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Abstract

Building complex automation solutions, common to process industries
and building automation, requires the selection of components early on in
the engineering process. Typically, recommender systems guide the user
in the selection of appropriate components and, in doing so, take into
account various levels of context information. Many popular shopping
basket recommender systems are based on collaborative filtering. While
generating personalized recommendations, these methods rely solely on
observed user behavior and are usually context-free. Moreover, their lim-
ited expressiveness makes them less valuable when used for setting up com-
plex engineering solutions. Product configurators based on deterministic,
handcrafted rules may better tackle these use cases. However, besides be-
ing rather static and inflexible, such systems are laborious to develop and
require domain expertise. In this work, we study various approaches to
generate recommendations when building complex engineering solutions.
Our aim is to exploit statistical patterns in the data that contain a lot of
predictive power and are considerably more flexible than strict, determin-
istic rules. To achieve this, we propose a generic recommendation method
for complex, industrial solutions that incorporates both past user behav-
ior and semantic information in a joint knowledge base. This results in a
graph-structured, multi-relational data description – commonly referred
to as a knowledge graph. In this setting, predicting user preference to-
wards an item corresponds to predicting an edge in this graph. Despite
its simplicity concerning data preparation and maintenance, our recom-
mender system proves to be powerful, as shown in extensive experiments
with real-world data where our model outperforms several state-of-the-
art methods. Furthermore, once our model is trained, recommending new
items can be performed efficiently. This ensures that our method can
operate in real time when assisting users in configuring new solutions.

∗These authors contributed equally to this work
Contact: marcel.hildebrandt@siemens.com
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1 Introduction

Industrial automation systems consist of a wide variety of components – in
general, a combination of mechanical, hydraulic, and electric devices – described
in a plan. For instance, a plan for a control cabinet might specify the model of
the controller, the number of digital input ports, the number of sensors to be
connected, and so on. Based on the plan, the user incrementally selects products
which in combination fulfill all required functionalities. The goal of our solution
is to support the user in this process by reordering product lists, such that
products which most likely correspond to the user needs and preferences are on
top.

A good ordering of the products may depend on the properties of the com-
ponents, such as the line voltage common in the country (110V in US, 230V in
Europe), marine certification, or whether or not the customer has a preference
towards premium or budget products. While some of this information is explic-
itly modeled as product features – exploited by means of a knowledge graph in
our work – a big part of it is implicit information. In our system, the current
partial solution, which consists of the already selected components, acts as a
source of information about the actual requirements of the user.

The main advantage of our proposed approach, for both the end customer
and the sales team, is the reduction of time required to select the right product.
Moreover, the system guides the customer towards a typical, and therefore most
likely useful, combination of products. In addition, the learned information
allows vendors to optimize the portfolio as the learned knowledge about item
combinations makes implicit interdependencies transparent.

The problem of finding the right products to fulfill the costumer needs can
be addressed from two directions. The first direction is towards general rec-
ommender systems that typically find products based on customer preferences.
However, in our domain, the customer preferences are not fixed, but rather de-
pend on implicit requirements of the solution currently being built. The second
direction focuses on configuration systems which find a combination of prod-
ucts that fulfill all requirements specified in the plan. The practical use of the
latter, however, is subject to the precise specification of the requirements. This
is rarely the case, especially in industry-based applications such as the one we
are dealing with. The use case addressed in this paper concerns an internal
R&D project at Siemens. One of the sources of data for this project is the
Siemens product database,1 which presents a diversity-rich environment – offer-
ing services related to 135,000 products and systems with more than 30 million
variants. Such massive amounts of data make it increasingly difficult to specify
all the requirements explicitly and directly add to the computational overhead
of the recommender system. Nevertheless, it is crucial to deliver instantaneous
results without compromising quality in industrial use cases like ours.

Since our method is intended for real-world usage, it needs to satisfy the
following constraints:

1https://mall.industry.siemens.com
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• Reasonable effort to set up the system in terms of data preparation, main-
tenance, and integration of new data. The last point is particularly im-
portant when new products are being launched.

• Computing recommendations efficiently is crucial because the system must
work in real time when the user is configuring new solutions.

• The method must be able to make recommendations for items without or
with only little historical customer data.

In this paper, we present RESCOM. The key idea is to employ a modified version
of RESCAL [16] for the recommendation task. We not only show that RESCOM
outperforms all baseline methods but also demonstrate that we achieved all of
the goals stated above.

This paper is organized into six sections. Section 2 introduces the notation
and reviews some of the basic principles of knowledge graphs. In Section 3, we
proceed by investigating methods that are traditionally used for recommenda-
tion tasks and outline the challenges arising from the real-world nature of our
data. Furthermore, we review methods that are commonly employed for the
link prediction task on knowledge graphs. In Section 4, we present RESCOM,
a generic recommendation method for complex, industrial solutions, that incor-
porates both past user behavior and semantic information in a joint knowledge
base. The results of our extensive real-world experiments are presented in Sec-
tion 5. In particular, we show that RESCOM outperforms several state-of-the-
art methods in standard measures. Finally, Section 6 concludes our work by
discussing the results and proposing some directions for future research.

2 Notation and Background

Before proceeding, we first define the mathematical notation that we use
throughout this work and provide the necessary background on knowledge
graphs.

Scalars are given by lower case letters (x ∈ R), column vectors by bold
lower case letters (x ∈ Rn), and matrices by upper case letters (X ∈ Rn1×n2).
Then Xi,: ∈ Rn2 and X:,j ∈ Rn1 denote the i-th row and j-th column of X,
respectively. Third-order tensors are given by bold upper case letters (X ∈
Rn1×n2×n3). Further, slices of a tensor (i.e., two-dimensional sections obtained
by fixing one index) are denoted by Xi,:,: ∈ Rn2×n3 , X:,j,: ∈ Rn1×n3 , and
X:,:,k ∈ Rn1×n2 , respectively.

In Section 4, we propose a recommender system that is based on constructing
a knowledge base that contains not only historical data about configured solu-
tions, but also descriptive features of the items available in the marketplace.
This leads to a graph-structured, multi-relational data description. Loosely
speaking, such kind of data is commonly referred to as a knowledge graph. The
basic idea is to represent all entities under consideration as vertices in a graph
and link those vertices that interact with each other via typed, directed edges.
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More formally, let E = {e1, e2, . . . , enE
} and R = {r1, r2, . . . , rnR

} denote
the set of entities and the set of relations under consideration, respectively. In
our setting, entities correspond to either solutions, items, or technical attributes
of items. Relations specify the interconnectedness of entities. Pertaining to our
use case, the contains relation is of particular interest. It links solutions and
items by indicating which items were configured in each solution. The remaining
relations connect items to their technical attributes. In this work, a knowledge
graph is defined as a collection of triples S ⊂ E ×R×E which are interpreted as
known facts. Each member of S is of the form (ei, rk, ej), where ei is commonly
referred to as subject, rk as predicate, and ej as object. Figure 1 depicts an
example of a knowledge graph in the context of an industrial purchasing system
and the kinds of entities and relations we consider in this paper.
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Figure 1: A knowledge graph in the context of an industrial purchasing system. The
nodes correspond either to solutions, items, or technical properties of items. The rela-
tionships between the different entities are determined by edges that come in multiple
types.

A knowledge graph has a natural representation in terms of an adjacency
tensor X ∈ RnE×nE×nR with entries

Xi,j,k =

{
1 , if the triple (ei, rk, ej) ∈ S ,
0 , otherwise .

(1)

Usually, a positive entry in the adjacency tensor is interpreted as a known
fact. Under the so-called closed-world assumption, the absence of a triple in-
dicates a false relationship. Alternatively, one can make the open world as-
sumption which states that a zero entry is not interpreted as false but rather
as unknown. The approach that we present in Section 4 is based on the local
closed-world assumption. Thereby, a knowledge graph is assumed to be only
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locally complete in the sense that (ei, rk, ej) /∈ S is assumed to be false if and
only if there exists an entity el ∈ E such that (ei, rk, el) ∈ S. Otherwise, the
triple is interpreted as unknown.

3 Related Methods

Here we cover both well-established general recommender systems and knowl-
edge graph models. Given that knowledge graphs offer a natural representation
for semantically structured information (see Figure 1), they are closely related
to the domain under consideration.

3.1 General Recommender Systems

Traditional approaches to recommender systems are based on collaborative fil-
tering, where the problem is formulated as that of matrix completion pertaining
to the user-item matrix. The winning solution to the Netflix challenge [2] and
Amazon’s item-to-item collaborative filtering method [12] are two prominent
examples. A general class of collaborative filtering methods is based on factor-
izing the user-item matrix X ∈ RnU×nI , where nU and nI correspond to the
number of user and items, respectively. Further, the entries of X are only well-
defined on an index set I that correspond to observed user-item interactions.
The underlying optimization problem consists of factorizing X into the product
of two low-dimensional matrices, i.e.

min
U,V

∑
(i,j)∈I

(Xi,j − Ui,:V
T
j,:)

2 + λ(||U ||2F + ||V ||2F ) , (2)

where || · ||F denotes the Frobenius norm. Moreover, the factor matrices U ∈
RnU×d and V ∈ RnI×d, where d denotes the number of latent factors, represent
the strength of the associations between the latent features of users and items.
So the product UV T essentially performs a sum of the features weighted by the
corresponding coefficients. Imposing elementwise non-negativity constraints on
the factor matrices U and V in Equation (2) leads to the non-negative matrix
factorization (NMF). Similar to most factorization-based approaches, NMF is
most effective when there is a high availability of user behavior information.

However, sparsity, which stems from the fact that users typically will have
rated only few of the items, constitutes a challenge to collaborative filtering
methods. Further, collaborative filtering recommender systems are also prone
to the cold start issue i.e., the problem of dealing with new users or novel items,
while suffering from a lack of preferences or content information. This is caused
by the context information not being taken into account in collaborative filtering
approaches.

Although context-aware recommender systems (CARS) adapt recommenda-
tions to the specific contextual situations of users, they fail to address the issue
with user/product cold start. Additionally, as described in [1], most of the exist-
ing work in this area require all of the context information to be known a priori
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and to be modeled explicitly. This is in contrast to our use case of industry
automation, where a majority of the context information is rather implicit.

While content-based filtering does consider context, recommendations are
primarily generated based on a comparison between the content of items and
the user profile. This causes only those items to be recommended that are
similar to the items already rated by the user, resulting in a lack of diversity and
novelty. While discussing the shortcomings of content-based systems, [13] also
states that this problem of over-specialization limits the range of applications
where the method could be useful.

Contrary to pure approaches, hybrid recommender systems are based on
combining multiple models in one of the several possible ways described in
[6]. While weighted hybrid recommenders (e.g., [7] and [18]) manually assign
weights to the collaborative and content-based recommendation components,
switching hybrid recommender systems such as [3] choose among the different
recommendation components based on some criteria. Further, there also exist
feature-based techniques where a set of features is first computed and subse-
quently fed into the recommendation algorithm. Although hybrid methods can
provide more accurate recommendations than any method on its own, they are
still required to strike the right balance between collaborative approaches and
knowledge-based methods. The strength of our method lies in its ability to
automatically learn this balance without heavy reliance on either deterministic
rules or user behavior.

Together with the multitude of practical applications trying to help users
cope with information overload, the increased development of new approaches
to recommender systems – including this work – may also be attributed to
tackling the existing challenges discussed in this section.

3.2 Knowledge Graph Methods

Most knowledge graphs that are currently in practical use are far from being
complete in the sense that they are missing many true facts about the entities at
hand. Therefore, one of the most important machine learning tasks related to
knowledge graphs consists of predicting new links (i.e., facts) given the remain-
ing knowledge graph. This problem is sometimes also referred to as knowledge
graph completion. In our setting, the recommendation task is equivalent to pre-
dicting new links of a certain type based on the other items that are currently
configured.

Many link prediction methods belong to the class of latent feature models.
These methods approach the knowledge graph completion task by modeling the
score of a candidate triple as a function of learned latent representations of the
involved entities and relations. The method that we propose in this paper is
based on RESCAL [16]. RESCAL constitutes a collective tensor factorization
model that scores triples based on a set of bilinear forms. A more detailed
description of RESCAL along with our modifications to make it applicable in
our setting is presented in the next section.

Another popular class of methods against which we compare our approach

6



is called translational methods. Here, the key idea is to find embeddings for the
entities in a low-dimensional vector space and model their relatedness through
translations via relation-specific vectors. TransE, introduced by [4], was the
first among this class of methods. It aims at learning representations such that
ei + rk ≈ ej if (ei, rk, ej) ∈ S, where the bold letters refer to the vector space
embeddings of the corresponding entities and relations.

After realizing that TransE is quite limited when dealing with multi-
cardinality relations, several other methods that extend the idea of TransE and
add more expressiveness have been developed: TransH [20], TransR [11], and
TransD [9]. All these methods learn linear mappings specific to the different
relations and then map the embeddings of entities into relation-specific vector
spaces where they again apply TransE.

One of the ways to apply this translation-based approach to recommender
systems was introduced in [8] where personalized recommendations are gener-
ated by capturing long-term dynamics of users. However, the focus is geared
more towards sequential prediction i.e., predicting the next item for a user,
knowing the item previously configured in the solution. While it does not con-
sider possible interdependencies among all different items previously configured
in the solution, it also does not deal with as much semantic information of the
items, as this work.

4 Our Method

In analogy to existing collaborative filtering approaches which are based on
matrix factorizations, RESCOM relies on exploiting the sparsity pattern of X
by finding a low-rank approximation via tensor factorization.

Our method, RESCOM, is based on a modified version of RESCAL [16]
which is a three-way-tensor factorization that has shown excellent results in
various relational learning tasks (e.g., in [17]). The key idea is to approximate
the adjacency tensor X by a bilinear product of the factor matrix E ∈ Rd×nE

and a core tensor R ∈ Rd×d×nR , where d corresponds to the number of latent
dimensions. More concretely, we impose

X:,:,r ≈ ETR:,:,rE ,∀r = 1, 2, . . . , nR . (3)

Thus, after fitting the model, the columns of E denoted by (ei)i=1,2,...,nE
⊂ Rd

contain latent representations of the entities in E . Similarly, each frontal slice
of R contains the corresponding latent representations of the different relations
in R. These embeddings preserve local proximities of entities in the sense that
if a large proportion of the neighborhood of two entities overlaps, their latent
representations are also similar. Hence, we obtain that if items are similar from
a technical point of view or if they are often configured within the same solution,
they will have similar latent representations.

In its original form, the parameters of RESCAL are obtained by minimiz-
ing the squared distance between the observed and the predicted entries of X.
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Hence, the objective function is given by

loss(X, E,R) =

nR∑
r=1

||X:,:,r − ETR:,:,rE||2F . (4)

While logistic extensions of RESCAL that model the entries of X explicitly as
Bernoulli random variables were proposed (see [15]), we stick to the formula-
tion given by Equation (4). This is mainly due to the fact that when using
the squared error loss, recommending new items for partial solutions can be
performed efficiently via an orthogonal projection into the latent feature space
(see below for more details). We also ran experiments with DistMult [21], which
can be obtained as a special case of RESCAL when the frontal slices of the core
tensor R are restricted to be diagonal. However, since this did not lead to a
better performance, we do not report the results in this work.

Usually Equation (4) is minimized via alternating least squares (ALS). How-
ever, the sparsity in our data (only about 6 · 10−6% of the entries of X are non-
zero) caused numerical instability when computing the least-squares projections
for ALS. In particular, we tested two different implementations of RESCAL2

that are based on ALS and found that they were both infeasible in our setting.
Therefore, we implemented our own version of RESCAL that aims to minimize
a modified loss function. In order to obtain an approximate version of Equation
(4) that does not require to take all the entries of X into account, we sample
negative examples from the set of unknown triples S′ ⊂ E × R × E \ S. More
specifically, we employ the following loss function during training

loss(X, E,R) =
∑

(ei,rk,ej)∈S

(1− eTi R:,:,kej)
2 + (eTi R:,:,kẽ)2 , (5)

where ẽ corresponds to the latent representation of a randomly sampled entity
ẽ such that (ei, rk, ẽ) ∈ S′. Further, we impose the additional constraint that
ẽ appears as object in a known triple with respect to the k-th relation (i.e.,
there exists an entity e so that (e, rk, ẽ) ∈ S). This sampling procedure can
be interpreted as an implicit type constraint which teaches the algorithm to
discriminate between known triples on one side and unknown but plausible
(i.e., semantically correct) triples on the other side. Conceptually, our sampling
mechanism is related to the local closed-world assumption proposed in [10],
where the goal is to infer the domain and range of relations based on observed
triples. While [10] proposes a type-constrained ALS procedure, our training
process is based on generating negative samples and is carried out by minimizing
Equation (5) using different versions of stochastic gradient descent.

In the context of industrial automation, generating recommendations is most
relevant right at the time when new solutions are being configured, thus making
it necessary to tune the previously trained model to make predictions on the
new data. While being time consuming, re-training the model on the freshly

2https://github.com/mnick/rescal.py
https://github.com/nzhiltsov/Ext-RESCAL
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available partial solutions is possible. However, the need for immediate real-time
updates makes model re-building an infeasible option for the recommendation
task. Hence we propose to achieve this through the projection step. This is
a special case of the more general embedding mapping for tensor factorization
models proposed in [22]. To ease the notation, let EI ⊂ E with |EI | =: nEI

denote the collection of entities that correspond to configurable items.
We start by constructing a binary vector x ∈ RnEI , where a value of 1 at

the i-th position indicates that the corresponding item was part of the partial
solution. For the purpose of recommendations, we only consider the contains re-
lation which represents the information linking solutions to the items configured
in them. In order to ease the notation, let r1 denote the contains relation.

Then, we perform an orthogonal projection of this partial solution into latent
space guided by the following equation

P (x) =
(
R:,:,1EIE

T
I R

T
:,:,1

)−1
R:,:,1EIx , (6)

where EI ∈ Rd×nEI contains the latent representations of all items. Thus, we
have that a completion of x is given by

x̂ = P (x)
T
R:,:,1EI . (7)

The values of the entries of x̂ can be interpreted as scores indicating whether or
not the corresponding items are likely to be configured in the particular solution.
With this interpretation, the items may be reordered in decreasing order of their
scores and the ranking can then be used for recommendations.

Note that the matrix representation of the linear map P(·) can be precom-
puted and stored for later use. Thus the computational complexity of the whole
projection step is given by O(dNEI

). To the best of our knowledge, there is no
equivalent, simple procedure for the class of translational models. Hence, they
require re-training when a novel solution is set up by the user. This constitutes
a major limitation in their applicability to our use case.

5 Real-World Experimental Study

5.1 Data

The experiments have been conducted on real-world data collected from Siemens
internal projects. It can be roughly divided into two categories:

1. Historical solutions: This data contains (anonymized) information about
automation solutions that have been previously configured. Only consid-
ering this part of the data (as it is done by some of the traditional rec-
ommender systems) would result in recommending items that have been
configured together most frequently in the past.

2. Descriptive features of the items: These features may either specify the
type of an item (e.g., panel, controller) or a certain technical specification
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(e.g., line voltage, size). An example of an entry in this part of the dataset
would be a Siemens SIMATIC S7-1500 controller (with a unique identifier
6ES7515-2FM01-0AB0) being fit for fail-safe applications.

Some pre-processing steps have been applied before conducting our experiments.
These include:

1. Removing solutions that contain only one item.

2. Removing duplicate descriptive features that were named in different lan-
guages.

3. Removing descriptive features that have unreasonably long strings as pos-
sible values. In most cases, these are artifacts of an automatic documen-
tation processing procedure for legacy items.

4. Removing items with no known descriptive features or descriptive features
with just one possible value.

After applying these pre-processing steps, we obtained 426,710 facts about
25,473 solutions containing 3,003 different items that share 3,981 different tech-
nical features among themselves. Figure 2 illustrates the three-way adjacency
tensor obtained from the data: both rows and columns correspond to the enti-
ties (i.e., solutions, items, as well as all possible values of the descriptive features
of the items), while each slice corresponds to one of the relations (with the first
one being the contains relation).
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Figure 2: The three-way adjacency tensor obtained after data pre-processing

5.2 Implementation

We compared RESCOM to state-of-the-art methods, namely TransE, TransR,
TransD, and TransH, as well as NMF, considering its successful applica-
tion in popular recommender systems. For experimental consistency, we re-
implemented these methods within the same framework as our method, using
Python and TensorFlow. All experiments were conducted on a Linux machine
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and the models were trained/tested on NVIDIA Tesla K80 GPUs. Training
our model takes approximately 60 minutes for 50 epochs (∼100 batches) on one
GPU.

To further facilitate a fair evaluation, we generated the training (70%), vali-
dation (20%) and test (10%) sets once and used this fixed split in all experiments.
In each case, the best set of hyperparameters were chosen based on the highest
mean reciprocal rank on the validation set. The results are then reported for
the chosen parameters on the test set.

Having tried optimizers such as stochastic gradient descent, Adam, and
AdaGrad, we found that the Adam optimizer resulted in the best conver-
gence in our case. The dimensionality of the embeddings was tuned from the
range {10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100}. We also investigated the influ-
ence of the number of negative triples per positive training sample by choosing
among {1, 2, 3, 4, 5, 10, 20}. The regularization parameter was chosen among
{10−1, 10−2, 10−3, 10−4, 10−5, 10−6}. All experiments were executed for a max-
imum of 500 epochs, with a check for early stopping every 50 iterations.

5.3 Evaluation Scheme

The particular metrics used for the evaluation of recommender systems depend
greatly on the characteristics of the data set and the ultimate purpose of recom-
mendation. In the current setting, the goal is to evaluate the predictive accuracy
i.e., how well the recommender system can predict the likelihood of occurrence
of items in partial solutions, in the context of the already configured items.

For evaluation of the various translational models, we followed the ranking
procedure proposed by [5]. For each test triple (ei, rk, ej), the object is removed
and in turn replaced by each of the entities e from the set of entities E . Dissim-
ilarities of all those resulting triples (also referred to as corrupted triples) are
first computed by the models and then sorted in ascending order; the rank of
the correct entity is finally stored. Unlike [5], we do not repeat the procedure
by replacing the subject entity. This is in accordance with the recommendation
setting, where we are interested in obtaining a ranking for the items that only
appear as object nodes in the contains relation.

To evaluate non-negative matrix factorization (NMF) and our own method,
we employ a common setting where we construct an adjacency matrix of solu-
tions and configured items with missing entries. We then perform an inverse
transformation (in the case of NMF) or an orthogonal projection (for RESCOM
- see Equations (6) and (7)) to obtain a completed matrix. The values in each
row of this matrix are then interpreted as scores deciding whether or not the
corresponding items are present in the particular solution, with a higher value
implying a greater chance of the item being present. Next, the items in each
row are reordered in decreasing order of their scores, yielding the ranking.

We report the mean of those predicted ranks, the mean reciprocal rank
(MRR), and the hits@10% i.e., the proportion of correct entities ranked in the
top 10%. We consider the MRR owing to its robustness towards outliers, which
is not the case with the mean rank. Further, a trend analysis indicating that
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users typically look at the top 10% of the displayed results before opting for a
new search, forms the basis for choosing hits@10% for evaluation (see Section
5.4 for more details).

As noted by [4], these metrics can be flawed when some corrupted triples
are in fact valid ones (i.e., are present in the training, validation, or test set),
causing them to be ranked higher than the test triple. This however should not
be counted as an error because both triples are actually true. To avoid such
misleading behavior, we discard all those triples in the ranking process that
appear either in the training, validation, or test set (except the test triple of
interest). This ensures that none of the corrupted triples belong to the dataset
and grants a clearer view of the ranking performance. We refer to this as the
filtered (filt.) setting and the original (possibly flawed) one as the raw setting.

In Section 5.4, results are reported according to both raw and filtered set-
tings.

5.3.1 Evaluation Mechanism for Cold Start.

We adapt the evaluation mechanism to specifically suit the scenario of the cold
start problem. Experiments are run on the best hyperparameters chosen earlier,
without the need for cross-validation. We introduce a set of new items into the
dataset. In doing so, we only add technical features for these items, without
including them in any solutions. Additionally, we ensure that items belonging
to the same category as these new items are in fact available. This should allow
the model to pick up features common among similar items. Thereafter, we
carry out the same workflow as before for model training and testing and report
the metrics on the test set.

5.4 Results

Table 1 displays the results of the recommendation task for all methods under
consideration. The filtered setting produces lower mean rank and higher values
of MRR and hits@10% for all the methods, as expected. As described in Section
5.3, this setting offers a better evaluation of the performance. RESCOM out-
performs all methods in most of the standard metrics. However, NMF has the
highest value of MRR in the filtering setting, even better than that of RESCOM.
This may be explained by considering that MRR favours correct entities being
retrieved exactly in a few cases, against correct entities being in the top-k ranks
consistently. To verify if this affects our use case involving the industrial pur-
chasing system, we further analyzed the number of items that users are willing
to consider until they arrive at the desired product. This was done by looking at
the filters applied by users at the time of solution configuration and noting the
positions of selected items among the results. Trends show that users typically
look at the top 10% of the displayed results before opting for a new search and
since RESCOM still has the best hits@10%, we consider it to be superior to all
the counterparts.
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Table 1: Results of all evaluated methods on the test set
Metric Mean Rank Mean Reciprocal Rank Hits@10%

Eval. Setting Raw Filt. Raw Filt. Raw Filt.

TransR 898.42 894.58 0.02 0.02 0.29 0.32
TransE 322.40 318.58 0.09 0.10 0.70 0.72
TransD 332.62 328.82 0.09 0.12 0.68 0.71
TransH 316.04 312.22 0.09 0.10 0.69 0.72
NMF 182.38 177.84 0.12 0.22 0.82 0.87

RESCOM 81.32 76.76 0.13 0.18 0.93 0.95
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Figure 3: Item embeddings obtained using RESCOM after PCA (with 33.42% vari-
ance explained)

Furthermore, Figure 3 depicts a scatter plot of the item embeddings. After
training a model using RESCOM (with 15 latent dimensions), the resulting
embeddings were further subjected to dimensionality reduction via principal
component analysis (PCA) to arrive at the 2-dimensional embeddings shown.
In Figure 3(a), the items are coloured by category, which is one of the available
technical features. As indicated by a few dense regions resembling clusters, it
may be seen that the model learns the associations among the items for most
categories. Figure 3(b) provides a more detailed view of the items in the Panel
category. The items are coloured by subcategory and the values correspond to
the subcategories within the Panel category. This demonstrates that our model
is capable of learning the subspace embeddings as well, although we do not
encode this hierarchical structure explicitly.

5.4.1 Cold Start: Model Evaluation Results.

As explained in Section 5.3, we perform an explicit evaluation of the methods
for the cold start scenario. Since it is not possible to test for previously unseen
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data in the case of NMF, we exclude it from consideration. The results are as
shown in Table 2. We can clearly see that RESCOM performs better than all
of the other methods, proving that it is capable of recommending even those
items that were not previously configured.

Table 2: Cold start: Results of all evaluated methods on the test set
Metric Mean Rank Mean Reciprocal Rank Hits@10%

Eval. Setting Raw Filt. Raw Filt. Raw Filt.

TransR 766.7216 766.1959 0.0044 0.0036 0.284 0.289
TransE 486.7938 482.2165 0.0983 0.1073 0.655 0.686
TransD 533.8299 529.3041 0.0982 0.1066 0.649 0.655
TransH 473.2113 468.7423 0.0993 0.1081 0.65 0.658

RESCOM 127.5792 122.3405 0.1423 0.1801 0.884 0.887

Further, we conducted an experiment aimed at testing the ability of the
model to learn the embeddings for newly added items, while using the previously
trained embeddings for old items. We added two new items – one belonging to
the Panel category and another belonging to the Switch category. The model
was then trained while keeping the embeddings of the previously trained items
fixed. Figure 4(a) shows the two new randomly initialized items while the
previous embeddings remain the same as in Figure 3(a). The new items were
then trained in the usual way and we observed their embeddings during the
training. After each epoch, we tracked these items to see if they moved closer
to the clusters formed by the other items in the same categories. Figure 4(b)
illustrates the embeddings obtained after training for 50 epochs. As evident
from the trajectories shown, the model learns the associations among items of
the same category quite well.

6 Conclusion

We proposed RESCOM, a multi-relational recommender system, and applied
it in the context of an industrial purchasing system for setting up engineering
solutions. In this domain, the necessity of expressive recommendation methods
arises because the functionality of each solution is highly dependent on the
interplay of its components and their technical properties. RESCOM aims to
take this complexity into account by embedding all past solutions, items, and
technical properties into the same vector space and modelling their relatedness
via a set of bilinear forms. We conducted extensive experiments based on real-
world data from the Siemens product database. To sum up, the main findings
of our real-world study are:

• RESCOM significantly outperforms all the considered baseline methods
in most of the common performance measures.

• RESCOM offers a natural remedy to the cold start problem. Even in the
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Figure 4: Cold start: Item embeddings obtained using RESCOM after PCA (with
33.42% variance explained)

absence of any historical data for particular items, our method is able to
produce reasonable recommendations.

• RESCOM requires minimal effort in terms of data preparation and main-
tenance. Moreover, training the model and computing recommendations
can be performed efficiently. Apart from sorting the items, we have shown
that recommending items boils down to a sequence of matrix multiplica-
tions. This ensures that our method can operate in real time when guiding
the user to set up new solutions.

So far, we have considered semantic annotations of the configurable items,
but ignored contextual information about the solutions such as their area of
applications or temporal aspects. We will explore this direction in future work
when the relevant data becomes available. Other possibilities for future research
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include extending this approach from recommendations to pairwise preferences
that can be represented in preference graphs [19] and incorporating semantic
knowledge using reasoning mechanisms [14].

Finally, we would like to stress that this work evolved from a real-world
industrial R&D project at Siemens. In this regard, we have also evaluated
our approach together with domain experts from Siemens. More specifically,
we considered a set of typical solutions and tested whether our model produces
comprehensible recommendations from an engineer’s point of view. After having
passed this test as well, we intend to take further steps towards integrating our
method into one of the major solution configurators at Siemens.
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