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Abstract

Most latent feature methods for recommender systems learn to en-
code user preferences and item characteristics based on past user-item
interactions. While such approaches work well for standalone items (e.g.,
books, movies), they are not as well suited for dealing with composite
systems. For example, in the context of industrial purchasing systems
for engineering solutions, items can no longer be considered standalone.
Thus, latent representation needs to encode the functionality and techni-
cal features of the engineering solutions that result from combining the
individual components. To capture these dependencies, expressive and
context-aware recommender systems are required. In this paper, we pro-
pose NECTR, a novel recommender system based on two components: a
tensor factorization model and an autoencoder-like neural network. In
the tensor factorization component, context information of the items is
structured in a multi-relational knowledge base encoded as a tensor and
latent representations of items are extracted via tensor factorization. Si-
multaneously, an autoencoder-like component captures the non-linear in-
teractions among configured items. We couple both components such that
our model can be trained end-to-end. To demonstrate the real-world ap-
plicability of NECTR, we conduct extensive experiments on an industrial
dataset concerned with automation solutions. Based on the results, we
find that NECTR outperforms state-of-the-art methods by approximately
50% with respect to a set of standard performance metrics.
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1 Introduction

In the context of recommender systems, collaborative filtering methods predict
the interest of a user for items by considering past user-item interactions of
similar users. Many popular collaborative filtering methods are based on the
idea of learning latent representations for items and users. In that setting, the
recommendation task is solved by scoring user-item pairs via some function
of the latent features. Popular approaches are based on matrix factorization
(MF) and have been applied with great success in the past, e.g., in the Netflix
challenge [1] and in Amazon’s item-to-item collaborative filtering method [10]).
Most factorization methods model the relation between users and items via dot
products of the corresponding latent features. This implies, that – when either of
the two latent factors is fixed – the recommendation engine becomes essentially
linear. While this limited expressiveness suffices to capture the relations between
the users and standalone items of similar type, MF-based methods are not well
suited for dealing with heterogeneous (i.e., diverse in nature) items that interact
with each other to form a complex system.

Nevertheless, such scenarios are commonplace when users configure modular
products consisting of many different components (e.g., computers or IT infras-
tructure solutions). This setting imposes additional challenges on collaborative
filtering systems. It is often the case that the functionality of the whole system
depends on the technical properties of the individual components. Therefore,
the need arises to model this context information explicitly. Moreover, instead
of encoding preferences that the user has revealed in the past, latent features
need to encode the functionality of the system that arises by combining the
individual components. Depending on the complexity of the configured system,
this may result in higher-order (i.e., non-linear) dependencies among the items.

Deep neural networks have proven to be highly effective in extracting hid-
den, non-linear representations from raw input data for a variety of tasks (e.g.,
natural language processing [16], computer vision [9], and speech recognition
[8]). In particular, autoencoders are invaluable for learning efficient data rep-
resentations in an unsupervised manner, and are often used for denoising, as
generative models, as well as for producing latent representations that can be
employed for further downstream tasks. Related to our use case, [15] and [6]
describe architectures that integrate autoencoders into recommender engines.
While these methods are capable of taking some context information into ac-
count, they only consider a setting with rather homogeneous items (books and
movies, respectively) that all share the same (fairly small) set of features. The
main challenge when dealing with highly modular, technical systems is, how-
ever, to find an efficient way to encode the numerous technical properties of
items that belong to different device categories and thus have different feature
sets. Moreover, this information must be channeled and merged with historical
data efficiently to meet the requirements of real-world, industrial applications.
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Figure 1: The architecture of NECTR: We merge both historical data and
technical information from industrial databases to form a joint multi-relational
knowledge graph. Then we extract context-aware embeddings by factorizing the
corresponding adjacency tensor. The resulting latent representations of items
are employed in the output layer of an autoencoder-like neural network that is
trained to score items based on the current configuration.

Present work.

In this work, we present NECTR (Neural Encoders Combined with Tensor
Decompositions for Recommendations) – a novel hybrid recommender system
based on the combination of autoencoders and tensor factorizations. The ba-
sic idea is to form a graphical, multi-relational knowledge base, which contains
technical information about items as well as historical user-item interactions.
By factorizing the resulting adjacency tensor, one obtains semantically mean-
ingful embeddings that preserve local proximity in the graph structure. We
leverage this information by coupling the tensor factorization with a deep learn-
ing autoencoder via a weight-sharing mechanism. The architecture of NECTR
is illustrated in Figure 1.

In order to demonstrate the practical benefits of NECTR, we conduct exten-
sive, large scale experiments in a real-world industrial setting. The underlying
data consists of around 50,000 engineering solutions (from the automation do-
main), 6,000 configurable items, and around half a million technical properties
of items.1 Our main findings are:

• NECTR outperforms all state-of-the-art methods that we considered by a
large margin. In some of the most important metrics we achieve perfor-
mance gains of more than 50%.

• NECTR can be efficiently trained in an end-to-end fashion. Moreover,
recommendations can be executed in real time via a simple forward pass.
This is crucial in real-world applications, since we require that the recom-
mender system works in real time while the user is configuring a solution.

1The anonymized data along with implementations of all methods that we consider in this
paper can be found under https://github.com/m-hildebrandt/NECTR.
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2 Background and Mathematical Notation

Before proceeding, we define the mathematical notations that we use for this
paper and provide the necessary background on automation solutions and knowl-
edge graphs.

2.1 Notation

Throughout this work, we use the following notation: Scalars are given by
lowercase letters (x ∈ R), column vectors by bold lowercase letters (x ∈ Rn),
and matrices by uppercase letters (X ∈ Rn1×n2). The i-th row and j-th column
of matrix X are denoted as Xi,: ∈ Rn2 and X:,j ∈ Rn1 , respectively. Further, for
I ⊂ {1, 2, . . . , n1}, XI ∈ R|I|×n2 indicates the matrix formed by the rows of X
indexed by elements in I. Third-order tensors are given by bold uppercase letters
(X ∈ Rn1×n2×n3). Slices of a tensor (i.e., two-dimensional sections obtained
by fixing one index) are denoted by Xi,:,: ∈ Rn2×n3 , X:,j,: ∈ Rn1×n3 , and
X:,:,k ∈ Rn1×n2 .

2.2 Automation Solutions

Automation systems are closely related to control theory. Usually, the goal
is that a set of variables in a system takes a prescribed value or varies in a
prescribed way (a classical example is a heating unit with a thermostat and a
controller). In this work we are concerned with industrial automation employed
in manufacturing processes and machinery. Thereby, the employed solutions
consist of a wide variety of components such as sensors, software, controllers,
and human machine interfaces. Many of these components are general-purpose
and can be applied in various industries, such as car manufacturing, bottling
plants, pharmaceutical production, and oil refinery. However, the suitability of
some components can also be heavily influenced by non-functional requirements,
which arise in certain domains. Examples for such non-functional requirements
may include environmental conditions, such as high temperatures and humidity,
or legal requirements, as in food, pharmaceutical, or energy production. As
an example, a cooling system in the food industry might contain the same
functional components as the cooling of a nuclear power plant, however, in
the latter case, fail-safe components are required. Selecting a consistent set of
components is complicated as there are lots of interdependencies due to protocol
standards or technical compatibility constraints. The large amount of such
restrictions, the diversity of application domains, and in some cases, also the
rather soft character of constraints prohibit the formulation of handcrafted,
universally valid rules that are typically used in product configurators for less
complex systems. Thus, in the context of automation solutions, recommender
systems need to be sufficiently expressive to model the complex interplay of
components while also taking technical properties into account.
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Figure 2: An example of an industrial knowledge graph

2.3 Knowledge Graphs

In our approach, we make use of a knowledge graph to capture technical infor-
mation describing configurable items and past solutions. All considered entities
correspond to vertices in a directed graph with typed edges. We denote the
indexed set of entities by E and the indexed set of binary relations by R with
r ⊂ E × E for all r ∈ R. Further, consider nE := |E| and nR := |R|, i.e., the
number of entities and relations, respectively. Figure 2 shows an excerpt of a
knowledge graph in an industrial setting.

A triple of the form (ei, rk, ej) with (ei, ej) ∈ rk is interpreted as a true
fact. Given a relation rk ∈ R, the characteristic function φrk : E × E → {0, 1}
indicates the truth value of triples. More concretely, φrk(ei, ej) = 1 (0) implies,
that the corresponding triple (ei, rk, ej) is interpreted as a true (unknown) fact.
The entirety of all characteristic functions induces an adjacency tensor X ∈
RnE×nE×nR with Xi,j,k = φrk(ei, ej).

Most knowledge graphs that are currently in use are far from being complete
in the sense that they are missing many true facts about the entities at hand.
Therefore, one of the canonical machine learning tasks applied to knowledge
graphs consists of predicting new edges (i.e., facts) given the remaining connec-
tivity pattern. This problem of link prediction is sometimes also referred to as
knowledge graph completion.

One of the most popular knowledge graph completion methods is given by
RESCAL [13]. RESCAL is based on factorizing the frontal slices of the adja-
cency tensor X as a product of the factor matrix E ∈ RnE×d and the frontal
slices of a core tensor R ∈ Rd×d×nR . d is a hyperparameter that indicates the
number of latent dimensions. This leads to

Xi,j,k ≈ Ei,:R:,:,kE
T
j,: . (1)

The parameters of RESCAL are usually obtained by minimizing the sum
of the squared residuals between the observed and the predicted entries of X.
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Hence, the objective function is given by

loss(X, E,R) =

nR∑
r=1

||X:,:,r − ER:,:,rE
T ||2F , (2)

where || · ||F denotes the Frobenius norm. Usually this optimization problem
is solved via alternating least squares. After fitting the model, the rows of E
contain latent representations of the entities in E . Similarly, each frontal slice
of R contains the corresponding latent representations of the different relations
in R.

3 Related Methods

3.1 Recommender Systems

Most recommender systems are based on collaborative filtering (e.g., [1], [10]).
These methods aggregate the preferences of users and generate recommenda-
tions based on user similarities in overall preference patterns. However, they
sometimes suffer from the sparsity of data, i.e., the lack of adequate prefer-
ence information. One of the ways to tackle this issue is to consider content
information about the users/items as in content-based recommender systems.
In their simplest form, content-based recommender systems are classifiers that
map user and item information to the selection probability. Refer [11] for a
survey of the related literature and state-of-the-art content-based recommender
systems. Applying a purely content-based approach to our use case of industrial
purchasing systems would ignore previous configuration patterns, which encode
implicit requirements for automation solutions.

Hybrid recommender systems are those that use a combination of collabora-
tive filtering and content-based approaches. They aim to balance the drawbacks
of each individual approach and thereby achieve better performance. A detailed
review of the various hybrid approaches is presented in [4]. [5] propose a hybrid
recommender system where item categories are used as a means of determining
user preferences. While this method is useful in domains involving homogeneous
items, it is not well suited for complex industrial use cases, such as ours, where
the customer preferences are guided by implicit requirements of the solution
currently being built.

To tackle these use cases, [7] proposes RESCOM – a multi-relational rec-
ommender system, which combines historical data about solutions along with
context information about items in a joint knowledge base. More concretely,
RESCOM employs RESCAL (Section 2.3) to generate recommendations by pro-
jecting partial solutions into the corresponding low-dimensional space. However,
RESCOM suffers from one shortcoming: while acting as a bilinear model for
capturing interactions among items, RESCOM becomes linear in the recommen-
dation step. Thus, it is not capable of capturing complex non-linear interactions
among the items.
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3.2 Autoencoders

Autoencoders (AE) are unsupervised neural networks wherein the output aims
to reconstruct the input. While different versions of AE have been proposed ([2],
[12], [14]), they all share two main building blocks: an encoder and a decoder.
The encoder network g : Rn → Rd, with d� n, takes a given input x ∈ Rn and
maps it to a condensed representation g(x). Subsequently, the decoder network
f : Rd → Rn takes g(x) as input and maps it to a reconstructed version of x.
During training, the parameters of f and g are tuned such that f

(
g(x)

)
≈ x.

AE have also become a popular tool for collaborative filtering. [15] use AE
to construct a hybrid recommender system. They incorporate side information
by including item features at various layers of the AE. On a similar note, [6]
propose a stacked AE that simultaneously encodes item and user features. It
achieves good performance on two benchmark datasets with rather homogeneous
items and relatively few features. In this sense, their use case significantly differs
from ours: we consider items belonging to different categories (e.g., controllers,
panels, and power supplies) and possessing category-specific features (e.g., reso-
lution of a panel or the line voltage of a power supply). Combined with the sheer
amount of technical attributes that we consider, encoding all these features and
processing them directly via a neural network is not feasible.

4 Our Method – NECTR

In this paper, we propose NECTR, a recommender system consisting of two main
components. One component is a knowledge graph that enables our model to
structure context information about items. We make use of this information for
recommendation purposes via a tensor factorization method described below.
The second component consists of a neural network that acts as an encoder
for solutions. We combine the two constituent components analogous to an
AE structure resulting in a hybrid recommender engine. First, we introduce the
problem setup in which NECTR was developed. Then, we proceed by describing
the architecture of NECTR.

4.1 Problem Setup

This work evolved from a real-world industrial R&D project at Siemens. The
project was centered around one of the major product configuration tools for
automation solutions that has around 60,000 users per month. The purpose of
the tool is to simplify the configuration process by providing intelligent selec-
tion wizards. Configuring an automation solution, however, is still not an easy
task. As stated in Section 2, automation solutions can be very complex and be
comprised of a wide range of subsystems and components, such as controllers,
panels, and software. Each component is equipped with different features that
must guarantee the operation of the overall system. Up to this point, with-
out the help of experts, the configurator does not indicate to the user which
components are relevant to the current solution. Hence, configuring a suitable
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solution requires domain expertise and a lot of effort. Our goal is to overcome
this obstacle by either recommending a set of items that complement the users’
current partial solutions or by reordering the list of all items based on their
relevance (i.e., displaying the items that are most relevant first). Therefore, it is
necessary to compute relevance scores for all items, such that the scores adjust
dynamically depending on the components the user has already configured in
the partial solution.

To reach this goal, we consider implicit feedback as training, validation, and
testing data. For our purpose, a solution is represented as a vector x ∈ NnI ,
where nI denotes the total number of configurable items. The i-th entry of x
indicates the multiplicity of the corresponding item (i.e., the number of times an
item has been added to the current solution). For training and testing purposes,
a partial solution x̂ ∈ NnI is obtained by randomly masking an observed solution
by setting half of the positive entries to zero. A model is trained and evaluated
with regards to its ability to recover the original solution x (i.e., to assign a high
relative score to the masked items).

The predictive accuracy of a method is measured in terms of metrics that
directly relate to our practical use case (see Section 5.2 for more details). In
other words, the quality metrics, i.e., Mean Rank, Mean Reciprocal Rank, and
Hits@k, measure the model’s ability to accurately rank items. Furthermore, the
scores obtained can be used either to explicitly recommend the highly ranked
items or to sort the product list in decreasing order of scores, thereby placing
the most relevant items on top. Hence, a model performing well with respect to
the above mentioned metrics is also likely to be of practical use when integrated
into a solution configurator.

4.2 Architecture

We merge both historical data concerning past automation solutions and tech-
nical information about components from an industrial database to form a joint
multi-relational knowledge graph with entity set E and relation set R (recall
Section 2.3). Moreover, we denote with X ∈ RnE×nE×nR the corresponding
adjacency tensor. In our use case, an entity can be a particular solution, a
particular item, or a technical attribute (e.g., the category or the line voltage)
describing an item (see Figure 2 for an example). Relations are used to describe
connections between entities. For example, solutions may be linked to items
via the contains-relation, which indicates the items that are configured in a
particular solution. Other relation types link items to their respective technical
attributes (see the next Section 5 for more details about the data). To ease
the notation, we denote with I ⊂ E the set of all entities that correspond to
configurable items.

We use RESCAL (as described in Section 2.3) to generate embeddings for all
entities contained in the factor matrix E. In particular, EI contains the latent
features of all configurable items. Hence, if items are similar from a technical
point of view or if they are often configured together, they will be close to each
other in the latent feature space. In RESCAL, we employ the modified loss
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function

LC =
∑

(ei,rk,ej)

(ei,ej)∈φ−1
rk

({1})

(1− Ei,:R:,:,kE
T
j,:)

2 + (Ei,:R:,:,kE
T
l,:)

2 , (3)

where the second summand corresponds to a negative sample drawn from a
contrastive distribution. Thereby, we draw the l-th entity in the negative sam-
ple uniformly at random from the set of entities that appear as object in an
observed triple with respect to the k-th relation. This sampling procedure can
be interpreted as an implicit type constraint which teaches the algorithm to dis-
criminate between known triples on one side and unknown but plausible triples
on the other side. The main advantage of this formulation is that we can deal
with very high levels of sparsity since Equation (3) balances positive and nega-
tive examples. Since our data is extremely sparse (in fact, only about 3 · 10−6%
of the entries in X are non-zero), we empirically found that minimizing the
loss given by Equation (2) results in fitting mostly the zeros in X leading to
degenerate results.

In order to obtain embeddings for the automation solutions, we process the
partial solutions x̂ ∈ RnI (see Section 4.1) via a feed forward neural network.
More concretely, we use a dense neural network g : RnI → Rd in order to ex-
tract high-level representations of solutions that capture non-linear interactions
between the configured items. For simplicity, we constrain the output dimen-
sion of all hidden layers to be equal to d. Further, we employ ReLU activation
functions in all hidden layers. No non-linearity is applied in the output layer.

Moreover, consider the binary version y ∈ {0, 1}nI derived from x with
yi = 1xi>0. That means each entry of y indicates whether or not the corre-
sponding item is contained in the solution. NECTR is fitted such that it recovers
the original, binary solution y from the partial solution x̂ containing the item
counts. The underlying rationale behind this setup is that we want NECTR
to learn whether an item is relevant in the context of a partial solution and in
turn recommend this item to the user. Considering the actual counts in x as
target variables would have resulted in an unwanted bias towards items that are
frequently configured in large number (such as cables or sockets).

In a regular AE, one would employ a decoder network which mirrors the
action of g in order to obtain a reconstruction of x̂. We, however, introduce a
so-called context layer which induces side information into the AE architecture.
This is realized by multiplying the latent representation of x̂ with the item
embeddings obtained from the tensor factorization, followed by a non-linearity.
More concretely, we obtain

σ(EIg(x̂)) =: ỹ , (4)

where σ(·) denotes the sigmoid function. Then NECTR is fitted such that the
output approximates the original, binary solution, i.e., ỹ ≈ y. Entries of the
reconstruction can be interpreted as scores indicating the relevance of an item
for a given partial solution. They can be used to produce a ranked list and
items that have the highest rank can be recommended to the user.
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Equation (4) can be interpreted as an implicit similarity search in the latent
feature space, where the discrepancy between solutions and items is measured
in terms of the cosine distance. However, this might not be appropriate in a
setting where the items are very heterogeneous and belong to different cate-
gories. Moreover, [7] find that after fitting the parameters of RESCAL, items
of industrial automation solutions cluster in the latent feature space according
to their categories. That is why it may not be appropriate to consider a single
latent representation of a solution and compare it to all items across different
categories. As a remedy to this problem, we propose category-specific transfor-
mations of the solution and compute the reconstructed version for each category
separately. To ease the notation, let Cati ⊂ I denote the index set of items that
belong to the i-th category. A category-specific reformulation of Equation (4)
is given by

σ(ECatiAig(x̂)) =: ỹCati , (5)

where Ai ∈ Rd×d denotes a category-specific linear mapping. The reconstructed
solution ỹ is obtained by concatenating all ỹCati . Note that this alternative
formulation does not lead to an increase in the computational complexity. We
refer to the resulting method as NECTRcat.

The parameters of the AE-like component are obtained by minimizing the
recommendation loss given by

LR = −
nS∑
i=1

nI∑
j=1

y
(i)
j log(ỹ

(i)
j ) + (1− y

(i)
j ) log(1− ỹ

(i)
j ) , (6)

where nS denotes the number of solutions in the training data. The index sets of
the two sums are ranging over all solutions and all items, respectively. Further,
after consulting domain experts in the field of industrial engineering solutions,
we conjectured that nonlinear interactions between items are present, but not
necessarily numerous. That is the reason for adding an additional L1-regularizer
on the weight matrices of g to induce sparsity.

The overall loss function of our recommender system is given by

L = LR + λLc + regularization term , (7)

where λ > 0 balances the completion and the recommendation loss. This leads
to the interpretation that the inclusion of the knowledge graph embeddings acts
as a context-aware regularization. The whole model can be trained end-to-end
by minimizing the loss given by Equation (7) using stochastic gradient descent.
Figure 1 summarizes the architecture of NECTR.

5 Real-World Experimental Study

5.1 Data

The evaluation has been performed on the real-world dataset collected in the
context of an internal R&D project at Siemens. We distinguish between two
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sources of information: historical shopping data and product descriptions. His-
torical shopping data contains the specifications of 49,829 engineering solutions
that have been configured by customers in the past. While some additional
structural information is available, for the purposes of this study, we treat each
engineering solution as a list of products used along with their respective quan-
tities. Each of the 6,136 products that has been used in one of the historical
solutions comes with a spec sheet, which summarizes its technical character-
istics. Further, we distinguish between 5,062 possible attributes – with only
a small part being relevant for any given item. One example of an attribute
of particular importance is the product category. We distinguish between 8
categories, namely Industrial Communication, IPC, I/O System, Panel, Cables
and Plugs, Software, Controller, and Industrial Control. In certain cases, a
more granular categorization is available, e.g. Mobile Panel, Basic Panel, and
Comfort Panel.

5.2 Evaluation

To guarantee a fair evaluation in a realistic setting, we follow the same experi-
mental setup and evaluation scheme: First, we split the solutions in our dataset
into training, validation, and test sets in the ratio 70-20-10. In particular, so-
lutions that are assigned to the validation or test set are neither included in
the knowledge graph nor are processed by the neural network g during training.
Next, for each method, we perform cross-validation in order to choose the most
suitable set of hyperparameters, i.e., the one yielding the highest mean recipro-
cal rank. The number of the latent dimensions for the embeddings is chosen from
the range {10, 30, 50, 70, 90}. For the neural network, the number of hidden lay-
ers and neurons per layer are chosen among {1, 2, 3} and {5, 15, 25, 35, 45, 50},
respectively. Moreover, the L1-regularization strength was set to 0.01 and λ
was chosen from {0.01, 0.1, 1}. Equation (7) was minimized using Adam with
learning rate given by 0.01. Finally, we evaluate each method on the test set
using the best hyperparameters and report the results.

For evaluation, we construct an adjacency matrix of solutions and configured
items. For each solution, we randomly choose half of the configured items and
mask the corresponding entries. Let M = (s, i) denote the set of masked items
per solution and nM := |M| denotes the number of masked items. Further, since
we find that the solution data is rather skewed, we perform a log-transformation
on the raw-input (i.e., the item counts). We then perform a forward pass through
the neural network followed by a multiplication with the item embeddings ob-
tained from the tensor factorization (see Equation (4)), to obtain a completed
matrix. Each row in this matrix corresponds to a solution and the entries in
each row are interpreted as scores that determine the likelihood of configuration
of the corresponding items in the solution. Based on this interpretation, the
items are reordered row-wise, in decreasing order of their scores, resulting in
a rank Ri,s for each item. Based on these predicted ranks, we compute the
following performance metrics:
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• Mean rank – Average of the ranks predicted for the items, given by

Mean rank =
1

nM

∑
(s,i)∈M

Ri,s .

• Mean reciprocal rank (MRR) – Average of the multiplicative inverse of
the predicted ranks, as given by

MRR =
1

nM

∑
(s,i)∈M

1

Ri,s
.

The choice of the MRR is motivated by its stronger robustness to outliers
as compared to the Mean rank.

• Hits@k – The proportion of correct entities ranked in the top k, i.e.,

Hits@k =
|Ri,s < k|

nM
.

More specifically, we report the values for k = 1, 3, 5, 10, and 10%.

Furthermore, to tackle the bias introduced by the true triples (as noted in
[3]), we report all the above metrics in two settings: raw (where all triples are
included in ranking) and filtered (where all true triples, except the test triple in
consideration, are excluded from the ranking).

5.3 Results

Table 1 displays the results of the recommendation task for all methods un-
der consideration. As described previously in Section 1, matrix factorization,
especially non-negative matrix factorization (NMF), has consistently produced
good results in recommender systems. So we include results of evaluating NMF
in our experimental setting. Recommending items corresponds to proposing
new edges of type contains in the knowledge graph (see Figure 2). Hence, the
recommendation task is equivalent to the graph completion task restricted to
proposing links between solutions and items. That is the reason for also eval-
uating TransE [3], a translational model popularly used for link prediction. In
addition, we present the results of evaluating RESCOM – a tensor factorization-
based recommendation engine developed in the context of engineering solutions
(see Section 3). The best hyperparamters for NECTR (NECTRcat) are deter-
mined via the cross-validation setting described in the previous subsection. The
reported results correspond to the following hyperparameter values: The num-
ber of latent dimensions is 90 (30), the number of hidden layers is equal to 1
(3), the number of hidden neurons are given by 45 (30), λ = 0.1 (0.01), and the
L1-regularization strength is equal to 0.01 (0.01).

The filtered setting produces lower Mean ranks and higher values of MRR
and Hits@k for all the methods, as expected. As described in Section 5.2, this
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Table 1: Results of all evaluated methods on the test set of the automation solution
dataset.

Metric Mean Rank MRR Hits@10% Hits@1 Hits@3 Hits@5 Hits@10
Eval. Setting Raw Filt. Raw Filt. Raw Filt. Raw Filt. Raw Filt. Raw Filt. Raw Filt.

TransE 392.01 385.79 0.06 0.07 0.73 0.83 0.02 0.02 0.05 0.07 0.08 0.11 0.14 0.16
NMF 223.2 215.87 0.10 0.25 0.92 0.92 0.016 0.16 0.08 0.27 0.17 0.32 0.31 0.42

RESCOM 160.63 152.66 0.08 0.19 0.95 0.96 0.003 0.08 0.05 0.2 0.13 0.28 0.28 0.41
NECTR 193.04 185.20 0.13 0.31 0.94 0.94 0.03 0.22 0.11 0.34 0.20 0.40 0.37 0.50

NECTRcat 148.82 142.17 0.16 0.27 0.95 0.95 0.06 0.18 0.16 0.28 0.23 0.35 0.36 0.46

setting offers a better evaluation of the real-world performance. NECTR (or
NECTRcat) outperforms all methods in all of the standard metrics except for
Hits@10%. In particular, the performance gains measured by MRR and Hits@k
are substantial. Related to our use case, this indicates that NECTR is capable
of placing relevant items on top of the list with the highest probability. Further-
more, we find that NECTRcat outperforms all other methods with respect to
the Mean Rank by a large margin, while yielding comparable results to NECTR
with respect to the other performance measures.

The large improvements that NECTR achieves compared to other methods
show the presence of non-negligible, higher order interactions as well as the
necessity to consider context information. RESCOM deviates from NECTR
in the sense that it employs RESCAL directly to produce recommendations
(see Section 3). Thus, RESCOM is not able to model non-linear effects among
the configured items. Hence, the large performance gains of NECTR can be
attributed to this feature. Moreover, NECTR also comprises a model that
does not take context information into account. This is achieved by setting λ
in Equation (7) to zero. We found that this model is strictly dominated by
a context-aware version of NECTR with respect to all performance measures
(result not shown).

5.4 Additional Experiments

In this section, we evaluate and compare NECTR on the standard benchmark
dataset Movielens 1M.2 After preprocessing, it contains around 1 million rat-
ings from 6,038 users on 3,533 movies along with demographic information about
users (age, occupation, and gender) and the genres of the movies. Movielens 1M
differs from the automation solution dataset in the sense that the items under
consideration (movies) are stand-alone homogeneous items. Further, the con-
text information is a lot less rich and less diverse (recall, items in the automation
solution use case come with more than 5,000 different attributes). Thus, we do
not expect that NECTR can demonstrate its advantages as in the automation
solution use case. Following [6], we binarize explicit data by keeping the ratings
of four or higher and interpret them as implicit feedback that the user liked the
corresponding movies. In order to inject the context information about users
into NECTR, we consider the implicit feedback movies liked by a user concate-
nated with the demographic information about the corresponding user as input

2https://grouplens.org/datasets/movielens/1m/

13



Table 2: Results of all evaluated methods on the MovieLens 1M dataset.
Metric Mean Rank MRR Hits@10% Hits@1 Hits@3 Hits@5 Hits@10

Eval. Setting Raw Filt. Raw Filt. Raw Filt. Raw Filt. Raw Filt. Raw Filt. Raw Filt.

TransE 642.90 539.77 0.01 0.02 0.44 0.51 0.001 0.002 0.004 0.008 0.01 0.01 0.02 0.03
NMF 556.43 440.15 0.012 0.06 0.58 0.68 0.0002 0.02 0.002 0.05 0.004 0.08 0.02 0.12

RESCOM 431.18 316.62 0.02 0.07 0.66 0.77 0.002 0.03 0.008 0.07 0.02 0.1 0.04 0.15
NECTR 398.87 294.36 0.03 0.07 0.64 0.74 0.006 0.03 0.02 0.06 0.03 0.08 0.05 0.14

vector x̂ to the neural encoder g. The experimental setting and the evaluation
scheme are identical to the previous subsections. The chosen hyperparamters
for NECTR are as follows. The number of latent dimensions is 10, the number
of hidden layers is equal to 2, the number of hidden neurons are given by 40,
λ = 0.1, and the L1-regularization strength equals 0.01.

The results are presented in Table 2. As argued above, given the limited
complexity of the data, it cannot be expected that NECTR leads to similar
performance gains like in Section 5.3. Nevertheless, NECTR outperforms all
other methods with respect to the Mean rank by a large margin and leads to a
comparable performance with respect to the other metrics.

6 Conclusion

Traditional collaborative filtering methods are not expressive enough in a setting
where multiple components form a complex system and technical properties of
items play a crucial role. This is the case for industrial engineering solutions
where the individual components interact with each other, resulting in higher-
order dependencies. Popular methods, such as matrix factorization, are not
able to capture such non-linear effects. To address these shortcomings, we have
proposed NECTR – a novel recommender system, which combines deep rep-
resentation learning and context information structured in a knowledge graph.
While a tensor factorization exploits context information of the available items,
an autoencoder models the non-linear dependencies inherent to automation so-
lutions.

We conducted extensive experiments on a real-world dataset for industrial
automation solutions. The main findings are:

1. NECTR outperforms all baseline methods with respect to most metrics.
This shows the presence of non-linear interactions as well as the necessity
to include context information.

2. NECTR can be trained efficiently end-to-end. Since the recommendation
step is performed via a simple forward pass through a neural network,
NECTR can efficiently work in real-time. This is crucial with regard to
its practical applicability.

Finally, we would like to stress that this work evolved from a real-world
industrial R&D project. In the following months, we will take further steps to-
wards integrating NECTR into one of the major industrial engineering solution
configurators at Siemens.
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