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Abstract. Non-negative data is generated by a broad range of applica-
tions, e.g in gene expression analysis and in imaging. Many factorization
techniques have been extended to account for this natural constraint and
have become very popular, mainly due to the improved interpretability
of the latent factors. Relational data, like data from protein interac-
tion networks or social networks, can also be seen as being naturally
non-negative. In this work, we extend the RESCAL tensor factorization,
which has shown state-of-the-art results for multi-relational learning, to
account for non-negativity by employing multiplicative update rules. We
study the performance of non-negative RESCAL on various benchmark
datasets and show that non-negativity constraints lead to very sparse
factors at a slight loss in predictive performance, if compared to uncon-
straint RESCAL.
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1 Introduction

When mining non-negative datasets like document collections, gene expression
data or imaging data, matrix and tensor decompositions are often employed for
low rank approximations of the original data matrix/tensor to perform tasks
like clustering [1] or for predicting items that might be interesting for a user in
a recommendation environment [2]. Other interesting applications arise in the
field of image processing, e.g., compression. As the original data is non-negative,
a non-negative constraint on the computed factors of the decomposition seems
also very natural. In contrast to, e.g., SVD-based decompositions, a non-negative
decomposition results in an additive representation that tends to be naturally
sparse and memory efficient. Another important benefit of non-negative factors
comes from their interpretability, which has been demonstrated in various appli-
cations like text-processing [3] or image processing [4], where the factors could
be interpreted as latent topics in the former case or as image structures like eyes,
ears or noses, in the latter case.



In contrast to an SVD, a non-negative decomposition is generally not unique
and converges into local minima. As a consequence, the initialization of the factor
matrices becomes critical. In the past, different methods have been proposed for
initializing one or more of the factors matrices (see [3] for a summary and [5]).
Out of a set of candidate solutions, some authors argue that one should prefer
the sparsest solution.

In the past, non-negative matrix factorization (NMF) has been extended to
tensor decompositions like PARAFAC/CP [6][7] and TUCKER[8] by employ-
ing multiplicative update rules as introduced by [9]. As relational datasets from
protein interactions or social networks also impose a natural non-negativity con-
straint, we propose to extend NMF to the recently introduced RESCAL model
[10]. RESCAL is a three-way-tensor factorization model that has been shown
to lead to very good results in various canonical relational learning tasks like
link prediction, entity resolution and collective classification [10]. One main fea-
ture of RESCAL is that it can exploit a collective learning effect when used on
relational data.
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Fig. 1. Graphical illustration of the RESCAL tensor factorization into the factor matrix
A and the core tensor R [11].

The RESCAL decomposition decomposes a tensor X of shape n×n×m, into
a factor matrix A of shape n×r and a core tensor R of shape r×r×m, where each
of the m frontal slices of X can be seen as a binary adjacency-matrix between
n entities for each of the m relations or observed subject-predicate-object RDF
triples for m predicates (Figure 1). Each of the k frontal slices of X is factorized
into

Xk = ARkA
T , for k = 1, ...,m

The decomposition is computed by minimizing the regularized least-squares
cost function

CLS(X , A,R) = fLS(X , A,R) + fL2(A,R) (1)



with fLS(X , A,R) =
∑
k

‖Xk −ARkAT ‖2F

fL2(A,R) = λA‖A‖2F + λR
∑
k

‖Rk‖2F

using Alternating Least Squares (ALS) with update functions for A and Rk:

A←

[∑
k

XkAR
T
k +XT

k ARk

][∑
k

RkA
TARTk +RTkA

TARk + λAI

]−1
R← (ZTZ + λRI)

−1ZTvec(Xk)

with Z = (A⊗A)

This updates do not enforce a non-negative constraint on the factors.
The contribution of this paper is as follows: We derived and implemented non-

negative tensor decompositions for the RESCAL model using regularized least-
squares and Kullback-Leibler (KL) cost functions, by employing multiplicative
update rules for A and R. We give updates that feature combinations of L1 and
L2 regularization of A and R, as well as normalization of the factor matrix A as
introduced by [9], [12] and [13].

Additionally we derived update rules for including attribute information of
entities as proposed by [11]. The derived models are compared against the origi-
nal RESCAL model without non-negative constraint using the Kinship, Nations
and UMLS multirelational datasets. We show that non-negativity constraints
lead to very sparse factors at a slight loss in predictive performance, if compared
to unconstraint RESCAL.

2 Methods

In the next sections, X •Y and X
Y will denote elementwise matrix-multiplication

and division. XY will represent the regular matrix multiplication. Furthermore
R or X will represent tensors whereas R, X will represent matrices. The matrix
Jij is defined as a single entry matrix, where Jij = 1 and zero otherwise. The
matrix En×m represents an n×m matrix filled with ones and 1 is a row vector
of ones.

For deriving non-negative updates for A and Rk, we use multiplicative update
rules as proposed in [9], having the general form of

θi = θi

 ∂C(θ)−

∂θi
∂C(θ)+

∂θi

α

(2)

Where C(θ) represents a cost function of the non-negative variables θ and ∂C(θ)−

∂θi

and ∂C(θ)+

∂θi
are the negative and positive parts of the derivative of C(θ) [13].



When initializing the factor matrices with non-negative values, these update
functions guarantee non-negativity through only performing division, multiplica-
tion and additions on non-negative values. For α = 1, [9] proved the convergence
of the updates into local minima for non-negative factor matrices.

2.1 Non-Negative Updates for RESCAL with Least-Squares Cost
Function

The partial derivatives of (1) with respect to A and R respectively are

∂CLS(X , A,R)

∂A
= − 2

(∑
k

XkAR
T
k +XT

k ARk

)

+ 2

(∑
k

ARkA
TARTk +ARTkA

TARk

)
+ λAA

∂CLS(X , A,R)

∂Rk
= − 2

(
ATXkA

)
+ 2

(
ATARkA

TA+ λRRk
)

Inserting this into (2) we get the updates for A and Rk in matricized form

A← A •
∑
kXkAR

T
k +XT

k ARk

A
([∑

k RkA
TARTk +RTkA

TARk
]

+ λAI
) (3)

Rk ← Rk •
ATXkA

ATARkATA+ λRRk
(4)

2.2 Kullback-Leibler-Divergence Cost Function

The generalized Kullback-Leibler-divergence cost function for RESCAL with L1

regularization is given by

CKL(X , A,R) = fKL(X , A,R) + fL1(A,R) (5)

with fKL(X , A,R) =
∑
ijk

(
Xij log

Xij

(ARkAT )ij
−Xij + (ARkA

T )ij

)
fL1(A,R) = λA‖A‖1 + λR

∑
k

‖Rk‖1



The elementwise partial derivatives of (5) with respect to A and Rk respectively
are

∂CKL(X , A,R)

∂Aia
= −

∑
jk

Xijk

(ARkAT )ij
(J iaRkA

T )ij +
XT
jik

(ARTkA
T )ji

(ARkJ
ai)ji


+

∑
jk

(J iaRkA
T )ij + (ARkJ

ai)ji

+ λA

∂CKL(X , A,R)

∂Rrtk
= −

∑
ij

(AJrtkAT )ij
Xijk

(ARkAT )ij

+

∑
ij

(AJrtkAT )ij

+ λR

Inserting this into (2) we get the elementwise updates for A and Rk:

Aia ← Aia

∑
jk

Xijk

(ARkAT )ij
(J iaRkA

T )ij +
XT

jik

(ART
kA

T )ji
(ARkJ

ai)ji[∑
jk(J iaRkAT )ij + (ARkJai)ji

]
+ λA

Rrtk ← Rrtk

∑
ij

Xijk

(ARkAT )ij
(AJrtkAT )ij[∑

ij(AJ
rtkAT )ij

]
+ λR

In matricized form the updates are

A← A •

∑
k

Xk

ARkAT AR
T
k +

XT
k

ART
kA

T ARk∑
k E

n×n(ARTk +ARk) + λAE
n×r (6)

Rk ← Rk •
AT Xk

ARkAT A

ATEn×nA+ λRE
n×r (7)

2.3 Integrating L1 Regularization with Normalization of A

[12] proposed an algorithm for sparse NMF by penalizing the right factor matrix
of the decomposition by the L1 norm while keeping the column vectors of the
left factor matrix normalized to unit length (W̃ir = Wir

‖Wr‖F ). Originally this

algorithm was proposed for a least squares cost function but was also derived for
a generalized Kullback-Leibler divergence cost function by [13]. Applying this
idea to the RESCAL cost functions based on least squares and KL-divergence
leads to the following updates for A and Rk, respectively:

For a least squares cost function with L1 penalty on R:

C∗LS(X , A,R) = fLS(X , Ã,R) + fL1(R) (8)

with fLS(X , Ã,R) =
∑
k

‖Xk − ÃRkÃT ‖2F

fL1(R) = λR
∑
k

‖Rk‖1



The updates are

A← Ã •

∑
k B̃k + Ã diag

(
1
[
C̃k • Ã

])
∑
k C̃k + Ã diag

(
1
[
B̃k • Ã

]) (9)

Rk ← Rk •
ÃTXkÃ

ÃT ÃRkÃT Ã+ λRE
r×r (10)

where

B̃k = XkÃR
T
k +XT

k ÃRk, C̃k = Ã
(
RkÃ

T ÃRTk +RTk Ã
T ÃRk

)
For a generalized KL-divergence based cost function we get

C∗KL(X , A,R) = fKL(X , Ã,R) + fL1(R) (11)

The updates are

A← Ã •

∑
k Ẽk + Ã diag

(
1
[
F̃k • Ã

])
∑
k F̃k + Ã diag

(
1
[
Ẽk • Ã

]) (12)

Rk ← Rk •
ÃT Xk

ÃRkÃT
Ã

ÃTEn×nÃ+ λRE
n×r (13)

where

Ẽk =
Xk

ÃRkÃT
ÃRTk +

XT
k

ÃRTk Ã
T
ÃRk, F̃k = En×nÃ(RTk +Rk)

2.4 Integrating Entity Attributes

In [11] an algorithm for efficiently including attributes of entities was proposed.
For this reason, the original cost function was extended by a decomposition of
the attributes matrix D into A and V (D ≈ AV ). Additionally a regularization
penalty on V was added:

CLSattr
= fLSattr

(D,A, V ) + fL2(V ) (14)

with fLSattr
(D,A, V ) = ‖D −AV ‖2F
fL2(V ) = ‖V ‖2F

The idea can be used to extend the previous update rules such that they also
include the information of entity attributes. The updates for R are unchanged
but the updates of A have to be modified. Update rules for V can be easily
derived from [9].



Updates for LS Cost Function with L2-Regularization

A← A •
[∑

kXkAR
T
k +XT

k ARk
]

+DV T

A(
[∑

k RkA
TARTk +RTkA

TARk
]

+ λAI + V V T )
(15)

V ← V • ATD

(ATA+ λV I)V
(16)

Updates for LS Cost Function with Normalization of A and L1-Regularization
on R and V

A← Ã •
T̃1 +DV T + Ã diag

(
1
[
ÃV V T • Ã

])
T̃2 + ÃV V T + Ã diag

(
1
[
DV T • Ã

]) (17)

V ← V • ATD

ATAV + λVE
r×m (18)

where

T̃1 =
∑
k

B̃k + Ã diag
(
1
[
C̃k • Ã

])
, T̃2 =

∑
k

C̃k + Ã diag
(
1
[
B̃k • Ã

])

Updates for KL-divergence with L1-Regularization

A← A •

[∑
k

Xk

ARkAT AR
T
k +

XT
k

ART
kA

T ARk

]
+ D

AV V
T[∑

k E
n×n(ARTk +ARk)

]
+ λAE

n×r + En×mV T
(19)

V ← V •
AT D

AV

ATEn×m + λVE
r×m (20)

Updates for KL-divergence with Normalization of A and L1-Regularization
on R and V

A← Ã •
T̃3 + D

ÃV
V T + Ã diag

(
1
[
ÃTEn×m • Ã

])
T̃4 + ÃTEn×m + Ã diag

(
1
[
D

ÃV
V T • Ã

]) (21)

V ← V •
ÃT D

ÃV

ÃTEn×m + λVE
r×m (22)

where

T̃3 =
∑
k

Ẽk + Ã diag
(
1
[
F̃k • Ã

])
, T̃4 =

∑
k

F̃k + Ã diag
(
1
[
Ẽk • Ã

])



3 Experiments

We conducted experiments on three different multi-relational datasets to evalu-
ate the performance of the different non-negative extension of RESCAL:
Kinship 104 × 104 × 26 multi-relational data that consist of several kinship
relations within the Alwayarra tribe.
Nations 14 × 14 × 56 multi-relational data that consist of relations between
nations (treaties, immigration, etc). Additionally the dataset contains attribute
information for each entity.
UMLS 135 × 135 × 49 Multi-relational data that consist of biomedical rela-
tionships between categorized concepts of the Unified Medical Language System
(UMLS).

To evaluate the different methods, we performed a 10-fold cross-validation
and initialized the factor matrix A by using the initial factors calculated by the
Non-negative Double Singular Value Decomposition method (NNDSVD) [5] for
all datasets. The sets for the cross-validation were chosen by randomly selecting
entries of the tensor. The results were evaluated by using the area under the
precision-recall curve (AUC). To calculate the sparsity, nonzero entries were
defined as entries smaller than -1.0e-9 or greater than 1.0e-9. The sparsity for
each model was determined by taking the mean sparsity for A and R over all
ten cross-validation iterations.

In Figure 2 the results on the three datasets, Kinships, Nations and UMLS are
shown. In case of the Kinships and UMLS dataset, the non-negative realizations
of RESCAL are quite close to the AUC results of the original RESCAL model
(left plots). RESCAL achieves 0.962 in Kinships and 0.986 in the UMLS dataset,
where the non-negative least-squares approach with L2 regularization has an
AUC of 0.934 and 0.976, respectively, closely followed by the two normalized
(A) variations. In case of the Nations dataset, the difference is more severe.
RESCAL achieves an AUC of 0.771, where the best non-negative model achieves
only 0.714. Between the different non-negative approaches, there is not much
difference in AUC. Only the update functions for the KL-divergence without
regularization seem to perform a little bit worse than the other non-negative
approaches. Regarding the sparsity of the factor matrix A and the core tensor R
the difference between the non-negative decompositions and RESCAL are more
significant. As expected, the decomposition of the original RESCAL algorithm is
almost completely dense (density: 99.9% for A and 99.8% for R in all datasets).
It can be seen that in the case of the non-negative decompositions, the sparsity of
the factor matrix A and the core tensor R increases dramatically with the size of
the original matrix (and the factor matrices respectively). Taking the regularized
KL-divergence-based results for instance (rightmost), the density between the
Nations and the UMLS dataset drops for A from 62% to 2.7% and for R from
48% to 0.2%. By comparing the results of the least-squares and KL-divergence
based factorizations where A is kept normalized during minimization, it also
seems that in the KL-divergence based cost functions, sparsity of the factors
is more enforced during minimization, especially for A. When factorizing the
UMLS dataset, A has a density of about 40% (about 20% in Kinships) in the
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Fig. 2. The plots on the left show the area under the precision-recall curve results of
the different non-negative models and the original version of RESCAL on the Nations
(a), Kinships (b) and UMLS (c) datasets. The plots on the rights show the amount of
nonzero entries in the factor matrix A and the core tensor R, respectively. The labels
of the methods are explained in Section 2. From left to right: 1) Original version of
RESCAL. 2) LS cost function with L2-regularization on A and R. 3) LS cost function
with normalized A and L1-regularization on R. 4) KL-divergence cost function without
regularization. 5) KL-divergence cost function with normalized A and L1-regularization
on R. 6) KL-divergence cost function with L1-regularization on A and R. In case of
the Nations dataset the attributes of the entities were included.



least-squares case, but at most 9% (2.5% in the Kinships) in the KL-divergence
case.

4 Conclusion

We extended non-negative matrix factorization to relational learning tasks using
the RESCAL model, by employing multiplicative update rules. We showed that
the non-negative constraint can be introduced into the model with little loss
in terms of predictive performance but with a significant gain in sparsity of the
latent factor representations. Additionally we presented different update rules for
the factor matrices based on least-squares or the Kullback-Leibler cost functions.

A great advantage of the multiplicative update rules is that they can exploit
data sparsity in the same way as the original RESCAL updates. In practice,
although, the multiplicative update rules enforcing non-negativity converge much
slower than the original RESCAL updates. A more accurate analysis of this issue
is planned for the near future.
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