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Abstract. In this chapter, we address the situation where agents need
to learn from one another by exchanging learned knowledge. We employ
hierarchical Bayesian modelling, which provides a powerful and princi-
pled solution. We point out some shortcomings of parametric hierarchi-
cal Bayesian modelling and thus focus on a nonparametric approach.
Nonparametric hierarchical Bayesian modelling has its roots in Bayesian
statistics and, in the form of Dirichlet process mixture modelling, was re-
cently introduced into the machine learning community. In this chapter,
we hope to provide an accessible introduction to this particular branch of
statistics. We present the standard sampling-based learning algorithms
and introduce a particular EM learning approach that leads to efficient
and plausible solutions. We illustrate the effectiveness of our approach
in context of a recommendation engine where our approach allows the
principled combination of content-based and collaborative filtering.

1 Introduction

There are many occasions where agents should “learn” from one another. As an
example, the effectiveness of a treatment for a cardiac disease is a function of
the severity of the disease and patient characteristics but might also vary from
hospital to hospital (due to hidden factors such as varying patient population,
staff training, local expertise, . . . ). Thus models that predict the outcomes for
different hospitals should be quite similar but will also be different to some de-
gree. Despite the differences in the models it would be advantageous if various
models could benefit from each other’s learned knowledge, in particular in the
case that there is only a small data set available for each hospital. A similar
situation arises in the design of recommendation engines that predict the in-
terests of users in various items. Essentially each user is an individual and one
should learn a personal model for each user. On the other hand if few training
data points for the active user are available one would like to benefit from the
recommendations of like-minded users, as in collaborative filtering. In machine
learning, the scenarios described are known as transfer learning or meta learning.
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In the Bayesian literature this framework falls into hierarchical Bayesian (HB)
modelling. The basic idea in HB modelling is that information between differ-
ent models can be exchanged via common hyperparameters. In this chapter, we
provide an introduction to HB modelling. We emphasize that, in our view, HB
by itself is useful but also severely limited since it is inflexible in the representa-
tion of the “learned prior”. Additional flexibility is obtained by a process called
Dirichlet enhancement in which the prior distribution is specified in terms of a
highly flexible multinomial distribution with a Dirichlet prior. Of particular in-
terest is the limit that the number of states in the multinomial becomes infinite
in which case we obtain a Dirichlet process and our hierarchical model becomes
a Dirichlet process mixture model.3 Dirichlet process mixture models originated
in Bayesian statistics [11] [1] and recently found growing interest in the machine
learning community, in particular in the context of infinite mixture models. A
particular advantage of Dirichlet process mixture models is that the number of
components required for achieving a good overall model is automatically deter-
mined by the algorithm. In the problem setting described in this chapter this
feature is of minor interest in comparison to the benefits achieved by the trans-
fer of learned knowledge via HB modelling. We describe the standard sampling
approach for inference in Dirichlet process mixture models and also introduce a
particular expectation maximization (EM) solution that is powerful and efficient
in the frameworks addressed in this chapter.

The chapter is organized as follows. In the following section we provide an
intuitive motivation for nonparametric HB modelling and present the first al-
gorithmic solution to the problem. In Section 3 we introduce HB modelling
more systematically and discuss some of its shortcomings. In Section 4 we in-
troduce the process of a Dirichlet enhancement, which is a first step towards
nonparametric HB modelling. The finite-dimensional approach presented in Sec-
tion 4 is not of great practical interest by itself but provides the basis for the
infinite-dimensional nonparametric HB models described in Section 5. We dis-
cuss stochastic sampling and EM as approaches towards parameter inference. In
Section 6 we illustrate the effectiveness of our approach using the example of a
recommendation engine where our approach allows the principled combination
of content-based filtering and collaborative filtering. In Section 7 we discuss re-
lated work, in particular recent work on infinite models. In Section 8 we provide
conclusions.

2 Intuitive Introduction

2.1 Bayesian Modelling

We will develop the ideas based on two-class classification although the same
concepts are valid for general probabilistic models, e.g., for regression and den-
sity estimation. Readers who want to fresh up on Bayesian statistics may consult
3 Dirichlet process mixture models are also known as mixtures of Dirichlet processes

(MDPs).
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the excellent tutorial [15]. Let P (Y = y|x, θ) denote the probability that Y as-
sumes the state y ∈ {0, 1} given features x and given a parameter set θ = {θj}j .
In a Bayesian setting one defines an a priori distribution P (θ|hprior) with hy-
perparameters h = hprior. Both prior distribution and hyperparameters specify
one’s prior belief. The prior belief is typically rather unspecific or non-informative
and thus the prior distribution should place nonzero probability on all reasonable
model parameters.

As example, in Figure 1A the prior distribution might be specified as a Gaus-
sian distribution with

P (θ|hprior) = N (θ|µprior, Σprior)

with hprior = {µprior, Σprior}.
Bayesian learning means updating the parameter distribution based on avail-

able training data. Given a data set with ND data points D = {(xn, yn)}ND
n=1

one can calculate the posterior parameter density using Bayes formula as

P (θ|D,hprior) =
1

P (D)
P (D|θ)P (θ|hprior)

where, in our classification example, assuming exchangeability,

P (D|θ) =
ND∏
n=1

P (yn|xn, θ).

Note that in this chapter we do not treat the inputs x probabilistically and focus
on the modelling of the condition probability distribution y|x.

For classifying a new pattern we obtain the predictive distribution

P (Y = y|x,D, hprior) =
∫

P (Y = y|x, θ)P (θ|D,hprior)dθ.

If additional data points become available, the posterior parameter distribution
P (θ|D,hprior) now assumes the role of the new “learned prior” , i.e., the available
knowledge prior to the arrival of the additional data. In the case that the prior
distribution is conjugate to the likelihood function, we obtain

P (θ|D,hprior) = P (θ|hpost),

i.e., the posterior parameter distribution has the functional form of the prior
distribution but with new hyperparameters hpost. Returning to our example, we
would expect that

P (θ|hpost) = N (θ|µpost, Σpost)

with hpost = {µpost, Σpost} and where limND→∞ detΣpost = 0, i.e., the posterior
distribution become increasingly concentrated (Figure 1B) with an increasing
number of data points and asymptotically is locally peaked at the maximum
likelihood solution

θML := arg max
θ

P (D|θ).
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2.2 Hierarchical Bayesian Modelling

Now assume, that we have obtained M data sets {Dj}M
j=1 for related but not

identical settings and we have trained M different models with parameters
{θj}M

j=1 on those data sets. For the sake of argument let’s assume that each
data set is sufficiently large such that P (θj |Dj , hprior) is sharply peaked at the
maximum likelihood (ML) estimate θML

j . Let {θML
k }M

k=1 denote the maximum
likelihood estimates for the M models. Recall that since the models were trained
on different data sets generated from different settings, the maximum likelihood
parameter values are not identical. Figure 1C illustrates the set of maximum
likelihood parameter estimates. Now, if a new model concerns a related prob-
lem, then it makes sense to select new hyperparameters hhb such that P (θ|hhb)
approximates the empirical distribution given by the maximum likelihood pa-
rameter estimates instead of using the original uninformed prior P (θ|hprior). In
this way the new model can inherit knowledge acquired not only from its own
data set but also from the other models.

Returning to our example, we would expect that for a new setting with a
new model with parameters θM+1

P (θM+1|{Dj}M
j=1) ≈ P (θM+1|hhb) (1)

where, in the example, P (θM+1|hhb) = N (θM+1|µhb, Σhb), with hhb = {µhb, Σhb}
and where now in the non-degenerate case

lim
M→∞

det Σhb > 0

and the entries of Σhb converge to fixed typically nonzero values (Figure 1C).
What we have just described is the basis for hierarchical Bayesian modelling
that we will introduce more formally in Section 3.

2.3 Nonparametric Hierarchical Bayesian Modelling

In more cases than not, the empirical distribution of the maximum likelihood
parameters {θML

k }M
k=1 will not fall into the class of distributions that can be

described by P (θ|h) for any h. If the assumed noninformative prior is too in-
flexible to truthfully model the learned prior, then this is a severe limitation
of the classical HB approach. See for example Figure 1D. Thus we might pre-
fer a nonparametric approximation in the form of the empirical nonparametric
distribution of the maximum likelihood parameters

P (θM+1|{Dj}M
j=1) ≈

1
M

M∑
k=1

δθML
k

,

where δθML
k

is a distribution concentrated at a single point θML
k .

Now if we receive the data set DM+1 for the new setting, we predict

P (YM+1 = y|x,DM+1) ≈
1
C

∫
P (YM+1 = y|x, θ)P (DM+1|θ)

M∑
j=1

δθML
j

dθ
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Fig. 1. A: The circle indicates the standard deviation of the prior Gaussian distribu-
tion with mean zero representing P (θ|hprior) = N (θ|µprior, Σprior). B: The posterior
parameter distribution P (θ|hpost) = N (θ|µpost, Σpost) with lets say ND = 100 data
points; shape and location of the Gaussian have changed. With ND → ∞, P (θ|hpost)
is concentrated at the maximum likelihood estimate θML. C: Set of maximum like-
lihood estimates {θML

j }M
j=1 and approximation P (θM+1|{Dj}M

j=1) ≈ N (θ|µhb, Σhb) .
The implicit assumption in HB modelling is that this distribution can be approx-
imated by a member of the family of distributions assumed for the prior, i.e., in
this example a Gaussian distribution. D: Here is an example where this distribution
cannot be approximated by a Gaussian distribution. Thus, nonparametric HB with
P (θM+1|{Dj}M

j=1) ≈ 1
M

∑M

k=1
δθML

k
is more appropriate.
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=
1
C

M∑
j=1

P (DM+1|θML
j )P (Y = y|x, θML

j ) (2)

where C =
∑M

j=1 P (DM+1|θML
j ) normalizes the distribution. Here and in the

following, capital C stands for an appropriate normalization constant. Note that
the result (Equation 2) is very intuitive. To make a prediction for setting M+1 for
input x, each model 1, . . . ,M makes a prediction using its maximum likelihood
parameter estimate and this prediction is then weighted with the probability
that this model explains the data points DM+1 of the setting of interest. This
means that initially, with only few data points available for setting M + 1, the
predictions of all previous models are essentially averaged. With more data points
available for setting M + 1, models that agree well with the data DM+1 obtain
a higher weight.

3 Hierarchical Bayesian Modelling

In this and the following sections we will introduce HB modelling and non-
parametric Bayesian modelling more formally. We start with HB. Recall that
in Section 2.2 we essentially learned new hyperparameters hhb to communicate
learned knowledge. This is exactly the basis for the knowledge transfer via com-
mon hyperparameters in the framework of HB modelling. The joint probabilistic
HB model is written as (Figure 2A)

P (h)
M∏

j=1

P (Dj |θj)P (θj |h). (3)

The hyperparameters h —now considered to be random variables with prior
distribution P (h)— are common to all models whereas each model has its own
parameters {θj}M

j=1. Given the hyperparameters, the models are exchangeable,
which means that the probabilistic model is invariant to a permutation (re-
indexing) of the models.4

Now, for a model M + 1 that did not yet receive any data points, we obtain
as a full Bayesian version of Equation 1

P (θM+1|{Dj}M
j=1) ∝

∫ P (θM+1|h)P (h)
M∏

j=1

∫
P (θj |h)P (Dj |θj) dθj

 dh. (4)

In all but the simplest cases, the inference based on the HB model in Equation 4
does not lead to closed-form solutions and one typically relies on Markov Chain
4 In contrast to the HB modelling assumption if we would assume that the models

are all identical, then all data points are exchangeable and the probabilistic model is
P (h)P (θ|h)

∏M

j=1
P (Dj |θ), which would lead to one global model. The other extreme

is that all models are independent
∏M

j=1
P (hj)P (Dj |θ)P (θj |hj), which would result

in M independent models.
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Monte Carlo (MCMC) approximations. We do not want to get deeper into the
issues of learning parametric HB models since we already concluded that the
conventional HB approach is too limited for many applications. Readers more
interested in the basics of HB modelling may consult [12].

4 Dirichlet Enhanced Hierarchical Bayesian Modelling

4.1 The Basic Idea

To alleviate the problem of HB we have to specify a parameterization of the
prior parameter distribution that on the one hand can represent the assumed
noninformative prior knowledge but also is flexible enough to be able to ap-
propriately represent the “learned” prior to be communicated to a new model.
The concept we are applying here is sometimes referred to as Dirichlet enhance-
ment [10] and the basic idea is to replace the parametric prior distribution by
a finite or infinite multinomial distribution with a Dirichlet prior. The essential
features are that, first, the multinomial distribution by itself poses no constraint
on the distributions that can be represented and that, second, the noninforma-
tive prior knowledge can be encoded in the form of the base distribution of the
Dirichlet (which we will introduce further down). In this section we will consider
the case that the model parameters can only assume values out of a given finite
set of size K. The finite case is mathematically considerably easier and already
introduces the main features of Dirichlet enhanced HB modelling. From an ap-
plication point of view the case that K → ∞ is of greater importance and will
be discussed on the the following section.

To represent the model parameters we introduce a random variable Θj for
each model j that can be in states θ1, . . . , θK . We further assume that a particular
state is chosen by a multinomial distribution such that, for all j, P (Θj = θk|g) =
gk with gk > 0 and

∑K
k=1 gk = 1 such that the probabilities gk, k = 1, . . . ,K

play the role of the hyperparameters (previously the h)(Figure 2B). We specify
our prior belief in terms of the conjugate prior that in this case is a Dirichlet
distribution, i.e.,

P (g) = Dir(g|τα1, . . . , ταK) =
1
C

K∏
k=1

gταk−1
k

where g = {gi}K
i=1, α = {αi}K

i=1, αk ≥ 0,
∑K

k=1 αk = 1 and with precision param-
eter τ > 0. A description of the properties of a multinomial model with a Dirich-
let prior including most equations used in this section can be found in the already
mentioned tutorial [15]. A sample of a Dirichlet distribution is a probability dis-
tribution and the precision parameter τ corresponds to an equivalent sample size
or weight. We can integrate out g and have P (Θj = θj) = αj , j = 1, . . . ,K.5 Thus
we can specify our non-informative prior belief by defining the αj , j = 1, . . . ,K

5 Incidentally, the most likely configuration is also g = α.
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Fig. 2. A: A HB model. B: A Dirichlet enhancement HB model. C: A plate model for
HB. The large plate indicates that M samples from P (θ|h) are generated; the smaller
plate indicates that, repeatedly, data points are generated for each θ. D: A plate model
for the Dirichlet enhanced HB. In B and D the finite dimensional hyperparameters h are
replaced by the distribution g. In the finite-dimensional case, g is finite-dimensional
and is generated from a Dirichlet distribution. In the infinite-dimensional case, g is
infinite-dimensional and is generated from a Dirichlet process. We also indicate that,
in the latter case, the prior distribution for g is defined using a base distribution G0

with density g0 and concentration parameter τ (see Section 5)
.
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and the θj , j = 1, . . . ,K appropriately. The solution used in the following is to
randomly select θj from P (Θj) and set αj = 1/K, j = 1, . . . ,K (Figure 3 (top)).
This is quite similar to the implementation of the non-informative prior belief
in the infinite model of Section 5 where K →∞.

The joint distribution of the Dirichlet enhanced model is now (compare Equa-
tion 3 and Figure 2)

P (g)
M∏

j=1

P (Dj |Θj = θj)P (Θj = θj |g). (5)

4.2 Sampling from a Dirichlet Model

First, we consider the simpler model P (g)P (Θ|g) consisting of a Dirichlet prior
for g and a multinomial likelihood. We assume that for a fixed (but potentially
unknown) g, N repeated samples of Θ are drawn. These samples form the set
Dθ. Let’s assume that in Dθ we have Nk instances of θk with N =

∑K
k=1 Nk.

Since the Dirichlet distribution is conjugate to the multinomial distribution,
we obtain for the posterior distributions for g also a Dirichlet distribution with

P (g|Dθ) = Dir(g|τα1 + N1, . . . , ταK + Nk).

A nice property is that one can integrate out g to obtain the posterior predictive
density [15]

P (Θ = θk|Dθ) =
ταk + Nk

τ + N
. (6)

Equations 6 says that we can conveniently calculate the predictive distribution
without the need for the explicit estimation of g. This is of great importance in
the next section in the context of Dirichlet processes where g is infinite dimen-
sional and could not explicitly be represented. According to Equation 6, a state
becomes more likely if it has previously been observed with high frequency.

Note that Equation 6 also specifies how a new sample can be generated
given previously generated samples Dθ. This sampling procedure generates data
points from a fixed (but potentially unknown) g generated by the Dirichlet
prior. Asymptotically, g can be inferred from the samples by noting that gk =
limN→∞Nk/N.

The generation of samples according to Equation 6 is called a Pólya urn sam-
pling process or a Chinese restaurant sampling process (for a recent discussion,
see [27]). The essential feature is that if a state is sampled in the past, the prob-
ability that the same state is selected in the future is increased. This might be
compared to a “Chinese restaurant” where customers select with higher proba-
bility a table that is already occupied by customers, or the Pólya urn where, if
one draws a ball with a certain color, more than one ball with the same color
is replaced and thus the probability of picking the same color in the future is
increased.

From Equation 6 it is clear that if the precision parameter τ is large, many
samples are generated independently from the base distribution α but if τ is
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small, the first few samples quickly dominate the sampling procedure and the
subsequently generated samples are quite clustered (see Figure 3).

4.3 Gibbs Sampling for Dirichlet Enhanced HB

We now return to the Dirichlet enhanced HB model from Equation 5 where
for each setting j we have access to the data sets Dj with likelihood functions
P (Dj |Θj = θk). We will discuss two approaches for parameter inference in the
HB setting. In this subsection we introduce Gibbs sampling, which is particu-
larly attractive if K is large. Readers, not familiar with Gibbs sampling should
consult [13]. The second approach is an EM solution, which is quite effective for
smaller K and will be discussed in the next subsection.

Based on Equation 5 we can derive the conditional distribution of a variable
of interest, say Θj , given samples from the remaining variables and given the
data sets as

P (Θj = θk|{Θl}l 6=j , {Dl}M
l=1) =

1
C

P (Dj |Θj = θk) P (Θj = θk|{Θl}l 6=j)

=
1
C

(ταk + Nk)P (Dj |Θj = θk) (7)

where we have Nk assignments of Θl = θk in the remaining variables with l 6= j
and

∑
k Nk = M − 1. Note that we have integrated out g as in Subsection 4.2.

Thus a sample θk for setting j becomes more likely, if θk explains the Dj-th
data set well and if either it is favored by the prior distribution (large αk) or if θk

is a sample already selected by the other models (large Nk). This latter property,
that samples for different models influence each other, results in a sharing of
information between the different models, as intended in HB modelling.

Note that the representation is upper limited by min(M,K), thus Gibbs
sampling is particularly interesting for large K, i.e., if K >> M .

4.4 EM for Dirichlet Enhanced HB

We now discuss the EM solution to learning in Dirichlet enhanced HB. Here, we
treat {Θj}M

j=1 as unknown variables, that we integrate out, and the goal is to
find the MAP estimate of g that is defined as

g(MAP ) := arg max
g

P (g)
M∏

j=1

K∑
k=1

P (Θj = θk|g)P (Dj |Θj = θk).

The EM algorithm iterates for t = 0, 1, 2, . . . the E-step and the M-step. At
iteration t, the E-step estimates [15], for k = 1, . . . ,M,m = 1, . . . ,K

P̂ (t)(Θk = θm|Dk) =
P̂ (t)(Dk|Θk = θm)P̂ (t)(Θk = θm)∑K
l=1 P̂ (t)(Dk|Θk = θl)P̂ (t)(Θk = θl)

(8)
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Fig. 3. Top: Subjective non-informative prior (Gaussian) and samples generated from
this prior. These samples can be used for Dirichlet enhancement. Center: Samples
from a distribution that was generated by a Dirichlet distribution with a Gaussian
base distribution with precision τ = 10. Clustering is quite apparent. Although the
positions of the samples represent the base distribution, the counts are neither uniform
nor follow the base distribution. Counts reflect the Pólya urn process (Section 4.2) or,
equivalently, the stick breaking process (Section 5.1). Thus, that the ragged structure
is not a result of a finite sample size —100000 samples were drawn— but is an inherent
property of a distribution generated by a Dirichlet distribution, resp. Dirichlet process.
Bottom: Same, but with τ = 10000. With a large precision parameter, samples are
drawn predominantly independently from the base distribution. Again, 100000 samples
were drawn.
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The M-step updates for k = 1, . . . ,M,m = 1, . . . ,K

P̂ (t+1)(Θk = θm) = ĝt+1
m

with

ĝt+1
m =

1
τ + M

(
ταm +

M∑
j=1

P̂ (t)(Θj = θm|Dj)
)

.

After convergence, the prediction of an active model a ∈ 1, . . . ,M becomes

P (Ya = y|x, {Dj}M
j=1) ≈∑K

k=1 P̂ (Θa = θk)P (Da|Θa = θk)P (Ya = y|x,Θa = θk)∑K
k=1 P̂ (Θa = θk)P (Da|Θa = θk)

. (9)

Note that this solution is similar to the heuristically motivated solution of
Equation 2 in the sense that predictions of the models are weighted by the prob-
ability with which those models explain the data set of the active model. The
differences are that first, we have an additional weighting constant P̂ (Θa = θk)
that evaluates the overall relevance of a model and second, we assumed here
that the parameters were generated rather unspecifically from the base distri-
bution whereas in the heuristic solution they correspond to maximum likelihood
estimates.

5 Hierarchical Bayesian Modelling with Infinite Models

Dirichlet enhancement has practical relevance only if we let K → ∞, which is
the case we consider in this section. The reason is that, with finite K and by
simply sampling from the prior distribution as described in Section 4.1, it is
unlikely that parameters leading to good models will be included.

The transition K → ∞ leads us to nonparametric HB, where, as in the
finite-dimensional case, the θk, k = 1, . . ., are sampled randomly from the base
distribution. In this context we need to first introduce some properties of the
Dirichlet process, which is a generalization of the Dirichlet distribution to infinite
dimensions.

5.1 Dirichlet Process

The Dirichlet Process (DP) is of central importance in nonparametric Bayesian
modelling. A formal definition can be found in the appendix. A DP is written
as DP(G0, τ) where G0 is the base distribution with probability density g0 that
corresponds to the αj in the finite-dimensional case; τ ≥ 0 is the concentration
parameter. Please, compare this definition to the definition of a Dirichlet dis-
tribution in Section 4.1. 6 As in the case of the Dirichlet distribution we can
6 In the literature one often finds the notation α0 for the concentration parameter.
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use the Pólya urn representation to sample from a distribution generated by a
Dirichlet process. Given previous samples {θl}j−1

l=1 generated from a distribution
generated from a DP with base distribution g0 and precision τ , the j−th sample
is generated from the probability density

P (θj |{θl}j−1
l=1 ) =

τg0(θj) +
∑j−1

k=1 δθk

τ + j − 1
. (10)

Note that this formula is a direct generalization of the finite-dimensional case,
Equation 6. Samples are generated with probability proportional to τ from the
base distribution and with increasing probability proportional to j − 1 from
an already existing sample. Thus, for small τ we observe the same clustering
effect as in the finite dimensional case (Figure 3). A mathematical treatment
of nonparametric Bayesian modelling and the Dirichlet processes can be found
in [14].

Equation 10 specifies how samples are generated from a distribution that
is a sample from a DP. It is also possible to generate directly a sample from
such a distribution by using the so-called stick breaking process (for a definition
consult [26] or [27]) according to which this distribution can be written as an
infinite sum of weighted delta functions placed at samples randomly selected
from the base distribution,

g =
∞∑

k=1

βkδθk
. (11)

The βk ≥ 0 and with
∑

k βk = 1 only depend on τ and are generated by
the stick breaking process, which is based on a sequence of independent beta
random variables. Note that even if the base distribution G0 is smooth, a sample
distribution is discrete in nature.

5.2 Nonparametric Bayesian Modelling for Dirichlet Enhanced HB

In the context of an infinite model, i.e. a DP, the HB model of Equation 5 is
called a Dirichlet process mixture model. The conditional probability distribu-
tion required for Gibbs sampling becomes [10] [32]

P (θj |{θl}l 6=j , Dj) =
1
C

τg0(θj) +
∑
l:l 6=j

δθl

P (Dj |θj)

=
1
C

τP̃ (Dj)P̃ (θj |Dj) +
∑
l:l 6=j

δθl
P (Dj |θl)


where

P̃ (Dj) :=
∫

P (Dj |θ)g0(θ)dθ, P̃ (θj |Dj) := P (Dj |θj)g0(θj)/P̃ (Dj),
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and where {θl}l 6=j are the values of the remaining models. Note that this is a
direct generalization of Equations 7. With probability proportional to τP̃ (Dj) a
sample is generated from P̃ (θj |Dj) and with probability proportional to P (Dj |θl)
we take an existing sample θl. Note that our notation hides the fact that several
θl might be identical, increasing the selection probability accordingly. This pa-
rameter clustering is particularly strong if τ is small in which case the number
of distinct parameters is typically much smaller than M . Note also that, despite
the fact that we are considering infinite models, computational load per round
and memory requirements only grow proportional to M . This semi-automated
determination of the number of distinct models is an important feature and was
the focus of some recent work (see Section 7) but is not of central interest in the
HB framework presented here.

The presented Gibbs sampling approach was introduced by Escobar [9]. Since
in Gibbs sampling only one parameter is re-sampled at a time, the clustering of
the parameters makes it difficult for the sampling procedure to modify parame-
ter values. In the appendix we describe a mixture of models approach introduces
by MacEachern [19] that turns out to be equivalent to the presented model.
Gibbs sampling based on that model exhibits much better mixing properties.
The blocked Gibbs sampler that is based on a finite stick-breaking prior pro-
vides another computational attractive sampling procedure [18]. A comprehen-
sive overview of sampling techniques for Dirichlet process mixture models can
be found in [21].

5.3 Variational EM

In a nonparametric setting our EM equations from Subsection 4.4 cannot di-
rectly be applied since a distribution generated by a Dirichlet process is infinite-
dimensional. In [29] the authors discuss a one-step EM solution. Here, we dis-
cuss an EM solution that can be derived from a variational approximation that
approximates probability densities of the E-step in Equation 8 by a simpler ap-
proximating density [30]. We propose a sum of weighted delta functions defined
at the maximum likelihood estimates of the models, i.e.,

P̂ (θj |Dj) ≈ qj(θj) =
M∑

k=1

ξj,kδθML
k

j = 1, . . . ,M (12)

where ξj,k are the variational parameters with ξj,k ≥ 0 and
∑M

k=1 ξj,k = 1. In
each variational E-step, the variational parameters are adapted such that KL-
divergence between the variational approximation and P̂ (t)(θj |Dj) is minimized.

As a generalization to the finite-dimensional case we propose as update equa-
tions for t = 1, 2, . . .:

ξt
j,k =

P (Dj |θML
k )P̂ (t)(θML

k )∑M
k=1 P (Dj |θML

k )P̂ (t)(θML
k )

j = 1, . . . ,M k = 1, . . . ,M. (13)
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The M-step updates

P̂ (t+1)(θML
k ) =

1
τ + M

(
τg0(θML

k ) +
M∑
l=1

ξlδθML
l

)
k = 1, . . . ,M

with ξl =
∑M

j=1 ξj,l .
Note that the EM iterations are quite simple since many terms, such as

P (Dj |θML
k ), don’t change in the iterations. Also note the similarity to the finite-

dimensional case in Section 4.4.
Now, the prediction of an active model a ∈ 1, . . . ,M becomes

P (Ya = y|x, {Dj}M
j=1) ≈

τP̃ (Da)P̃ (Ya = y|x,Da) +
∑M

k=1 ξkP (Da|θML
k )P (Ya = y|x, θML

k )

τP̃ (Da) +
∑M

k=1 ξkP (Da|θML
k )

(14)

where we use
P̃ (Da) :=

∫
g0(θ)P (Da|θ) dθ

P̃ (Ya = y|x, Da) :=
1

P̃ (Da)

∫
g0(θ)P (Da|θ)P (Ya = y|x, θ) dθ.

Note the great similarity of this prediction equation to the prediction equa-
tion for the finite dimensional case (Equation 9) and the heuristically defined
solution of Equation 2: the second term in the numerator in Equation 14 contains
the model predictions using maximum likelihood parameter estimates, weighted
by the probability that models agrees with the data set of the active model
P (Da|θML

k ). Here, additional relevance weights ξk are included, which represent
the overall relevance of the models. If we look at Equation 13, it becomes clear
that the contribution of the j-th setting to the relevance weight ξk is essentially
determined by the term P (Dj |θML

k ) which means that a setting j which has
received a small number of data points contributes to all ξk, whereas a setting
j which receives a large number of data points will mostly contribute to ξj . In
our experiments we found that the weight of a model prediction in Equation 14
is mostly determined by the term P (Da|θML

k ) and that the ξk are more or less
of the same magnitude and thus have only a minor influence. Thus in many
applications one might refrain from the fitting of the variational parameters ξj,k

and use Equation 14 with ξk = 1, k = 1, . . . ,M .
The first term in the numerator of Equation 14 puts additional weight on the

prediction of the active model. In particular, it consists of the Bayesian prediction
of the active model a based on its own data P̃ (Ya = y|x, Da) weighted by τ and
the evidence of the data of the active model P̃ (Da). The latter term evaluates
the correctness of the prior modelling assumption.

Equation 14 is equivalent to the Bayesian prediction of the active model if
we use a prior proportional to

τg0(θ) +
M∑

k=1

ξkδθML
k
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which illustrates the similarity of this solution to the heuristically defined solu-
tion of of Equation 2, in particular with τ → 0. With τ → ∞ the prediction of
the active model is simply the prediction of the active model trained on its own
data, i.e., all models are independent and only rely on their own data. With a
finite τ we obtain the HB solution.

If compared to the Gibbs sampling approach, the variational EM solution has
several important advantages. Each model can be trained independently from
the other models just based on its own data set. Thus the solution is easy to
train, modular, and efficient and an additional model can easily be incorporated.
From a theoretical perspective, Gibbs sampling might be more appealing but one
should note its typically slow convergence and the slow mixing of the sampling
process in practice.

An advantage of the sampling approach is that it leads to an automated
clustering of the models, a feature that is not achieved in the variational EM
solution. On the other hand, if such a model clustering is of prime importance,
one can achieve it, for example, by a corresponding postprocessing step.

The variational approximation of Equation 12 uses maximum likelihood pa-
rameter estimates. This has the advantage that asymptotically, with an increas-
ingly large number of data points for the active model, the overall prediction con-
verges to the prediction of the active model. The same feature can be achieved
if the variational approximation is based on the maximum a posteriori (MAP)
parameter estimates of the models. The MAP estimate is more appropriate if
only few training data points are available. Alternatively, one could select for the
variational approximation sets of samples obtained from the posterior parameter
distributions for each model.

6 A Recommendation Engine

In this section we provide a summary of the application of nonparametric hier-
archical Bayesian modelling to information filtering. A more detailed description
can be found in [30].

Information filtering denotes a family of techniques that try to understand
people’s information needs, and then help them find the right information items
while filtering out undesired ones. In a very wide range of applications, such
as spam email filtering, news filtering, recommender systems for products (e.g.,
books, movies, CDs), and web navigation, information filtering is playing an
increasingly important role. Content-based filtering (CBF) and collaborative fil-
tering (CF) represent the two major information filtering technologies.

CBF has its root in the concept of relevance feedback in the information
retrieval literature (e.g., Rocchio’s algorithm [25]). It explores the similarity of
contents between information items (e.g., articles, paintings, music), to infer
which of the yet unseen items might be of interest for the active user, based on
some annotated examples previously given by the user. In contrast, collaborative
filtering methods typically accumulate a database of item ratings—explicitly
or implicitly—cast by a large set of users. The prediction of ratings for the
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active user is solely based on the ratings provided by all other users, under the
assumption that like-minded users share similar information needs. The method
does not rely on a description of the item’s content.

One major difficulty in designing CBF systems lies in extracting content
features that are sufficiently indicative. There is often a large gap between low-
level content features (visual, auditory, or others) and high-level user interests
(like or dislike a painting or a CD). In some other circumstances, the features
are not available at all.

On the other hand, pure CF only relies on user preferences, without incorpo-
rating the actual content of items. CF often suffers from the extreme sparsity of
the available data set, in the sense that users typically rate only very few items,
thus making it difficult to compare the interests of two users. Furthermore, pure
CF can not handle items for which no user has previously given a rating. Such
cases are easily handled in CBF systems, which can make predictions based on
the content of the new item.

We combine CF and CBF under the framework of nonparametric hierarchical
Bayesian modelling which leads to a model that combines the advantages of both
approaches. Essentially a CBF model is formed for every user and the predictions
are combined using the nonparametric HB approach using variational EM as
described in Section 5.3.

In our application, we focus on a survey of 642 paintings of 30 artists. A
web-based online survey is built to gather user ratings. In the survey, each user
gave ratings, i.e., “like”, “dislike”, or “not sure”, to a randomly selected set of
paintings. Finally we got a total of N = 190 users’ ratings. On average, each of
them had rated 89 paintings.

For each painting, we calculate the color histogram (216-dim.), the correla-
gram (256-dim.), the first and second color moments (9-dim.) and the pyramid
wavelet texture (10-dim.) to form a 491-dimensional feature vector.

We will examine the performance of various algorithms in terms of their
accuracy in predicting users’ interests in paintings. We used as our base user
models a probabilistic version of the support vector machine (SVM) [22] with
Gaussian kernels. Hybrid filtering 1 implements the nonparametric HB approach
using variational EM as described in Section 5.3; Hybrid filtering 2 is identical,
except that we set τ = 0; for SVM Content-Based filtering (CBF) we use τ →∞
and obtain independent user models; Collaborative filtering (CF) combines a
society of advisory users’ preferences to predict an active user’s preferences. The
combination is weighted by the Pearson correlation between the active user and
the other advisory users’ preferences. The algorithm applied here is described in
[7];

These algorithms are evaluated using two metrics. One is Top-L accuracy,
i.e., the proportion of truly liked paintings among L top ranked paintings. Since
normal users only care about the quality of the first set of returned items, this
quantity reflects the subjective quality of an information filter system. Secondly,
we evaluated the ROC (receiver operating characteristics) curve, which plots
sensitivity versus 1-specificity. Sensitivity is defined as the probability that a
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good painting is recommended by the system; and specificity is the probability
that a disliked painting is rejected by the system. By changing the cut point
(e.g., return top 10 or 20 paintings), a curve can be plotted. ROC curve is
insensitive to the prior distribution of liked (or disliked) paintings. The area
under the curve, called ROC sensitivity, measures the objective quality of the
ranking. A higher ROC sensitivity indicates a better ranking.

Fig. 4. Left: Top-L accuracy. Right: ROC curves. From [30].

In the application it was not required that a user rates all of the 642 paintings
in the survey; thus for each user we only partially know the “ground truth”
of preferences. As a result, the true top-L accuracy cannot be computed. We
thus adopt as accuracy measure the fraction of known liked paintings in the top
ranked L paintings. The quantity is smaller than true accuracy because unknown
liked paintings are missing in the measurement. However, in our survey, the
presentation of paintings to users is completely random, thus the distributions
of rated/unrated paintings in both unranked and ranked lists are also random.
This randomness dose not change the relative values of the compared methods.
Thus in the evaluation of the experiment it still makes sense to use the adopted
accuracy measurement to compare the three retrieval methods. The ROC curves
are insensitive to this problem.

In our experiments, we used a 10-fold cross validation scheme, in which we
pick up each fold as a set of active users and treat the rest as users in the data
base. We fix the number of given examples for each active user to be 20 (10 posi-
tive and 10 negative), and predict the user’s interests in the remaining paintings.
For each active user, recommendations for 10 different paintings are calculated.
Finally, the overall average performances and error bars are computed. 4 shows
the results. Both Top-L accuracy and ROC curve clearly indicate that the two
hybrid algorithms outperform CF and CBF. We found that the extracted paint-
ing features are poor indicators of human interests, which is the reason for the
bad performance of CBF. The ROC curves of the two hybrid filtering algorithms
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are essentially overlapping. However, Top-L accuracy suggests that hybrid filter-
ing 1 is slightly better.

7 Related Work in Machine Learning

Dirichlet process mixture models were introduced into machine learning by
Neal [20] [21] who used them to realize infinite mixture models. Dirichlet pro-
cesses were applied to realize infinite mixtures of Gaussians [23], infinite mix-
tures of Gaussian experts [24] and infinite hidden Markov models [3]. These
models are also based on nonparametric HB modelling but the application focus
is different: In these papers, there are no repeated measurements for a given
model ( i.e., in the plate model of Figure 2D, N = 1) and the focus is on model-
based soft clustering using an infinite mixture approach and on the realization
of an infinite mixture of experts solution. An inherent advantage of Dirichlet
process mixture modelling is that the number of clusters does not need to be
specified in advance but is automatically determined via the sampling process.
A small precision parameter τ leads to few clusters whereas a large precision pa-
rameter leads to many clusters. Thus in those applications a sensible tuning of τ
is required. In those papers the sampling procedure described in the appendix is
used. A hierarchical Dirichlet process model was recently introduced to model hi-
erarchical unsupervised structures [27]. Mathematically demanding variational
mean-field approximations were applied to Dirichlet processes in [6] and [31].
Some of the work on the development of self-organizing maps for the clustering
of probabilistic models can also be related to nonparametric HB modelling [17].

Examples of the application of HB to machine learning are probabilistic
clustering [8], the finite-dimensional HB approach by [4] [5] who used HB in the
context of a model for latent semantic analysis and information retrieval and the
application of neural networks models to HB [16] [2].

8 Conclusions

Nonparametric hierarchical Bayesian modelling is a powerful and flexible ap-
proach for multi-agent learning if agents need to share learned knowledge. We
introduced the basic background and the common inference approach via Gibbs
sampling. We described a variational EM solution that leads to excellent results
in a multi-agent learning framework. The main advantages of the EM solution
are its modularity, low computational complexity, intuitive plausibility and good
performance. Many variants of nonparametric hierarchical Bayesian modelling
have been used in the literature with various combinations of model specific
parameters, shared parameters and Dirichlet enhanced distributions and with
varying levels of hierarchies (see, for example, [28] and [27] ). Thus nonparamet-
ric hierarchical Bayesian modelling is quite flexible and might find an increasing
number of applications in multi-agent learning.
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9 Appendix

9.1 Definition of a Dirichlet Process

The theorem asserts the existence of a Dirichlet process and also serves as a
definition [14]. Let (IR,B) be the real line with the Borel σ-algebra B and let
M(IR) bet the set of probability measures on IR, equipped with the σ-algebra
BM .

Theorem 1 Let α be a finite measure on (IR,B). Then there exists a unique
probability measure Dα on M(IR) called the Dirichlet process with parameters α
satisfying:

For every partition B1, B2, ...., Bk of IR by Borel sets
(P (B1), P (B2), . . . , P (Bk)) is Dir(α(B1), α((B2), . . . , α((Bk))

9.2 Equivalence of Dirichlet Enhanced HB to Mixture Models

Fig. 5. Left: The mixture model. Right: The plate model. Note that in contrast to the
HB model, all parameters are global parameters.

Finite Mixture Models: In Section 4 we had concluded that the prior distri-
bution in HB must be made flexible and we introduced the process of Dirichlet
enhancement. Thus we obtained a highly flexible prior distribution that per-
mitted the sharing of knowledge between models. An alternative solution is the
mixture of models approach presented here (see Figure 5).

The predictive model of the mixture model is

P (Y = y|x) =
K∑

k=1

P (Z = k)P (Y = y|x, k)
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where Z is a latent variable with states 1, . . . ,K. It is now uncertain which model
generated the data for the active setting such that

P (Da, Ya = y|x) =
K∑

k=1

P (Z = k)P (Da|k)P (Ya = y|x, k).

To classify a new pattern, we thus obtain

P (Ya = y|x,Da) =
∑K

k=1 P (Z = k)P (Da|k)P (Ya = y|x, k)∑K
k=1 P (Z = k)P (Da|k)

.

Please, note the similarity of this equation to Equation 9 that deals with the
finite-dimensional Dirichlet enhanced case.

It now turns out that there is an exact equivalence with the finite-dimensional
Dirichlet enhanced model in Section 4 if:

– the likelihood models for HB and the mixture approach are identical

P (Ya = y|x, k) = P (Ya = y|x, θk),

– the same parameter vectors {θk}K
k=1 are selected,

– the prior for Z is a multinomial,

P (Z = k) = pk

– which is generated from a Dirichlet distribution with

p1, . . . , pK ∼ Dir(τα1, . . . , ταK).

Details can be found in [21] and the graphical model and plate model are
shown in Figure 5.

Infinite Mixture Models: It turns out that the equivalence also holds if we let
K →∞ in which case we obtain an infinite mixture model, which is equivalent
to a Dirichlet process mixture model (Section 5), if we chose as prior parameter
distribution

P (θk) = g0(θk) ∀k,

and with
p1, . . . , pK ∼ Dir(τ/K, . . . , τ/K).

Stochastic sampling based on this model can be implemented as follows [21]:
One first updates the latent variables {Zj}M

j=1. Let consider the update of Zj ,
which denotes the latent variable which is associated with the j-th model (Fig-
ure 5). As in nonparametric HB, a new sample depends on the states of the
latent variables of the remaining variables which might also be clustered. Let
Nk be the number of variables in the set {Zl}M

l=1, which are in state k, without
counting the state of Zj , i.e.,

∑
k Nk = M − 1.
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Then for all states with Nk > 0

P (Zj = k|{Zl}l 6=j , Dj , θ) ∝ NkP (Dj |θk).

A new state is generated with probability

P (Zj 6= k for all k 6= j|{Zl}l 6=j , Di, θ) ∝
1
C

τP̃ (Dj)

with P̃ (Dj) :=
∫

g0(θ)P (Dj |θ) dθ. In the first case, the j-th model inherits the
parameters of the models assigned to state k and in the latter case, a new θ is
drawn from P (θ|Dj).

Typically after one update of all latent variables, the model parameters are
all updated. E.g., for all models in state k, a new θk is drawn from

1
C

g0(θk)
∏

{j:Zj=k}

P (Dj |θk).

The advantage of this sampling scheme is that at each round all parameters are
re-sampled and typically assume new values whereas in the sampling schemes de-
scribed in Section 5.2 it is rather unlikely that clustered parameters will assume
new values since only one parameter is re-estimated at a time.

Neal [21] discusses additional advanced sampling techniques.
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