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Abstract The traditional means of extracting information from the Web are keyword-
based search and browsing. The Semantic Web adds structured information (i.e.,
semantic annotations and references) supporting both activities. One of the most
interesting recent developments is Linked Open Data (LOD) where information is
presented in the form of facts —often originating from published domain-specific
databases— that can be accessed both by a human and a machine via specific query
endpoints. In this chapter we argue that machine learning provides a new way to
query Web data, in particular LOD, by analyzing and exploiting statistical regulari-
ties. We discuss challenges when applying machine learning to the Web and discuss
the particular learning approaches we have been pursuing in THESEUS. We dis-
cuss a number of applications, where the Web is queried via machine learning and
describe several extensions to our approaches.

1 Introduction

The traditional means of extracting information from the Web are keyword-based
search and browsing. In search, the user enters query terms and, if lucky, can read
off the required information from the returned pages. In browsing, the user fol-
lows hyperlinks to gain deeper information on an issue. The Semantic Web adds
structured information (i.e., semantic annotations and references) supporting both
keyword-based search and browsing. One of the most interesting recent develop-
ments here is Linked Open Data (LOD) [3] where information is presented in form
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of facts —often originating from published domain-specific databases— that can be
accessed both by a human and a machine via specific query endpoints. Thus, one can
query for the “10 largest German companies whose CEOs were born in the US” or
a list of “genes associated with a given disease”. LOD does not just reference infor-
mation, it represents information in form of simple subject-predicate-object triples.
With this novel representation of information, new opportunities for accessing infor-
mation emerge that explore and exploit regularities in the represented data. In recent
years mostly deterministic regularities, which can be formulated as logical expres-
sions, have been explored. Thus, deductive reasoning might conclude that an author
born in Landshut would also be recognized as an author born in Bavaria. Deter-
ministic regularities originate, for example, from natural laws (e.g., law of gravity),
from human definitions and conventions (e.g.,“dogs are mammals”), from design
(e.g.,“the car only starts when the key is turned”), and from human imposed laws
and regulations (e.g.,“work begins at 9 am”). In addition to deterministic or close-to-
deterministic regularities, the world also contains statistical regularities. One might
debate if the world is inherently deterministic or probabilistic, but at the abstract
level of representation, which is typically available for decision making, the world
certainly appears uncertain.1 Young males typically like action movies but whether
young Jack will buy “Iron Man 2” might depend more on the availability of illegal
downloads, the opinions of his peers and Jack’s financial situation. A system recom-
mending a movie to Jack must work with the available information, maybe a list of
movies that Jack has bought before, and can only make statistical recommendations.
Similarly, the interactions between genes and diseases might or might not be inher-
ently deterministic in nature; at the level of current knowledge the relationships are
only partially known.

Machine learning is a basis for extracting statistical patterns and in this chapter
we will describe our work on statistical machine learning for the Web as pursued in
THESEUS and in the EU FP7 project LarKC [5]. In this work we have proposed that
statistical patterns extracted from the Web via machine learning should be integrated
into queries [16]. Thus a search for diseases associated with a particular gene can be
done in three ways: First, one can study the documents returned via keyword-based
search. Second, one can obtain a list of diseases known to be, or suspected to be,
associated via a structured query on LOD. Finally, one can use machine learning to
extract diseases likely to be related to the gene based on disease and gene attributes
and established gene-disease patterns. Note that machine learning depends on re-
peatable statistical patterns: thus machine learning cannot help to give you the first
name of the wife of the US-president (a one-to-one relationship), but it can predict
the probability of re-election, his income, the party of the vice president and the
number of expected grand children.

In the next section we discuss some of the challenges encountered when applying
machine learning to LOD. In Section 3 we motivate and describe our particular
approaches. Section 4 describes a number of applications. One of them is BOTTARI,

1 Although the world might be governed by scientific laws and logical constraints in general, at the
level of abstraction that we and our applications have to function, the world partially appears to be
governed by probabilities and statistical patterns.
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the winning entry in the ISWC 2011 Semantic Web Challenge.2 In Section 5 we
describe extensions and future work. Section 6 contains our conclusions.

2 Challenges for Machine Learning

Machine learning is not only of interest to the Web, the Web also poses interest-
ing research challenges to machine learning. First of all, Web data typically does
not represent an i.i.d. (independent and identically distributed) statistical sample of
some sort but might have been collected and published for any reason, often not
following a particular systematics. For similar reasons, the data, in general, is in-
complete, e.g., from the fact that a social network lists no friends of Jack one cannot
conclude that Jack does not have any friends. In general, negation is very rare on
Web data, thus one might find information that two persons are friends but rarely that
two persons are not friends. This needs to be considered to avoid biased predictions.
Another interesting property of Web data is that relationships between entities are
often more informative than entity attributes, an effect exploited in collective learn-
ing: It might be easier to predict Jane’s wealth from the wealth of her friends than
from known properties of Jane. As in this example, nonlocal aggregated information
is often informative for a prediction task and machine learning needs to take this into
account. Sometimes, as in the examples mentioned in the introduction, relationships
themselves are of interest, e.g., item preferences, friendships, relationships between
genes and diseases. Since the number of potential relationships can be very large,
the output of a learning system will often be a ranked list of candidate relationships,
e.g., a ranked list of recommended items, instead of a single answer. As a partic-
ular feature of Web data, there is often textual information available that describes
entities (e.g., Wikipedia articles), events (e.g., news stories) or topics (e.g., blogs)
and this information can often be very useful for the machine learning task. Finally,
a machine learning system has to be able to handle the large scale of the Web, its
dynamical nature and its noisiness.

3 Predicting Facts with Factorization

In LOD, basic facts are represented as subject-predicate-object triples (s, p, o). In our
work, we have been addressing the challenge of using machine learning to predict
the likelihood of triples that are not explicitly given in the data. Since triples can
describe class membership (Jane, rdf:type, Student), entity attributes (Jane, income,
High) and relationships (Jane, likes, Jack), triple prediction is a quite general task.
Equivalently, we might look at the LOD graph where the nodes represent the entities
and a directed link represents an (s,p,o) triple, labeled by the predicate. In this view

2 http://challenge.semanticWeb.org/2011/
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the learning tasks consists of predicting the existence of labeled links not explicitly
given in the graph.

Some of the most powerful learning approaches, effective for predicting links
in a graph with properties as discussed in the last section, rely on a description of
an entity in a latent space. What this means is that each entity is described by a
number of features which might or might not have a real world meaning and which
are abstracted from the information describing the entity. One example would be a
cluster assignment, e.g., a student might belong to the cluster of “good students”.
Another abstract representation can be obtained via factorization approaches. Here
an entity is described by degrees of agreement with certain factors. As an example,
a student might agree with the factor “good students” with some degree, and with
the factor “popular students” with some other degree. It turns out that latent fac-
tors are not simply helpful for understanding a domain but are also very effective
in link prediction. In a factorization approach, the likelihood of the existence of a
link is determined by the scalar product between the latent factors describing the
associated entities. 3 [16, 6] describe the SUNS framework, which is the particular
factorization approach developed in our work.

Factorization approaches provide high-quality predictions and are robust to the
challenges described in Section 2. In particular they are highly scalable by exploiting
the sparsity in the data and are suitable for making use of relationship information
and for predicting relationships. Extensions towards deductive reasoning, for the
inclusion of textual information, and for addressing the dynamical nature of data
will be discussed in Section 5

4 Querying the Web with Machine Learning

In this section we describe some applications of machine learning to LOD. For more
details, see the respective references.

3 In particular, the probability that a relationship between two entities exists given the knowledge
base KB is estimated as

P̂((Jane, likes,Jack)|KB) =
L

∑
i=1

f Jane
i f likes,Jack

i = f JaneT
f likes,Jack

where ( f Jane
1 , f Jane

2 , . . . , f Jane
L )T is the vector of L factors describing Jane, and

( f likes,Jack
1 , f likes,Jack

2 , . . . , f likes,Jack
L )T are the L factors describing Jack in his role as an ob-

ject of the predicate “likes”. (.)T denotes the transposed of a vector. There are a number of
approaches for calculating the factors. In our work in the SUNS framework [16, 6], we have
employed regularized factorization of the associated data matrices. In our 3-way tensor approach
RESCAL [14], we estimate

P̂((Jane, likes,Jack)|KB) = f JaneT
Rlikes f Jack.

Each entity has a unique latent representation and the relation-type specific interaction is modeled
by the L×L matrix Rlikes.
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4.1 Querying Social Networks

The experiments presented in this section are based on friend-of-a-friend (FOAF)
data, which is part of LOD. The purpose of the FOAF project [4] is to create a Web
of machine-readable pages describing people, their relationships, people’s activities
and their interests using W3C’s RDF technology. The population is defined by the
32,062 persons in our FOAF subset. 14,425 features are formed by potential friends
in the data. Furthermore, 781 attributes refer to general information about age, loca-
tion, number of blog posts, attended school, online chat accounts and interests. The
task is to predict potential friends of a person, i.e., knows statements, and the per-
formance is evaluated using a test set of known friendships. In a comparison with
competing methods, the factorization approach gave best performance in predict-
ing new friendships [6]. The following SPARQL expression illustrates a query for
LiveJournal4 users who live in Munich and might want to be Trelena’s friend:

PREFIX ya: http://blogs.yandex.ru/schema/foaf/
PREFIX foaf: http://xmlns.com/foaf/0.1/
PREFIX dc: http://purl.org/dc/elements/1.1/
SELECT DISTINCT ?person
WHERE {

?person ya:located ?city .
?person foaf:knows <http://trelana.livejournal.com/trelana>
WITH PROB ?prob .
FILTER REGEX(?city, Munich ) .

}
ORDER BY DESC(?prob)

Listing 1 The query includes the predicted knows triples for Trelena and rates them by predicted
probability.

The query contains an extended clause WITH PROB that returns the estimated prob-
abilities of a friendship relationship for Trelena, modeled by the knows relation.
Figure 1 presents a typical query response.

4.2 Querying Linked Life Data

Life science data forms a significant part of the LOD cloud. To a large extent, this
data has been extracted from well-maintained databases such that this portion of
LOD is of high quality. We applied our approach to an important problem in the life
sciences, i.e., the prediction of gene-disease relationships, and demonstrated that we
obtained competitive results to state-of-the-art solutions.

Disease genes are those genes involved in the causation of, or associated with,
a particular disease. At this stage, more than 2500 disease genes have been discov-
ered. Unfortunately, the relationship between genes and diseases is far from simple

4 http://www.livejournal.com/
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Fig. 1 Query: Who wants to be Trelena’s friend. Her actual friends are predicted first with confi-
dence values one. Then, interestingly, it is predicted that she should be her own friend, followed
by a ranked list of predicted friends.

since most diseases are polygenic and exhibit different clinical phenotypes. High-
throughput genome-wide studies like linkage analysis and gene expression profiling
typically result in hundreds of potential candidate genes and it is still a challenge
to identify the disease genes among them. One reason is that genes can often per-
form several functions and a mutational analysis of a particular gene reveals dozens
of mutation sites that lead to different phenotype associations to diseases like can-
cer [12]. Analysis is further complicated when environmental and physiological fac-
tors come into play as well as by exogenous agents such as viruses and bacteria.

Despite this complexity, it is quite important to be able to rank genes in terms of
their predicted relevance for a given disease. Such a ranking cannot only be a valu-
able tool for researchers but also has applications in medical diagnosis, prognosis,
and a personalized treatment of diseases.

Gene properties differentiate disease genes and have been used as the bases for
computational tools to prioritize disease gene candidates. All of the current ap-
proaches are based on the integration of different properties such as: gene func-
tion (disease genes are expected to share common functional properties), pathways
(disease genes are most likely to share common pathways), gene expression (dis-
ease genes are expected to be co-expressed), gene regulation (genes within the same
gene-regulation network are expected to affect similar diseases), sequence proper-
ties, and protein interaction (disease genes are often highly connected with other
genes from the same disease). These attributes have been used in our approach as
well. In addition, our approach exploits gene-disease interaction patterns. The so-
lution was integrated into the THESEUS MEDICO use case. In 7 out of 12 experi-
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ments the machine learning approach using the SUNS framework was superior to a
leading competing approach based on a fuzzy-based similarity measure. See [8] for
a detailed description of experimental results.

4.3 BOTTARI: Personalized and Location-based
Recommendations

BOTTARI is an augmented reality application that permits the personalized and
localized recommendation of points of interests (POIs) based on the temporally
weighted opinions of the community. Opinions on POIs (here: restaurants) were
extracted from Twitter5 microposts with natural language processing and a back-
ground ontology. The task of the machine learning module was to rank different
restaurants based on the extracted information and based on individual preference
profiles of users. A successful evaluation of BOTTARI was carried out using a three
year collection of tweets of about 319 restaurants located in the 2 km2 district of
Insadong, a popular tourist area of the South Korean city of Seoul (Figure 2).

The technological basis of BOTTARI is the highly scalable LarKC platform for
the rapid prototyping and development of Semantic Web applications. BOTTARI is
the winner of the 9th edition of the Semantic Web Challenge, co-located with the
2011 International Semantic Web Conference. BOTTARI is currently field tested in
Korea by Saltlux [2].

4.4 More Examples

DBpedia [1] is part of LOD and contains structured information extracted from
Wikipedia. At the time of the experiment, it describes more than 3.4 million con-
cepts, including, e.g., 312,000 persons, 413,000 places and 94,000 music albums,
DBpedia does not only serve as a “nucleus for the Web of data”, but also holds great
potential to be used in conjunction with machine learning approaches. DBpedia al-
ready provides a great value and is useful for accessing facts by, e.g., answering
queries for the famous citizens and the most spectacular sights of a large number
of cities. DBpedia data is increasingly getting interesting for machine learning pur-
poses as new and richer relationships are added. In our experiments, we used a
population consisting of all members of the German Bundestag to evaluate our ap-
proach [7]. The task was to predict the party membership based on age, state of
birth, and keywords from the Wikipedia pages of the Bundestag members as input
information. Most informative were the latter two sources, in particular also the state
information, which can be explained by the peculiarities of German politics. Over-
all, we obtained a system that achieved high accuracy. Although there might not be

5 https://twitter.com/
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Fig. 2 A picture of Insadong district: the density of restaurants is very high.

any economic value in this experiment, it provides first insight into how DBpedia
can be queried in the future using machine learning.

The SUNS approach was used in a prototype for analyzing the usage service
patterns and for recommending services in a Web service platform as part of the
THESEUS TEXO use case and in a prototype application for airline claim manage-
ments, presented at the CeBIT 2011.

5 Extensions

The factorization approaches briefly described in Section 3 are surprisingly general
and powerful. In this section we describe some important extensions. As mentioned,
we use machine learning to predict triples, resp. labeled links, based on statistical
patterns in the data whereas deductive reasoning derives triples using facts and log-
ical expressions, such as rules. Machine learning can easily benefit from deductive
reasoning by including the derived triples in training and prediction.

Deductive reasoning can be helpful for aggregation as well. In many applications,
information that is not local might become relevant for machine learning. As an
example, in the DBpedia experiment party membership is more easily predicted
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from a politician’s state of birth than from a politician’s city of birth, however only
the latter information is explicitly stated in DBpedia. The state can be derived by
using geo-reasoning from the city prior to learning. Materialization of knowledge by
making implicit knowledge explicit via computing the inductive closure is a highly
scalable approach to reasoning [13].

Important sources of information are often documents describing the involved
entities or relations between entities as shown in the DBpedia experiments in Sec-
tion 4.4 and textual information can support triple prediction in general. The combi-
nation of information extraction from text, deductive reasoning and machine learn-
ing to improve triple prediction is described in a probabilistic extension of the fac-
torization approach in [9, 11].

Another interesting aspect concerns sequence and temporal information. Often a
series like “Star Wars” will be watched in order. Similarly, medical procedures are
given in a sensible sequential order. In [17] an extension to the factorization model
is described that can model both sequential information and absolute time.

In the SUNS approach, triples were mapped to one or several matrices and the
latent factors were calculated via a factorization of these matrices. It might be argued
that a more natural representation for LOD’s triple structure is given by a three-way
tensor. Whereas in a matrix an element is addressed by two indices, in a 3-way
tensor an entry is addressed by three indices. Reference [14] describes an approach
where all entities of a domain are mapped to two modes of a 3-way tensor and
the predicates are mapped to the third mode. In this tensor, an element equal to
one indicates that the corresponding (s, p, o) triple is known to be true. For this
representation of triples, a particular three-way factorization was developed which
permits to exploit nonlocal information without explicit aggregation by collective
learning. Furthermore, in [15] this approach was applied to the sizable YAGO-2
ontology, demonstrating its scalability. In [10] an additive model is described that
attempts to combine the simplicity of the SUNS approach with some of the powerful
features of a tensor model.

6 Conclusions

In this chapter we have argued that machine learning might become a third impor-
tant way to access Web information, in addition to keyword-based search and struc-
tured querying. We have provided examples that illustrate for what kind of queries
machine learning might be effective. We have discussed the machine learning ap-
proaches pursued in the work in THESEUS and LarKC, which are based on the
factorization of matrices and tensors. We expect that machine learning researchers
will increasingly consider the Web as a great data source for learning applications. In
particular the joint exploitation of different knowledge sources like Web documents,
Wikipedia, published databases as part of LOD, and other background information
poses new interesting research challenges.
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