tional domains.

Social networks are typical relational domains, where information is repre-
sented by multiple types of relationships (e.g., knows, likes, dislikes) between
entities (here: actors), as well as through the attributes of entities.

6.2 Generative Models for a Relational Database

Typically, relational models can exploit long-range or even global dependencies
and have principled ways of dealing with missing data. Relational models are
often displayed as probabilistic graphical models and can be thought of as re-
lational versions of regular graphical models, e.g., Bayesian networks, Markov
networks, and latent variable models. The approaches often have a “Bayesian
flavor,” but a fully Bayesian statistical treatment is not always performed.

The following section describes common relational graphical models.

6.3 Non-relational Learning

Although we are mostly concerned with relational learning, it is instructive to
analyze the special case of non-relational learning. Consider a database with a
key entity class actor with elements ei and with only unary relations; thus, we
are considering a trivial relational domain. Then one can partition the random
variables into independent disjoint sets according to the entities, and the joint
distribution factorizes as ∏

i

P ({XR,ei}R)

where the binary random variable XR,ei is assigned to tuple ei in unary relation
R (see glossary).

Thus, the set of random variables can be reduced to nonoverlapping inde-
pendent sets of random variables. This is the common non-relational learning
setting with i.i.d. instances, corresponding to the different actors.

6.4 Non-relational Learning in a Relational Domain

An common approximation to a relational model is to model unary relations of
key entities in a similar way as in a non-relational model as∏

i

P ({XR,ei}R | fi)
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where fi is a vector of relational features that are derived from the relational
network environment of the actor i. Relational features provide additional in-
formation to support learning and prediction tasks. For instance, the average
income of an individual’s friends might be a good covariate to predict an indi-
vidual’s income in a social network. The underlying mechanism that forms these
patterns might be homophily, the tendency of individuals to associate with sim-
ilar others. The goal of this approach is to be able to use i.i.d. machine learning
by exploiting some of the relational information. This approach is commonly
used in applications where probabilistic models are computationally too expen-
sive. The application of non-relational machine learning to relational domains
is sometimes referred to as propositionalization.

Relational features are often high dimensional and sparse (e.g., there are
many people, but only a small number of them are an individual’s friends; there
are many items but an individual has only bought a small number of them),
and in some domains, it can be easier to define useful kernels than to define
useful features. Relational kernels often reflect the similarity of entities with
regard to the network topology. For example, a kernel can be defined based on
counting the substructures of interest in the intersection of two graphs defined
by neighborhoods of the two entities [20] (see also the discussion on RDF graphs
further down).

6.5 Learning Rule Premises in Inductive Logic Program-
ming

Some researchers apply a systematic search for good features and consider this as
an essential distinction between relational learning and non-relational learning:
in non-relational learning, features are essentially defined prior to the training
phase, whereas relational learning includes a systematic and automatic search
for features in the relational context of the involved entities. Inductive logic
programming (ILP) is a form of relational learning with the goal of finding de-
terministic or close-to-deterministic dependencies, which are described in logical
form such as Horn clauses. Traditionally, ILP involves a systematic search for
sensible relational features that form the rule premises [6].

7 Relational Models

In this section, we describe the most important relational models in some de-
tail. These are based on probabilistic graphical models, which efficiently model
high-dimensional probability distributions by exploiting independencies between
random variables. In particular, we consider Bayesian networks, Markov net-
works, and latent variable models. We start with a more detailed discussion on
possible world models for relational domains and with a discussion on the dual
structures of the triple graph and the probabilistic graph.
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knows
Jack Mary
Jack John
Jack Jane
John Mary
Michael Jane
John Jack
Mary Jane
Jane Mary

likes
Jack Mary
John Mary

brother
Jack John
John Jack

sister
Mary Jane
Jane Mary

student
Jack
John

teacher
Mary
Jane

male
Jack
John
Michael

female
Mary
Jane

Database instance

Figure 1: A database instance (world) with four unary relations (student,
teacher, male, female) and four binary relations (knows, likes, brother, sis-
ter). As examples, (Jack, Mary) ∈ I(knows). Thus, knows(Jack, Mary)=True,
and Xknows,(Jack, Mary) = 1. (Jack, Michael) /∈ I(knows). Thus,
knows(Jack, Michael) = False, and Xknows, (Jack, Michel) = 0.
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7.1 Random Variables for Relational Models

As mentioned before, a probabilistic database defines a probability distribution
over the possible worlds under consideration. The goal of relational learning is
to derive a model of this probability distribution.

In a canonical representation, we assign a binary random variable XR,t to
each possible tuple in each relation. Then

t ∈ I(R) ⇔ R(t) = True ⇔ XR,t = 1

and
t /∈ I(R) ⇔ R(t) = False ⇔ XR,t = 0.

The probability for a world x is written as P (X = x), where X = {XR,t}R,t is
the set of random variables and x denotes their values in the world (see Figure 1).
What we have just described corresponds to a closed-world assumption where
all tuples, which are not part of the database instance, map to R(t) = False, and
thus XR,t = 0. In contrast, in an open world assumption, we would consider
the corresponding truth values and states as being unknown and the database
instance as being only partially observed. Often in machine learning, some form
of a local closed-world assumption is applied with a mixture of true, false, and
unknown ground predicates [5, 18]. For example, one might assume that, if
at least one child of an individual is specified, it implies that all children are
specified (closed world), whereas if no child is specified, children are considered
unknown (open world). Another aspect is that type constraints might imply
that certain ground predicates are false. For example, only individuals can get
married, but neither cities nor buildings. Other types of background knowledge
might materialize tuples that are not explicitly specified. For example, if in-
dividuals live in Munich, by simple reasoning, one can conclude that they also
live in Bavaria and Germany. The corresponding tuples can be added to the
database.

Based on background knowledge, one might want to modify the canonical
representation, which uses only binary random variables. For example, discrete
random variables with N states are often used to implement the constraint that
exactly one out of N ground predicates is true, e.g., that an individual belongs
exactly to one out of N income classes or age classes. It is also possible to
extend the model toward continuous variables.

So far we have considered an underlying probabilistic model and an observed
world. In probabilistic databases, one often assumes a noise process between
the actual database instance and the observed database instance by specifying
a conditional probability:

P (YR,t|XR,t).

Thus, only YR,t is observed whereas the real interest is on XR,t: One observes
a t ∈ Iy(R) ⇔ YR,t = 1 from which one can infer for the database instance
P (t ∈ I(R)) ⇔ P (XR,t = 1). With an observed YR,t = 1, there is a certain
probability that XR,t = 0 (error in the database) and with an observed YR,t = 0
there is a certain probability that XR,t = 1 (missing tuples).
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The theory of probabilistic databases is focused on the issues of complex
query answering under a probabilistic model. In probabilistic databases [36],
the canonical representation is used in tuple-independent databases, while multi-
state random variables are used in block-independent disjoint (BID) databases.

Most relational models assume that all entities (or constants) and all predi-
cates are known and fixed (domain closure assumption). In general these con-
straints can be relaxed, for example, if one needs to include new individuals in
the model. Also, latent variables derived from a cluster or a factor analysis can
be interpreted as new “invented” predicates.

7.2 Triple Graphs and Probabilistic Graphical Networks

A triple database consists of binary relations represented as subject-predicate-
object triples. An example of a triple is (Jack, knows, Mary). A triple database
can be represented as a knowledge graph with entities as nodes and predicates
as directed links, pointing from the subject node to the object node. Triple
databases are able to represent Web-scale knowledge bases and sociograms that
allow multiple types of directed links. Relations of higher order can be reduced
to binary relations by introducing auxiliary entities (“blank nodes”). Figure 2
shows an example of a triple graph. The Resource Description Framework
(RDF) is triple based and is the basic data model of the Semantic Web Linked
Open Data. In social network analysis, nodes would be individuals or actors
and links would correspond to ties.

For each triple, a random variable is introduced. In Figure 2, these random
variables are represented as elliptical red nodes. The binary random variable
associated with the tripe (s = i, p = k, o = j) will be denoted as Xk(i,j).

7.3 Directed Relational Models

The probability distribution of a directed relational model, i.e. a relational
Bayesian model, can be written as

P ({XR,t}R,t) =
∏
R,t

P (XR,t|par(XR,t)). (1)

Here, {XR,t}R,t refers to the set of random variables in the directed rela-
tional model, while XR,t denotes a particular random variable. In a graphical
representation, directed arcs are pointing from all parent nodes par(XR,t) to
the node XR,t (Figure 2). As Equation 1 indicates, the model requires the
specification of the parents of a node and the specification of the probabilistic
dependency of a node, given the states of its parent nodes. In specifying the
former, one often follows a causal ordering of the nodes, i.e., one assumes that
the parent nodes causally influence child nodes and their descendents. An im-
portant constraint is that the resulting directed graph is not permitted to have
directed loops, i.e., that it is a directed acyclic graph. A major challenge is
to specify P (XR,t|par(XR,t)), which might require the calculation of complex
aggregational features as intermediate steps.
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Jack JohnfriendsWith

likes?

Harry
Potter

likes

hasAgehasAge

Young

type
book

),(, rHarryPotteJohnlikesX

)(, JackhasAgeX

),(, rHarryPotteJacklikesX

),(, JohnJackhfriendsWitX

Middle
Old

Middle
Old

Young

Figure 2: The figure clarifies the relationship between the triple graph and the
probabilistic graphical network. The round nodes stand for entities in the do-
main, the square nodes stand for attributes, and the labeled links stand for
triples. Thus, we assume that it is known that Jack is friends with John and
that John likes the book HarryPotter. The oval nodes stand for random vari-
ables, and their states represent the existence (value 1) or nonexistence (value
0) of a given labeled link; see, for example, the node Xlikes,(John,HarryPotter)

which represents the ground predicate likes(John, HarryPotter). Striped oval
nodes stand for random variables with many states, which are useful for at-
tribute nodes (exactly one out of many ground predicates is true). The unary
relations hasAgeOld, hasAgeMiddle, and hasAgeYoung are represented by the
random variable XhasAge which has three states. Relational models assume
a probabilistic dependency between the probabilistic nodes. So the relational
model might learn that Jack also likes HarryPotter since his friend Jack likes
it (homophily). Also Xlikes,(John,HarryPotter) might correlate with the age of
John. The direct dependencies are indicated by the red edges between the el-
liptical nodes. In PRMs the edges are directed (as shown), and in Markov logic
networks, they are undirected. The elliptical random nodes and their quantified
edges form a probabilistic graphical model. Note that the probabilistic network
is dual to the triple graph in the sense that links in the triple graph become
nodes in the probabilistic network.
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7.3.1 Probabilistic Relational Models

Probabilistic relational models (PRMs) were one of the first published directed
relational models and found great interest in the statistical machine learning
community [17, 10]. An example of a PRM is shown in Figure 3. PRMs com-
bine a frame-based (i.e., object oriented) logical representation with probabilistic
semantics based on directed graphical models. The PRM provides a template
for specifying the graphical probabilistic structure and the quantification of the
probabilistic dependencies for any ground PRM. In the basic PRM models,
only the entities’ attributes are uncertain, whereas the relationships between
entities are assumed to be known. Naturally, this assumption greatly simpli-
fies the model. Subsequently, PRMs have been extended to also consider the
case that relationships between entities are unknown, which is called structural
uncertainty in the PRM framework [10].

In PRMs one can distinguish parameter learning and structural learning.
In the simplest case, the dependency structure is known, and the truth values
of all ground predicates are known as well in the training data. In this case,
parameter learning consists of estimating parameters in the conditional proba-
bilities. If the dependency structure is unknown, structural learning is applied,
which optimizes an appropriate cost function and typically uses a greedy search
strategy to find the optimal dependency structure. In structural learning, one
needs to guarantee that the ground Bayesian network does not contain directed
loops.

In general the data will contain missing information, i.e., not all truth values
of all ground predicates are known in the available data. For some PRMs, regu-
larities in the PRM structure can be exploited (encapsulation), and even exact
inference to estimate the missing information is possible. Large PRMs require
approximate inference; commonly, loopy belief propagation is being used.

7.3.2 More Directed Relational Graphical Models

A Bayesian logic program is defined as a set of Bayesian clauses [16]. A Bayesian
clause specifies the conditional probability distribution of a random variable
given its parents. A special feature is that, for a given random variable, several
such conditional probability distributions might be given and combined based
on various combination rules (e.g., noisy-or). In a Bayesian logic program, for
each clause, there is one conditional probability distribution, and for each ran-
dom variable, there is one combination rule. Relational Bayesian networks [14]
are related to Bayesian logic programs and use probability formulae for specify-
ing conditional probabilities. The probabilistic entity-relationship (PER) mod-
els [12] are related to the PRM framework and use the entity-relationship model
as a basis, which is often used in the design of a relational database. Relational
dependency networks [22] also belong to the family of directed relational mod-
els and learn the dependency of a node given its Markov blanket (the smallest
node set that make the node of interest independent of the remaining network).
Relational dependency networks are generalizations of dependency networks as
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Professor

D, I A B C

H,H 0.5 0.4 0.1

H,L 0.1 0.5 0.4

L,H 0.8 0.1 0.1

L,L 0.3 0.6 0.1

Course Student

Registration

TeachingAbility

Popularity

Rating

Difficulty

Intelligence

Ranking

Satisfaction

Grade

hasProf

hasCourse

ha
sS

tu
de

nt

Probabilistic table of Grade (with
states A, B, C) given its parents
Difficulty (H, L) and Intelligence
(H, L)

Figure 3: A PRM with domain predicates Professor(ProfID, TeachingAbility,
Popularity), Course(CourseID, ProfID, Rating, Difficulty), Student(StuID, In-
telligence, Ranking), and Registration(RegID, CourseID, StuID, Satisfaction,
Grade). Dotted lines indicate foreign keys, i.e., entities defined in another re-
lational instance. The directed edges indicate direct probabilistic dependencies
on the template level. Also shown is a probabilistic table of the random variable
Grade (with states A, B, C ) given its parents Difficulty and Intelligence. Note
that some probabilistic dependencies work on multisets and require some form
of aggregation: for example, different students might have different numbers of
registrations, and the ranking of a student might depend on the (aggregated)
average grade from different registrations. Note the complexity in the depen-
dency structure which can involve several entities: for example, the Satisfaction
of a Registration depends on the TeachingAbility of the Professor teaching
the Course associated with the Registration. Consider the additional complex-
ity when structural uncertainty is present, e.g., if the Professor teaching the
Course is unknown.
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introduced by [11, 13]. A relational dependency network typically contains di-
rected loops and thus is not a proper Bayesian network.

7.4 Undirected Relational Graphical Models

The probability distribution of an undirected graphical model, i.e., a Markov
network, is written as a log-linear model in the form

P (X = x) =
1

Z
exp

∑
i

wifi(xi)

where the feature functions fi can be any real-valued function on the set xi ⊆
x and where wi ∈ R. In a probabilistic graphical representation, one forms
undirected edges between all nodes that jointly appear in a feature function.
Consequently, all nodes that appear jointly in a function will form a clique
in the graphical representation. Z is the partition function normalizing the
distribution.

A major advantage is that undirected graphical models can elegantly model
symmetrical dependencies, which are common in social networks.

7.4.1 Markov Logic Network (MLN)

A Markov logic network (MLN) is a probabilistic logic which combines Markov
networks with first-order logic. In MLNs the random variables, representing
ground predicates, are part of a Markov network, whose dependency structure
is derived from a set of first-order logic formulae (Figure 4).

Formally, a MLN L is defined as follows: Let Fi be a first-order formula (i.e.,
a logical expression containing constants, variables, functions, and predicates),
and let wi ∈ R be a weight attached to each formula. Then L is defined as a set
of pairs (Fi, wi) [32, 4].

From L the ground Markov network ML,C is generated as follows. First,
one generates nodes (random variables) by introducing a binary node for each
possible grounding of each predicate appearing in L given a set of constants
c1, . . . , c|C| (see the discussion on the canonical probabilistic representation).
The state of a node is equal to one if the ground predicate is true and zero oth-
erwise. The feature functions fi, which define the probabilistic dependencies in
the Markov network, are derived from the formulae by grounding them in a do-
main. For formulae that are universally quantified, grounding is an assignment
of constants to the variables in the formula. If a formula contains N variables,
then there are |C|N such assignments. The feature function fi is equal to one
if the ground formula is true, and zero otherwise. The probability distribution
of the ML,C can then be written as

P (X = x) =
1

Z
exp

(∑
i

wini(x)

)
,
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where ni(x) is the number of formula groundings that is true for Fi and where
the weight wi is associated with formula Fi in L.

The joint distribution P (X = x) will be maximized when large weights are
assigned to formulae that are frequently true. In fact, the larger the weight, the
higher is the confidence that a formula is true for many groundings. Learning
in MLNs consists of estimating the weights wi from data. In learning, MLN
makes a closed-world assumption and employs a pseudo-likelihood cost function,
which is the product of the probabilities of each node given its Markov blanket.
Optimization is performed using a limited memory BFGS algorithm.

The simplest form of inference in a MLN concerns the prediction of the truth
value of a ground predicate given the truth values of other ground predicates.
For this task, an efficient algorithm can be derived: In the first phase of the
algorithm, the minimal subset of the ground Markov network is computed that
is required to calculate the conditional probability of the queried ground pred-
icate. It is essential that this subset is small since in the worst case, inference
could involve all nodes. In the second phase, the conditional probability is then
computed by applying Gibbs sampling to the reduced network.

Finally, there is the issue of structural learning, which, in this context, means
the learning of first-order formulae. Formulae can be learned by directly opti-
mizing the pseudo-likelihood cost function or by using ILP algorithms. For the
latter, the authors use CLAUDIAN [30], which can learn arbitrary first-order
clauses (not just Horn clauses, as in many other ILP approaches).

An advantage of MLNs is that the features and thus the dependency struc-
ture are defined using a well-established logical representation. On the other
hand, many people are unfamiliar with logical formulae and might consider the
PRM framework to be more intuitive.

7.4.2 Relational Markov Networks (RMNs)

RMNs generalize many concepts of PRMs to undirected relational models [37].
RMNs use conjunctive database queries as clique templates, where a clique in
an undirected graph is a subset of its nodes such that every two nodes in the
subset are connected by an edge. RMNs are mostly trained discriminately. In
contrast to MLNs and similarly to PRMs, RMNs do not make a closed-world
assumption during learning.

7.5 Relational Latent Variable Models

In the approaches described so far, the structures in the graphical models were
either defined using expert knowledge or were learned directly from data using
some form of structural learning. Both can be problematic since appropriate
expert domain knowledge might not be available, while structural learning can
be very time consuming and possibly results in local optima which are difficult
to interpret. In this context, the advantage of relational latent variable models
is that the structure in the associated graphical models is purely defined by the
entities and relations in the domain.
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A B
friends

friends

smokes smokes

Yes

cancer cancer

friends friends

friends(A, A)

friends(A, B)

friends(B, B)

friends(B, A)
cancer(A) cancer(B)

smokes(A) smokes(B)

No
Yes
No

Yes
No No

Yes
No

Figure 4: Left: an example of a MLN. The domain has two entities (constants)
A and B and the unary relations smokes and cancer and the binary relation
friends. The eight elliptical nodes are the ground predicates. Then there are two
logical expressions ∀x smokes(x) → cancer(x) (someone who smokes has can-
cer) and ∀x∀y friends(x, y) → (smokes(x) ↔ smokes(y)) (friends either both
smoke or both do not smoke). Obviously and fortunately, both expressions are
not always true, and learned weights on both formulae will assume finite values.
There are two groundings of the first formula (explaining the edges between the
smokes and cancer nodes) and four groundings of the second formula, explain-
ing the remaining edges. The corresponding features are equal to one if the
logical expressions are true and are zero otherwise. The weights on the features
are adapted according to the actual statistics in the data. Redrawn from [4].
Right: The corresponding triple graph for two individuals (blue) and the dual
ground Markov network (red).
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The additional complexity of working with a latent representation is coun-
terbalanced by the great simplification by avoiding structural learning. In the
following discussion, we assume that data is in triple format; generalizations to
relational databases have been described [41, 19].

7.5.1 The IHRM: A Latent Class Model

The infinite hidden relational model (IHRM) [41] (aka infinite relational model [15])
is a generalization to a probabilistic mixture model where a latent variable with
states 1, . . . , R is assigned to each entity ei. If the latent variable for subject
s = i is in state r and the latent variable for object o = j is in state q, then
the triple (s = i, p = k, o = j) exists with probability P (Xk(i,j)|r, q). Since the
latent states are unobserved, we obtain

P (Xk(i,j)|i, j) =
∑
r,q

P (r|i)P (q|j)P (Xk(i,j)|r, q)

which can be implemented as the sum-product network of Figure 5.
In the IHRM, the number of states (latent classes) in each latent variable

is allowed to be infinite, and fully Bayesian learning is performed based on
a Dirichlet process mixture model. For inference, Gibbs sampling is employed
where only a small number of the infinite states are occupied in sampling, leading
to a clustering solution where the number of states in the latent variables is
automatically determined. Models with a finite number of states have been
studied as stochastic block models [28].

Since the dependency structure in the ground Bayesian network is local, one
might get the impression that only local information influences prediction. This
is not true, since latent representations are shared, and in the ground Bayesian
network, the latter are parents to the random network variables Xk,(i,j). Thus,
common children with evidence lead to interactions between the parent latent
variables and information can propagate in the network of latent variables.

The IHRM has a number of key advantages. First, no structural learning
is required, since the directed arcs in the ground Bayesian network are directly
given by the structure of the triple graph. Second, the IHRM model can be
thought of as an infinite relational mixture model, realizing hierarchical Bayesian
modeling. Third, the mixture model can be used for a cluster analysis providing
insight into the relational domain.

The IHRM has been applied to social networks, recommender systems, for
gene function prediction and to develop medical recommender systems. The
IHRM was the first relational model applied to trust learning [31].

In [1] the IHRM is generalized to a mixed-membership stochastic block
model, where entities can belong to several classes.

7.5.2 RESCAL: A Latent Factor Model

The RESCAL model was introduced in [26] and follows a similar dependency
structure as the IHRM as shown in Figure 5. The main differences are that, first,
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Figure 5: The architecture of RESCAL and the IHRM. In the bottom layer
(input), the index units for subject s = i and object o = j are activated (one
hot encoding). A is a weight matrix. The second layer calculates the latent
representations ai and aj . The following layer forms component-wise prod-
ucts. The output layer then calculates f(i, j, k) =

∑
r,q a(i, r)a(j, q)g(k, r, q) for

predicate p = k. For RESCAL, P (Xk(i,j)|i, j) = sig(f(i, j, k)). In the IHRM,
we identify P (r|i) = a(i, r), P (q|j) = a(j, q), P (Xk(i,j)|r, q) = g(k, r, q), and
P (Xk(i,j)|i, j) = f(i, j, k). For the IHRM, the factors must be nonnegative and
properly normalized. R is the number of latent dimension and K is the number
of relations.
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the latent variables do not describe entity classes but are latent entity factors
and that, second, there are no nonnegativity or normalization constraints on
the factors. The probability of a triple is calculated with

f(i, j, k) =
∑
r,q

a(i, r)a(j, q)g(k, r, q) (2)

as
P (Xk(i,j)|i, j) = sig (f(i, j, k))

where sig(x) = 1/(1 + exp−x).
As in the IHRM, factors are unique to entities, and this leads to interactions

between the factors in the ground Bayesian network, enabling the propagation
of information in the network of latent factors. The relation-specific matrix
GR = g(k, :, :) encodes the factor interactions for a specific relation and its
asymmetry permits the representation of directed relationships.

The calculation of the latent factors is based on the factorization of a multi-
relational adjacency tensor where two modes represent the entities in the domain
and the third mode represents the relation type (Figure 6). With a closed-world
assumption and a squared error cost function, efficient alternating least squares
(ALS) algorithm can be used; for local closed-world assumptions and open world
assumptions, stochastic gradient descent is being used.

The relational learning capabilities of the RESCAL model have been demon-
strated on classification tasks and entity resolution tasks, i.e., the mapping of
entities between knowledge bases. One of the great advantages of the RESCAL
model is its scalability: RESCAL has been applied to the YAGO ontology [35]
with several million entities and 40 relation types [27]! The YAGO ontology,
closely related to DBpedia [2] and the Google Knowledge Graph [33], contains
formalized knowledge from Wikipedia and other sources.

RESCAL is part of a tradition on relation prediction using factorization
of matrices and tensors. [42] describes a Gaussian process-based approach for
predicting a single relation type, which has been generalized to a multi-relational
setting in [40].

A number of variations and extensions exist. The SUNS approach [39] is
based on a Tucker1 decomposition of the adjacency tensor, which can be com-
puted by a singular value decomposition (SVD). The Neural Tensor Network
[34] combines several tensor decompositions. Approaches with a smaller mem-
ory footprint are TransE [3] and HolE [25]. The multiway neural network in
the Knowledge Vault project [5] combines the strengths of latent factor models
and neural networks and was successfully used in semi-automatic completion
of knowledge graphs. [24] is a recent review on the application of relational
learning to knowledge graphs.

8 Key Applications

Typical applications of relational models are in social networks analysis, knowl-
edge graphs, bioinformatics, recommendation systems, natural language pro-
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Figure 6: In RESCAL, Equation 2 describes a tensor decomposition of the tensor
F = f(:, :, :) into the factor matrix A = a(:, :) and core tensor G = g(:, :, :). In the
multi-relational adjacency tensor on the left, two modes represent the entities
in the domain and the third mode represents the relation type. The i-th row of
the matrix A contains the factors of the i-th entity. GR is a slice in the G-tensor
and encodes the relation-type specific factor interactions. The factorization can
be interpreted as a constrained Tucker2 decomposition.

cessing, medical decision support, and Linked Open Data.

9 Future Directions

As a number of publications have shown, best results can be achieved by commit-
tee solutions integrating factorization approaches with user-defined or learned
rule patterns [23, 5]. The most interesting application in recent years was in
projects involving large knowledge graphs, where performance and scalability
could clearly be demonstrated [5, 24]. The application of relational learning to
sequential data and time series opens up new application areas, for example, in
clinical decision support and sensor networks [7, 8]. [38] studies the relevance
of relational learning to cognitive brain functions.
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