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Abstract

Embedding learning, a.k.a. representation learning, has been shown to be able to
model large-scale semantic knowledge graphs. A key concept is a mapping of the
knowledge graph to a tensor representation whose entries are predicted by mod-
els using latent representations of generalized entities. Latent variable models are
well suited to deal with the high dimensionality and sparsity of typical knowl-
edge graphs. In recent publications the embedding models were extended to also
consider time evolutions, time patterns and subsymbolic representations. In this
paper we map embedding models, which were developed purely as solutions to
technical problems for modelling temporal knowledge graphs, to various cogni-
tive memory functions, in particular to semantic and concept memory, episodic
memory, sensory memory, short-term memory, and working memory. We discuss
learning, query answering, the path from sensory input to semantic decoding, and
the relationship between episodic memory and semantic memory. We introduce
a number of hypotheses on human memory that can be derived from the devel-
oped mathematical models. There are four main hypotheses. The first one is that
semantic memory is described as triples and that episodic memory is described as
triples in time. A second main hypothesis is that generalized entities have unique
latent representations which are shared across memory functions and that are the
basis for prediction, decision support and other functionalities executed by work-
ing memory (tensor memory hypothesis). A third main hypothesis is that the latent
representation for a time t, which summarizes all sensory information available at
time t, is the basis for episodic memory. Finally, our proposed model suggests that
semantic memory and episodic memory depend on each other: Episodic decoding
depends on semantic memory and semantic memory is developed as a long term
store of episodic memory. On the other hand there is also a certain independence:
the pure storage of episodic memory does not depend on semantic memory and
semantic memory can be acquired even without a functioning episodic memory.
The same relationships between semantic and episodic memories can be found in
the human brain.

1 Introduction

Embedding learning, a.k.a. representation learning, is an essential ingredient of successful natural
language models and deep architectures [126, 18, 17, 19, 90, 58] and has been the basis for mod-
elling large-scale semantic knowledge graphs [111, 139, 104, 22, 23, 131, 40, 106, 107].1 A key
concept is a mapping of the knowledge graph to a tensor representation whose entries are predicted
by models using latent representations of generalized entities. Latent variable models are well suited
to deal with the high dimensionality and sparsity of typical knowledge graphs. In recent publications
the embedding models were extended to also consider temporal evolutions, time patterns and sub-
symbolic representations [48, 49]. These extended models were used successfully to predict clinical

1Some authors make a distinction between latent representations, which are application specific, and em-
beddings, which are identical across applications and might represent universal properties of entities [121, 125].
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Figure 1: Organization of human memory [54, 57]. In this paper, we discuss the memory functions in
blue. Sensory memory, episodic memory and semantic memory will be discussed in most sections.
Autobiographic memory is the topic of Subsection 2.4. Working memory and short-term memory
are discussed in Sections 6 and Subsection 7.11. Compare Figures 2 and 10.

events like procedures, lab measurements, and diagnoses. In this paper, we attempt to map these em-
bedding models, which were developed purely as solutions to technical problems, to various cogni-
tive memory functions. Our approach follows the tradition of latent semantic analysis (LSA), which
is a classical representation learning approach that on the one hand has found a number of technical
applications and on the other hand could be related to cognitive semantic memories [88, 87, 38].

Cognitive memory functions are typically classified as long-term, short-term, and sensory mem-
ory, where long-term memory has the subcategories declarative memory and non-declarative mem-
ory [42, 6, 132, 14, 35, 54, 57]. Figure 1 shows these main categories and finer subcategories and
shows the role of working memory [9]. There is evidence that these main cognitive categories are
partially dissociated from one another in the brain, as expressed in their differential sensitivity to
brain damage [54]. However, there is also evidence indicating that the different memory functions
are not mutually independent and support each other [76, 61].

The paper is organized as follows. In the next section, we introduce the unique-representation hy-
pothesis as the basis for exchanging information between different memory functions. We present
the different tensor representations of the main memory functions and discuss offline learning of the
models. In Section 3 we introduce different representations for the indicator mapping function used
in the memory models and in Section 4 we show how likely triples can be generated from the model
using a simulated-annealing based sampling perspective. In Section 5 we discuss the path from sen-
sory input to a semantic representation of scene information and to long-term semantic and episodic
memory. In Section 6 we explain how the different memory representations form the basis of a pre-
diction system and relate this to working memory. Section 7 represents the main results of this paper
in form of a discussion of a number of postulated hypotheses for human memory. Section 8 contains
our conclusions.
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Figure 2: The figure shows the different tensor memories and their models. On the top we see the
sensory memory tensor U with dimensions sensory channel q, within buffer position γ, and time t.
The time dimension is shared with the episodic event tensor tensor Z with additional dimensions
subject s, predicate p, and object o. The latter three are shared with the semantic KG tensor X . On
the right side we show the indicator mapping functions, which are functions of latent representations
of the involved generalized entities.
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Figure 3: A graphical view of the unique-representation hypothesis. The model can operate bottom
up and top down. In the first case, index neurons ei activate the representation layer via their la-
tent representations, implemented as weight vectors. In the figure e1 is active, all other neurons are
inactive and the representation layer is activated with the pattern h � ae1 . In top-down operation,
a representation layer can also activate index neurons. The activation of neuron ei is then the inner
product aJeih. We consider here formalized neurons which might actually be implemented as ensem-
bles of neurons or in other form. Here and in the following we assume that the matrix A stores the
latent representations of all generalized entities. The context makes it clear if we refer to the latent
representations of entities, predicates, or time.

2 Memories and Their Tensor Embeddings

2.1 Unique-Representation Hypothesis

In this section we discuss how the different memory functions can be coded as tensors and how
inference and generalization can be achieved by coupled tensor decompositions.

We begin by considering declarative memories. The prime example of a declarative memory is
the semantic memory which stores general world knowledge about entities. Second, there is concept
memory which stores information about the concepts in the world and their hierarchical organization.
In contrast to the general setting in machine learning, in this paper entities are the prime focus
and concepts are of secondary interest. Finally, episodic memory stores information of general and
personal events [140, 141, 142, 54]. Whereas semantic memory concerns information we “know”,
episodic memory concerns information we “remember” [57]. The portion of episodic memory that
concerns an individual’s life involving personal experiences is called autobiographic memory.

Semantic memories and episodic memories are long-term memories. In contrast, we also consider
sensory memory, which is the shortest-time element of memory. It is the ability to retain impressions
of sensory information after the original stimuli have ended [54].

Finally, working memory is the topic of Section 6. Working memory uses the other memories for
tasks like prediction, decision support and other high-level functions.

The unique-representation hypothesis assumed in this paper is that each entity or concept ei, each
predicate ep and each time step et has a unique latent representation —ai, ap, respectively, at—
in form of a vector of real numbers. The assumption is that the representations are shared between
all memory functions, and this permits information exchange and inference between the different
memories. For simplicity we assume that the dimensionalities of these latent representations are all
identical r̃ such that ai P Rr̃, ap P Rr̃, and at P Rr̃. Figure 3 shows a simple network realization.
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2.2 A Semantic Knowledge Graph Model

A technical realization of a semantic memory is a knowledge graph (KG) which is a triple-oriented
knowledge representation. Popular large-scale KGs are DBpedia [7], YAGO [135], Freebase [21],
NELL [27], and the Google Knowledge Graph [127].

Here we consider a slight extension to the subject-predicate-object triple form by adding the value
in the form (es, ep, eo; Value) where Value is a function of s, p, o and, e.g., can be a Boolean variable
(True or 1, False or 0) or a real number. Thus (Jack, likes, Mary; True) states that Jack (the subject
or head entity) likes Mary (the object or tail entity). Note that es and eo represent the entities for
subject index s and object index o. To simplify notation we also consider ep to be a generalized
entity associated with predicate type with index p. We encode attributes also as triples, mostly to
simplify the discussion.

We now consider an efficient representation of a KG. With this representation, it is also possible
to generalize from known facts to new facts (inductive inference). First, we introduce the three-
way semantic adjacency tensor X where the tensor element xs,p,o is the associated Value of the
triple (es, ep, eo). Here s � 1, . . . , S, p � 1, . . . , P , and o � 1, . . . , O. One can also define a
companion tensor Θ with with the same dimensions as X and with entries θs,p,o. It contains the
natural parameters of the model and the connection to X for Boolean variables is

P pxs,p,o|θs,p,oq � sigpθs,p,oq (1)

where sigpargq � 1{p1 � expp�argqq is the logistic function (Bernoulli likelihood) . If xs,p,o is a
real number then we can use a Gaussian distribution with P pxs,p,o|θs,p,oq � N pθs,p,o, σ

2q. Unless
specified otherwise, we will assume a Bernoulli distribution for the rest of the paper.

As mentioned, the key concept in embedding learning is that each entity e has an r̃-dimensional
latent vector representation a P Rr̃. In particular, the embedding approaches used for modeling KGs
assume that

θsemantic
s,p,o � f semanticpaes ,aep ,aeoq. (2)

Here, the function f semanticp�q predicts the value of the natural parameter. In the case of a KG with
a Bernoulli likelihood, sigpθsemantic

s,p,o q represents the confidence that the Value of the triple (es, ep, eo)
is true and we call the function an indicator mapping function and we discuss examples in the next
section.

Latent representation approaches have been used very successfully to model large KGs, such as the
YAGO KG, the DBpedia KG and parts of the Google KG. It has been shown experimentally that
models using latent factors perform well in these high-dimensional and highly sparse domains. Since
an entity has a unique representation, independent of its role as a subject or an object, the model per-
mits the propagation of information across the KG. For example if a writer was born in Munich,
the model can infer that the writer is also born in Germany and probably writes in the German lan-
guage [104, 105]. Stochastic gradient descent (SGD) is typically being used as an iterative approach
for finding both optimal latent representations and optimal parameters in f semanticp�q [106, 85]. For a
recent review, please consult [106].

Due to the approximation, sigpθsemantic
Jack,marriedTo,eq might be smaller than one for the true spouse. The

approximation also permits inductive inference: We might get a large sigpθsemantic
Jack,marriedTo,eq also for

persons e that are likely to be married to Jack and sigpθsemantic
s,p,o q can, in general, be interpreted as

a confidence value for the triple pes, ep, eoq. More complex queries on semantic models involving
existential quantifier are discussed in [84].

A concept memory would technically correspond to classes with a hierarchical subclass structure.
In [103, 102] such a structure was learned from the latent representations by hierarchical clustering.
In KGs, a hierarchical structure is described by type and subclass relations.

Latent representations for modeling semantic memory functions have a long history in cognitive
modeling, e.g., in latent semantic analysis [87] which is restricted to attribute-based representations.
Generalizations towards probabilistic models are probabilistic latent semantic indexing [72] and
latent Dirichlet allocation [20]. Latent clustering and topic models [78, 147, 2] are extensions toward
multi-relational domains and use discrete latent representations. See also [93, 62, 63]. Spreading
activation is the basis of the teachable language comprehender (TLC), which is a network model
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of semantic memory [30]. Associate models are the symbolic ACT-R [4, 5] and SAM [115]. [107]
explores holographic embeddings with representation learning to model associative memories. An
attractive feature here is that the compositional representation has the same dimensionality as the
representation of its constituents. Connectionists memory models are described in [73, 96, 28, 82,
67, 68].

2.3 An Event Model for Episodic Memory

Whereas a semantic KG model reflects the state of the world, e.g, of a clinic and its patients, ob-
servations and actions describe factual knowledge about discrete events, which, in our approach,
are represented by an episodic event tensor. In a clinical setting, events might be a prescription of
a medication to lower the cholesterol level, the decision to measure the cholesterol level and the
measurement result of the cholesterol level; thus events can be, e.g., actions, decisions and measure-
ments.

The episodic event tensor is a four-way tensor Z where the tensor element zs,p,o,t is the associated
Value of the quadruple (es, ep, eo, et). The indicator mapping function then is

θepisodic
s,p,o,t � f episodicpaes ,aep ,aeo ,aetq

where we have added a representation for the time of an event by introducing the generalized entity
et with latent representation aet . This latent representation compresses all events that happen at time
t.

As examples, the individual can recall “Who did I meet last week?” by eo �

arg maxe θ
episodic
Myself,meet,e,LastWeek and “When did I meet Jack?” by et � arg maxe θ

episodic
Myself,meet,Jack,e.

Examples from our clinical setting would be: (Jack, orderBloodTest, Cholesterol, Week34; True) for
the fact that a cholesterol blood test was ordered in week 34 and (Jack, hasBloodTest, Cholesterol,
Week34; 160) for the result of the blood test. Note that we consider an episodic event memory over
different subjects, predicates and objects; thus episodic event memory can represent an extensive
event context!

An event model can be related to the cognitive concept of an episodic memory (Figure 1). Episodic
memory represents our memory of experiences and specific events in time in a serial form (a “mental
time travel”), from which we can reconstruct the actual events that took place at any given point in
our lives [128]2. In contrast to semantic memory, it requires recollection of a prior experience [141].

For a particular instance in time t, the “slice” of the event tensor Zt describes events as a, typically
very sparse, triple graph. Some of the elements of this triple graph will affect changes in the KG [48,
49] (see also the discussion in Section 7). For example the event model might record a diagnosis
which then becomes a fact in the KG. Also the common representations for subject, predicate, and
object lead to a transfer from the event model to the semantic KG model (see also the discussion in
Section 7).

2.4 Autobiographical Event Tensor

In some applications we want to consider the episodic information specific to an individual. For
example, in a patient model, one is interested in what happened to the individual at time t and not
what happened to all patients at time t. The autobiographical event tensor is simply the sub-tensor
Zs concerning the events of the individual only. We then obtain a personal time es�i,t with latent
representation aes�i,t . Whereas aet is a latent representation for all events for all patients at time t,
aes�i,t is a latent representation for all events for patients i at time t [48, 49].

The autobiographical event tensor would correspond to the autobiographical memory, which stores
autobiographical events of an individual on a semantic abstraction level [33, 54]. The autobiograph-
ical event tensor can be related to Baddeley’s episodic buffer and, in contrast to Tulving’s concept of
episodic memory, is a temporary store and is considered to be a part of working memory [10, 76, 11].

2http://www.human-memory.net/types episodic.html
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2.5 A Sensory Buffer

We assume that the sensor input consists of Q-channels and that at each time step t a buffer is
constructed of N samples of the Q channels. γ � 0, . . . , N specifies the time location within the
buffer (see also Figure 2). In contrast to the event buffer, the sensory buffer operates at a subsymbolic
level. Technically it might represent measurements like temperature and pressure, and in a cognitive
model, it might represent input channels from the senses. The sensory buffer might be related to the
mini-batches in Spark Streaming where data is captured in buffers that hold seconds to minutes of
the input streams [150].

The sensory buffer is described by a three-way tensor U where the tensor element uq,γ,t is the
associated Value of the triple (eq, eγ , et). eq is a generalized entity for the q-th sensory channel,
eγ specifies the time location in the buffer and et is a generalized entity representing the complete
buffer at time t.

We model
θsensory
q,γ,t � f sensorypaeq ,aeγ ,aetq

where aeq is the latent representations for the sensor channel eq and aeγ is the latent representations
for eγ . Latent components corresponds to complex time patterns (chunks) whose amplitudes are
determined by the components of aet ; thus complex sensory events and sensory patterns can be
modelled.

In a technical application [49], the sensors measure, e.g., wind speed, temperature, and humidity at
the location of wind turbines and the sensory memory retains the measurements from t� 1 to t.

In human cognition, sensory memory (milliseconds to a second) represents the ability to retain im-
pressions of sensory information after the original stimuli have ended [140, 31, 54]. The transfer of
sensory memory to short-term memory (e.g., the autobiographical episodic buffer) is the first step
in some memory models, in particular in the modal theory of Atkinson and Shiffrin [6]. New evi-
dence suggests that short-term memory is not the sole gateway to long-term memory [54]. Sensory
memory is thought to be located in the brain regions responsible for the corresponding sensory pro-
cessing. Sensory memory can be the basis for sequence learning and the detection of complex time
patterns.

2.6 Comment

The different memories and their tensor representations and models are summarized in Figure 2.
Under the unique-representation hypothesis assumed in this paper, the latent representations of gen-
eralized entities are central for retrieval and prediction: the memory does not need to store all the
facts and relationships about an entity. Also, there is no need to explicitly store the semantic graph
explicitly. At any time, an approximation to the graph can be reconstructed from the latent represen-
tations. See also the discussion in Section 7.

2.7 Cost Functions

Each memory function generates a term in the cost function (see Appendix) and all terms can be
considered in training to adapt all latent representations and all parameters in the various functional
mappings. Note that this is a global optimization step involving all available data.3 In general, we
assumed a unique-representation for an entity, for example we assume that aes is the same in the
prediction model and in the semantic model. Sometimes it makes sense to relax that assumption and
only assume some form of a coupling. Technically there are a number of possibilities: For example,
the prediction model might be trained on its own cost function, using the latent representations
from the knowledge graph as an initialization; alternatively, one can use different weights for the
different cost function terms. Some investigators propose that only some dimensions of the latent
representations should be shared [3, 1]. 4 [89, 19, 17] contain extensive discussions on the transfer
of latent representations. It is important to note that by considering only conditional probability

3In human memory, one might speculate that this might be a step performed during sleep.
4In the technical solutions [48, 49], we got best results by focussing on the cost function that corresponded to

the problem to solve. For example in prediction tasks we optimized the latent representations and the parameters
using the prediction cost function.
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models (e.g., Value, conditioned on subject, predicate and object), no global normalization needs to
be considered in training.

3 Modelling the Indicator Mapping Function

3.1 Using General Function Approximators

Consider the semantic KG. Here, the indicator mapping function f semanticp�q can be modelled as a
general function approximator, such as a feedforward “multiway” neural network (NN), where the
index neurons representing es, ep, and eo are activated at the input and the response is generated
at the output, as shown in the top of Figure 4. With this model it would be easy to query for the
plausibility of a triple pes, ep, eo; Valueq, but other queries would be more difficult to handle.

An alternative model is shown at the bottom of Figure 4 with inputs es and ep and where a function
approximator predicts a latent representation vector hobject with components

hobject
r � f semantic, object

r paes ,aepq r � 1, . . . , r̃.

The function f semanticp�q is now calculated as an inner product between the predicted latent represen-
tation and the latent representation of the objects as

f semanticpaes ,aep ,aeoq � aJeof
semantic, objectpaes ,aepq � aJeoh

object. (3)

Here, f semantic, object � pf semantic, object
1 , . . . , f semantic, object

r̃ qJ.

Thus the response to the query pJack, likes, ?q can be obtained by activating the index neurons for
Jack and likes at the input and by considering index neurons at the outputs with large values. Note
that with f � f semantic, objectp�q, a function approximator produces a latent representation vector h and
the activation of the output index neurons corresponds to the likelihood that eo is the right answer.
We call this modelling approach indicator mapping by representation prediction.

3.2 Tensor Decompositions

Tensor decompositions have also shown excellent performance in modelling KGs [106]. In tensor
decompositions, the indicator mapping function f semanticp�q is implemented as a multilinear model.

Of particular interest are the PARAFAC model (canonical decomposition) with

f semanticpaes ,aep ,aeoq �
ŗ̃

r�1

aes,r aep,r aeo,r

and the Tucker model with

f semanticpaes ,aep ,aeoq �
ŗ̃

r1�1

ŗ̃

r2�1

ŗ̃

r3�1

aes,r1 aep,r2 aeo,r3 gpr1, r2, r3q.

Here, gpr1, r2, r3q P R are elements of the core tensor G P Rr̃�r̃�r̃. Finally, the RESCAL
model [104] is a Tucker2 model with

f semanticpaes ,aep ,aeoq �
ŗ̃

r1�1

ŗ̃

r2�1

aes,r1 aeo,r2 gpr1, r2, epq

with core tensor G P Rr̃�r̃�P . In all these models, we use the constraint that a generalized entity
has a unique latent representation.

An attractive feature of tensor decompositions is that, due to their multilinearity, representation
prediction models can easily be constructed: For the PARAFAC model, hobject

r � aes,r aep,r,
for Tucker, hobject

r �
°r̃
r1�1

°r̃
r2�1 aes,r1aep,r2 gpr1, r2, rq and for RESCAL hobject

r �°r̃
r1�1 aes,r1 gpr1, r, epq. The architectures for the Tucker model are drawn in Figure 5.
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4 Querying Memories

4.1 Function Approximator Models

In many application one is interested in retrieving triples with a high likelihood, conditioned on
some information, thus we are essentially faced with an optimization problem. To answer a query of
the form pJack, likes, ?q we need to solve

arg max
aeo

f semanticpJack, likes,aeoq.

Of course one is often interested in a set of likely answers.

We suggest to address querying via a simulated annealing approach. We define an energy function
Eps, p, oq � �f semanticpaes ,aep ,aeoq and define a Boltzmann distribution as

P ps, p, oq �
1

Zpβq
expβf semanticpaes ,aep ,aeoq.

Here Zpβq is the partition function that normalizes the distribution and β ¥ 0 is an inverse tempera-
ture. Note that we now have generated a probability distribution where subject, predicate, and object
are the random variables!5

Now to answer the query, pJack, likes, ?q, we sample from

P po|s, pq �
1

Zps, p, βq
expβf semanticpaes ,aep ,aeoq

with s � Jack and p � likes. The artificial inverse temperature β ¥ 0 can determine if we are
interested in just sampling the most likely response (large β) or are also interested in responses with
a smaller probability (small β). Similarly, we can derive models for P ps|p, oq and P pp|s, oq.6

4.2 Tensor Models

By enforcing nonnegativity of the factors and the core tensor entries, we can define a probabilistic
model for a Tucker model with Eps, p, oq � � log f semanticpaes ,aep ,aeoq as

P ps, p, oq9

�
ŗ̃

r1�1

ŗ̃

r2�1

ŗ̃

r3�1

aes,r1 aep,r2 aeo,r3 gpr1, r2, r3q

�β
. (4)

An attractive feature of tensor models is that marginals and conditionals can easily be obtained.
Here, we look at the Tucker model. For P po|s, pq we we can use the Equation 4 with appropriate
normalization. For P pp|sqwe use the same equation where we replace aeo with āobject �

°
o aeo . For

P psq we use the same equation again where we replace in addition aep with āpredicate �
°
p aep . As

shown in the architecture in Figure 6, these operations can easily be implemented. Marginalization
means that the index neurons are all active, indicated by the vector of ones in the figure.7

We can use these models to generate samples from the distribution by first generating a sample for
s from P psq, then a sample from p from P pp|sq, and finally a sample from o using P po|s, pq. By
repeating this process we can obtain independent samples from P ps, p, oq!

Note that there is a certain equivalence between tensor models and sum-product networks, where
similar operations for marginals and conditionals can be defined [112].

We can generalize the approach to all memory functions by defining suitable energy functions. We
want to emphasize that we use the probability distributions only for query-answering and not for
learning!
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object o are marginalized. B: Here, o is marginalized and one samples a predicate p, given t, s. C:
Sampling of an object o, given t, s, p. D: By integrating out the time dimension, we obtain a memory,
which is a particular semantic memory. For marginalization, one can either input a vector of ones
(as shown) or one learns a mean representation vector ā.
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time htime

t by the function fM pvecpu:,:,tqq. If the sensory input is significant, e.g. novel, unexpected
or attached with emotions, then the time index neuron et is generated which stores htime

t as the
latent representation aet . These then eventually become part of the long-term episodic memory. As
indicated, fM p�q might consist of several sub-functions which extract different latent features.

5 From Sensory Memory to Semantic Decoding

We now consider the situation that a new sensor input becomes available for time t. With all other
latent representations and functional mappings fixed, the challenge is to calculate a new latent repre-
sentation htime

t . Since for a new sensory input at time t, the only available information is the sensory
buffer u:,:,t there is a clear information propagation from sensory input to the episodic memory. We
assume a nonlinear map of the form

htime
t � fM pvecpu:,:,tqq (5)

where fM p�q is a function to be learned [148] (see Figure 8) and where vecpu:,:,tq are vectorized
representations from the portion of the sensory tensor associated with the individual at time t. De-
pending on the application, fM p�q can be a simple linear map, or it can be a second to last layer in
a deep neural network as in the face recognition application DeepFace [137, 101]. In general, we
assume that fM p�q is realized by a set of functions, where each function focusses on different aspects
of the sensory inputs (Figure 8). For example, if the sensory input is an image, one function might
analyse color, another ones shape and a third one texture.

One can think of htime
t as the latent representation of a query; the decoding in the semantic decoder

then corresponds to the answer to the query.

5Previously, only the Value conditioned on subject, predicate, and object was random.
6In the Appendix in Subsection 9.2 (Figure 11) we describe how samples from P psq, P pp|sq, and P po|s, pq

can be obtained.
7Note that to derive the equations for marginalization and conditioning we work with β � 1; β � 1 is

relevant during sampling.
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Assuming that a Tucker model is used for decoding, the conditional probability becomes89

P ps, p, o, tq9

�
ŗ̃
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A sampling approach for decoding with a Tucker model is shown in Figure 7.

For general function approximators one needs to train separate models for the different conditional
and marginal probabilities, as discussed in Subsection 9.2 (Figure 12).

Note that in the decoding step we transfer information from a subsymbolic sensory representation
to a symbolic semantic representation.

Also note that, in pure perception, no learning of any kind needs to be involved. Only when the
sensory input is significant, e.g. novel, unexpected or attached with emotions, then the time index
neuron et is generated which stores htime

t as its latent representation aet . By this operation an episode
or event is generated. The time index neuron and its latent representation are eventually transferred
to long-term episodic memory (Figure 8).

8To ensure nonnegativity one might want to model htime
t � exp fM pvecpu:,:,tqq.

9There are two interpretations. By writing P ps, p, o, tq we imply the two-step procedure where we first train
the coupled tensor models and then use the approach described in Section 4 to obtain likely triples. Another
approach would be to consider the right side of the equation to be a special form of a conditional random field.
Here, the left side of the equation would be P ps, p, o|vecpu:,:,tqq with the function htime

t pvecpu:,:,tqq describing
the map from sensory input to model parameter. With proper local normalization it becomes a conditional
multinomial probabilistic mixture model.
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6 Predictions with Memory Embeddings and Working Memory

In this section we focus on working memory, which orchestrates the different memory functions, e.g.
for prediction and decision making. In a way working memory represents the intelligence on top of
the memory functions and links to complex decision making and consciousness have been made.
Here we will focus on the restricted but important task of prediction. For example, in a clinical
setting, it is important to know what should be done next (e.g., prediction of a medical procedure)
or what event will happen next (e.g., prediction of a medical diagnosis).

We propose that prediction should be happen at the level of the latent representation for time, i.e.,
ĥ, which is the output of the sensory map, and we consider two cases.

6.1 ARX Model for Predicting Latent Representations of Time

Here we assume that ĥ is a deterministic function of the sensory input via Equation 5 but not of
past time latent representations. There might be time dependencies in the sensory input; due to high
dimensionality of the input, it is easier to model the dependencies between the latent representations
instead, as

ĥtime
t � f predictpaet�1 ,aet�2 , . . . ,aet�W ,aeindiviualq.

But note that this model is only used for prediction htime
t and as soon as the sensory input is available,

it overrides the prediction with Equation 5! The model is also suitable for novelty detection: if ĥ is
different from htime

t , then the sensory scene might be novel.

Note that we also include the latent representation of the individual aeindiviual which can be interpreted
as a representation of the state of the individual.

The model can be interpreted as an autoregressive model on the latent representations with external
inputs, ARX (Figure 9, top). The parameter W̃ is the size of the time window and might be related
to the capacity of short-term memory, i.e., the number of items the working memory can consider in
decision making.

6.2 Recurrent Model

Here we extend the model is Equation 7 to include past information of the latent representation as

htime
t � fRNN pvecpu:,:,tq,aet�1 ,aeindiviualq. (7)

Note that this is the structure of a recurrent neural network and the assumption is that the latent state
depends on both sensory input and the previous latent state. The architecture is shown in Figure 9,
bottom.

Both models are reasonable for different purposes and make different assumptions. In fact, both
models might play a role in human cognition.

Alternatively one might use networks with additional memory buffers and attention mechanisms [71,
144, 60, 86, 58].

7 Hypotheses on Human Memory

This section speculates about the relevance of the presented models to human memory functions. In
particular we present several concrete hypotheses. Figure 10 shows the overall model and explains
the flow of sensory input to long-term memory and semantic decoding.

7.1 Triple Hypothesis

A main assumption of course is that semantic memory is described by triples, and that episodic
memory is described by triples in time, i.e., quadruples. In a way this is the perspective from which
this paper has been written. Arguments for this representation are that higher-order relations can
always be reduced to triples and that triple representations have large practical significance and have
been used in large-scale KGs.
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Figure 10: A model for human memory. First consider the semantic decoding step. Ut � u:,:,t
is the sensory buffer at time t. fM p�q maps the sensory buffer to htime

t . As discussed before, this
function might be realized by a set of modules where each module focusses on certain aspects of the
sensory input. If the memory is novel or emotionally significant, a new episodic memory is formed
by the generation of time index neuron et; its latent representation is then stored as weight pattern
aet � htime

t . The index neuron and the representations can eventually become part of long-term
episodic memory. The semantic decoding module (here: Tucker tensor model) then produces highly
probable ps, p, oq-triples, given htime

t and as described in Figure 7. Semantic decoding also also
performed when no episodic memory is formed. A form of a semantic memory can be achieved
by marginalizing time. It is even possible to operate the model in reverse: If we consider s to be
the input, let’s say Mary, marginalize out p and o and consider htime

t as the output, then we can
recall when we met Mary, by exciting the time index neuron, and we can even recall how Mary
looked like and sounded like by operating fM p�q in reverse. The reverse direction is indicated by
the small green arrows in the figure. Similarly, a time index neuron on the bottom can excite htime

t ,
and a past scene is both semantically analysed and a sensory impression can be recalled. fpredictp�q
predicts future htime

t and can be used for the prediction of events and decisions and for novelty
detection (Figure 7, bottom). As before, the predicted htime

t can be semantically decoded and can
lead to mental imagery, permitting an analysis of expected events and sensory inputs. For learning,
model parameters are adapted to facilitate the semantic decoding. If needed, representations for new
generalized entities are introduced. The blue labels, which refer to human memories, naturally are
more or less speculative. Note, that in the figure we draw different index neurons for entities in
their roles as subject and object. In a way this is an artefact of the visualization of the sampling
process. We maintain the hypothesis that an entity has a unique index neuron and a unique latent
representation.
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7.2 Unique-representation Hypothesis for Entities and Predicates

The unique-representation hypothesis states that each generalized entity e is represented by an in-
dex neuron and a unique (rather high-dimensional) latent representation ae that is stored as weight
patterns connecting the index neurons with neurons in the representation layer (see Section 2 and
shown in Figure 3). Note that the weight vectors might be very sparse and in some models non-
negative. They are the basis for episodic memory and semantic memory. The latent representations
integrate all that is known about a generalized entity and can be instrumented for prediction and
decision support in working memory. Among other advantages, a common representation would
explain why background information about an entity is seemingly effortlessly integrated into sensor
scene understanding and decision support by humans, at least for entities familiar to the individual.

Researchers have reported on a remarkable subset of medial temporal lobe (MTL) neurons that are
selectively activated by strikingly different pictures of given individuals, landmarks or objects and
in some cases even by letter strings with their names [114, 113]. For example, neurons have been
shown to selectively respond to famous actors like “Halle Berry”. Thus a local encoding of index
neurons seems biologically plausible.

As stated before, we do not insist that index neurons representing single entities exist as such in
the brain, rather that there is a level of abstraction, which is equivalent to an index neuron, e.g., an
ensemble of neurons.

Our hypothesis supports both locality and globality of encoding [96, 43], since index neurons
are local representations of generalized entities, whereas the representation layers would be high-
dimensional and non-local.

Figure 10 shows index layers and representation layers for entities and relation types on the left.
Note, that in the figure we draw different index neurons for entities in their roles as subject and
object. In a way this is an artefact of the visualization of the sampling process. We maintain the
hypothesis that an entity has a unique index neuron and a unique latent representation.

An interesting question is if the latent dimensions have a sensible and maybe useful interpretation,
which the brain might exploit!

Often neurons with similar receptive fields are clustered together in sensory cortices and form a topo-
graphic map [57]. Topological maps might also be the organizational form of neurons representing
entities. Thus, entities with similar latent representations might be topographically close. A detailed
atlas of semantic categories has been established in extensive fMRI studies showing the involvement
of the lateral temporal cortex (LTC), the ventral temporal cortex (VTC), the lateral parietal cortex
(LPC), the medial parietal cortex (MPC), the medial prefrontal cortex, the superior prefrontal cortex
(SPFC) and the inferior prefrontal cortex (IPFC) [74].

Although the established assumption is that no new neurons are generated in the adult cortex, to-
pographic maps might change, e.g., due to injury, and exhibit considerably plasticity. Consequently,
one might speculate that index neurons for novel entities not yet represented in the cortex need
to be integrated in the existing topographic organization. This would not be a contradiction to our
model, since, although we require some representation for index neurons, it is irrelevant which indi-
vidual neurons represent which entities. Index and representation neurons for new entities might be
allocated in the hippocampus, although, and their function later be transferred to the cortex.

7.3 Representation of Concepts

So far our discussion focussed on generalized entities and their latent representations and similarity
between entities was expressed by the similarity in their latent representations. In contrast, machine
learning is typically concerned with the assignments of entities to concepts. Concepts bring a certain
order: for example one can imply certain properties by knowing that Cloe is a cat. Concept learning
is not the main focus of this paper and we only want to describe one simple realization. Consider that
we treat a concept simply as another entity with its own latent representation, as, e.g., in [105]. We
can introduce the relation type type, which links entities with their concepts. The inductive inference
during model learning can then materialize that Cloe is also a mammal and a living being and that,
by default, it has typical cat-attributes.

18



7.4 Spatial Representations

In our proposed model, we can treat locations just as any other entity. An example would be
pMary, observedIn,TownHall,LastFridayq. To model that the individual her- or himself was at the
Townhall last Friday, a triple would be sufficient such as pmeLocation,TownHall,LastFridayq and
an individual’s spatial decoding might be done by a dedicated circuitry separate from semantic de-
coding.

7.5 Sensory Input is Transformed into a Latent Representation for Time

In our model we assume that each sensory impression is decoded into a time latent representation
htime
t � aet byM -map fM p�q, which actually might be implemented as a set of modules, responsible

for different aspects of the sensory input.

Thus, htime
t is a representation shared between the sensory buffer and the episodic memory and might

play a role in the phonological loop and the visuospatial sketchpad. fM p�q is the most challenging
component in the system.10 The training of fM p�q to refine its operation would correspond to percep-
tual learning in cognition. In the brain, fM p�q would likely be implemented by the different sensor
pathways, e.g., the visual pathway and the auditory pathway and could contain internal feedback
loops. Note that we would assume that the connection between the sensory representation and the
time-representation is to some degree bi-directional, thus the time representation also feeds back to
sensory impressions.

7.6 New Representations are formed in the Hippocampus and are then Transferred to
Long-Term Episodic and Semantic Memories

If sensory impressions are significant, a time index neuron et is formed and sensory information is
quickly implemented as a weight pattern aet � htime

t , as shown in Figures 8 and 10. The time index
neurons might be ordered sequentially, so the brain maintains a notion of temporal closeness and
temporal order. Index neurons for time, i.e., et, might be formed in the hippocampal region of the
brain. Evidence for time cells have recently been found [46, 44, 80, 79]. It has been observed that the
hippocampus becomes activated when the temporal order of events is being processed [91, 120, 119].
Our model is in accordance with the concept that perceived sensations are decoded in the various
sensory areas of the cortex, and then combined in the brains hippocampus into one single experience.

According to our proposed model, the hippocampus would need to assign new time neurons during
lifetime. In fact, it has been observed that the adult macaque monkey forms a few thousand new neu-
rons daily [57, 59], possibly to encode new information [16]. Neurogenesis has been established in
the dentate gyrus (part of the hippocampal formation) which is thought to contribute to the formation
of new episodic memories.

The hippocampus might be the place where new index neurons and representations are generated in
general, i.e., also for new places and entities. Certainly, the hippocampus is involved in forming new
spatial representations. There are multiple, functionally specialized, cell types of the hippocampal-
entorhinal circuit, such as place, grid, and border cells [108, 99]. Place cells fire selectively at one
or few locations in the environment. Place, grid and border cells likely to interact with each other to
yield a global representation of the individuals changing position. Once encoded, the memories must
be consolidated. Spatial memories, as other memories, are thought to be slowly induced in the neo-
cortex by a gradual recruitment of neocortical memory circuits in long-term storage of hippocampal
memories [97, 133, 52, 99].

The fast implementation of weight patterns in the hippocampal area is discussed under the term
synaptic consolidation and occurs within minutes to hours, and as such is considered the “fast” type
of consolidation.

According to our theory, the hippcampus would need to be well connected to the association areas
of the cortex. Indeed, the hippocampus receives inputs from the unimodal and polymodal associ-

10A simple special case is when u:,:,t already is on a semantic level. This is the case in the medical application
described in [49, 48] where u:,:,t describes procedures and diagnosis and one can think of fM p�q as being an
encoder system and f episodicp�q as being a decoder and the complex as being an autoencoder [24, 70].
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ation areas of the cortex (visual, auditory, somatosensory) by a pathway involving the perirhinal
and parahippocampal cortices which project to the entorhinal cortex which then projects to the hip-
pocampus. All these structures are part of the MTL. The perirhinal and parahippocampal cortices
also project back to the association areas of the cortex [54].

Figure 10 (bottom right) also indicates a slow transfer to long-term episodic memory. The hypoth-
esis is that the index neurons and their latent representation form the basis for episodic memory!
Biologically, this is referred to as system consolidation, where hippocampus-dependent memories
become independent of the hippocampus over a period of weeks to years. According to the standard
model of memory consolidation [133, 51] memory is retained in the hippocampus for up to one
week after initial learning, representing the hippocampus-dependent stage. Later the hippocampus
representations of this information become active in explicit (conscious) recall or implicit (uncon-
scious) recall like in sleep. During this stage the hippocampus is “teaching” the cortex more and
more about the information and when the information is recalled it strengthens the cortico-cortical
connection thus making the memory hippocampus-independent. Therefore from one week and be-
yond the initial training experience, the memory is slowly transferred to the neo-cortex where it
becomes permanently stored. In this sense the MTL would act as a relay station for the various per-
ceptual input that make up a memory and stores it as a whole event. After this has occurred the MTL
directs information towards the neocortex to provide a permanent representation of the memory.

In our technical model we consider two mechanisms for the transfer: Index neurons generated in
the hippocampus and their representation pattern might become part of the episodic memory, or
neurons in the episodic memory are trained by replay: this teaching process would be performed by
the activation of the time index neurons, which then activate the “sketchpad” aet which then trains
the weight patterns of time index neurons in long-term episodic memory.

As events are transferred from the hippocampus to episodic memory, index neurons for places and
entities and their latent representations would be consolidated in semantic long-term memory.

The frontal cortex, associated with higher functionalities, plays a role in which new information gets
encoded as episodic and semantic memory and what gets forgotten [57].

The consolidation of memory might be guided by novelty, attention, and emotional significance.
There is growing evidence that the amygdala is instrumental for storing emotionally significant
memories. The amygdala belongs to the MTL and consists of several nuclei but is not considered
to be a part of memory itself [26]. The amygdala and the orbitofrontal cortex might also provide
reward-related information to the hippocampus [119].

It has been shown in many studies that a loss of function of the hippocampus/MTL brain region
leads to a loss of the consolidation of memory to episodic long-term memory, but that this loss does
not affect semantic memory. Our model supports this hypothesis, since semantic memory only relies
on the latent representation of subject, predicate, and object, whereas episodic memory also relies
on a latent representation of time, i.e., aet .

7.7 Tensor Memory Hypothesis

The hypothesis states that semantic memory and episodic memory are implemented as functions
applied to the latent representations involved in the generalized entities which include entities, pred-
icates, and time. Thus neither the knowledge graph nor the tensors ever needs to be stored explicitly!
Due to the similarity to tensor decomposition, we call this the tensor memory hypothesis.

7.8 The Semantic Decoding Hypothesis and Association

htime
t is generated from sensory input and is the basis for episodic memory. For a semantic inter-

pretation of sensory input and for a recall of episodic memory, htime
t can be rapidly decoded by the

semantic decoder shown in the center of Figure 10. As discussed in Sections 5 and 4, our model sug-
gests that decoding happens by the generation of ps, p, oq-triples by a stochastic sampling procedure.
Since a sensory input, in general, is described by several triples, this generation process is repeated
several times, generating a number of ps, p, oq-triples. By sequential sampling, only one triples is
active at a time and the ensemble of triples represents the query answer. Sequential sampling might
also be influenced by attention mechanisms, e.g., in the decoding of complex scenes [146, 143, 77].
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The proposed model can be related to encoder-decoder networks [136] which produce text se-
quences, whereas we produce a set of likely triples. fM p�q would be the encoder, potentially with
internal feedback loops, htime

t would be the representation shared between encoder and decoder, and
the semantic decoder in our proposed model would correspond to the decoder.

A clear indication that a semantic decoding is happening quickly is that an individual can describe a
scene verbally immediately after it has happened.11

In the past, a number of neural winner-takes-all networks have been proposed where the neuron with
the largest activation wins over all other neurons, which are driven to inactivity [94, 69]. Due to the
inherent noise in real spiking neurons, it is likely that winner-takes-all networks select one of the
neurons with large activities, not necessarily the one with the largest activity. Thus winner-takes-
all sampling might be close to the sampling process specified in the theoretical model. One might
speculate that a winner-tales-all operation is performed in the complex formed by the dentate gyrus
and the region III of hippocampus proper (CA3). It is known that CA3 contains many feedback
connections, essential for winner-takes-all computations [95, 56, 119]. CA3 is sometimes modelled
as a continuous attractor neural network (CANN) with excitatory recurrent colateral connections
and global inhibition [119].

The sampling denoises the scene interpretation. Each ps, p, oq-sample represents a sharp hypothesis;
an advantage of the sampling approach is that no complex feedback mechanisms are required for
the generation of attractors, as in other approaches.

The proposed sampling procedure is a step-wise procedure which generates independent samples.
An alternative might be a Gibbs sampler which could be implemented as easily. The advantage
of a Gibbs sampler is that it does not require marginalization; a disadvantage is that the generated
samples are not independent. On the other hand, correlated samples might be the basis for free recall,
associative thinking and chaining.

For association we can fix an entity s, generate its latent representation aes and then sample a new
entity s1 based on this latent representation, thus, we can explore entities that are very similar to the
original entity. Thus Barack Obama might produce Michelle Obama. During sampling the roles of
subjects might be interchanged. Thus the triple (Obama, presidentof, USA) might produce samples
describing properties and relationships of the USA.

The restricted Boltzmann machine (RBM) might be an interesting option for supporting the decoding
process [129, 66].

As discussed in the caption of Figure 10 it is even possible to operate the model in reverse: If we
consider a person s to be the input, marginalize out p and o and consider htime

t as the output, then
we can recall when we met the person by exciting the time index neuron, and we can even recall her
appearance by operating fM p�q in reverse.

According to our model the recall of episodic memory would be driven by an activation of the time
latent representation aet , which is then semantically decoded and elucidates sensory impressions.
This fits the subjective feeling of a reconstruction of past memory.

M -mapping, prediction, and semantic decoding are fast operations possibly involving many parts of
the cortex.12

The semantic coding and decoding in our proposed model might biologically be located in the MTL.
There is growing evidence that the hippocampus plays an important role not just in encoding but also
in decoding of memory and is involved in the retrieval of information from long-term memory [54].
The binding of items and cortex (BIC) theory states that the perirhinal cortex (anterior part of the
parahippocampal region) connects to the “who” and what” pathways of unimodal sensory brain re-
gions. In our model this information is decoded into ps, p, oq-triples. In contrast the “when” and
“where” parts pass through the posterior part of the parahippocampal region. Both types of infor-
mation then pass through the entorhinal cortex but only converge within the hippocampus where it

11The language considered here is very simple and consists of triple statements.
12The physicist Eugene Wigner has speculated on the “The Unreasonable Effectiveness of Mathematics in

the Natural Sciences” [145]; in other words mathematics is the right code for the natural sciences. Similarly,
semantics might be considered the language for the world, in as far as humans are involved and one might
speculate about its unreasonable effectiveness as well.

21



enables a full recognition of an episodic event [45, 39, 116, 54]. The “what” pathway is involved
in the anterior temporal (AT) system also involving parts of the temporal lobe (ventral temporopo-
lar cortex) and is associated with semantic memory. The “where” pathway is part of the posterior
medial (PM) system also involving parts of the parietal cortex (retrospinal cortex) and is associated
with semantic memory.

7.9 Semantic Memory and Episodic Memory

As discussed, episodic memory is implemented in form of time index neurons and their latent rep-
resentations aet , and is decoded using the latent representations for subjects, predicates and objects.
But what about semantic memory? In Section 3 (Figures 4 and Figures 6) we describe a semantic
memory which is implemented as a separate indicator mapping function that is also based on the
latent representations of subject, predicate and object.

Biologically it might be quite challenging to transfer episodic memory into semantic memory. An
alternative, with a number of interesting consequences, is that the semantic memory is generated
from episodic memory by marginalizing time, as shown in the bottom of Figure 7. In this inter-
pretation, semantic memory is a long-term storage for episodic memory. Thus to answer the query
“what events happened at time t”, the system needs to retrieve aet and perform a semantic decod-
ing into ps, p, oq-triples. In contrast, to decode a triple from semantic memory, aet is replaced with
ā �

°
t aet , which can either be calculated by inputting a vectors of ones or by learning a long-term

average (Figure 12(D)).13

This form of a semantic memory is very attractive since it requires no additional modelling effort
and can use the same structures that are needed for episodic memory! It has been argued that seman-
tic memory is information we have encountered repeatedly, so often that the actual learning episodes
are blurred [32, 57]. A gradual transition from episodic to semantic memory can take place, in which
episodic memory reduces its sensitivity and association to particular events, so that the information
can be generalized as semantic memory. Without doubt, semantic and episodic memories support
one another [61]. Thus some theories speculate that episodic memory may be the “gateway” to se-
mantic memory [12, 132, 8, 134, 130, 97, 149, 86]. [98] is a recent overview on the topic. Our model
would also support the alternative view of Tulving that episodic memory depends on the semantic
memory, i.e., the representations of entities and predicates [142, 57]. But note that studies have also
found an independent formation of semantic memories, in case that the episodic memory is dysfunc-
tional, as in certain amnesic patients: Amnesic patients might learn new facts without remembering
the episodes during which they have learned the information [54]. This phenomenon is supported by
our proposed model since there is a direct path from sensory input to the representations of subject,
predicate and object.

Our model supports inductive inference in form of a probabilistic materialization. Certainly humans
are capable of some form of logical inference, but this might be a faculty of working memory.
The approximations that are performed in the tensor models, respectively in the the multiway neural
networks, lead to a form of a probabilistic materialization, or unconscious inference: As an example,
consider that we know that Max lives in Munich. The probabilistic materialization that happens in
the factorization should already predict that Max also lives in Bavaria and in Germany. Thus both
facts and inductively inferred facts about an entity are represented in its local environment. There is
a certain danger in probabilistic materialization, since it might lead to overgeneralizations, reaching
from national prejudice to false memories. In fact in many studies it has been shown that individuals
produce false memories but are personally absolutely convinced of their truthfulness [118, 92].

Our model assumes symmetrical connections between index neurons and representation neurons.
The biological plausibility of symmetric weights has been discussed intensely in computational
neuroscience and many biologically oriented models have that property [73, 69]. Reciprocal con-
nectivity is abundant in the brain, but perfect symmetry is typically not observed.

13One can also easily be only considering semantic memory of a certain time span by just inputting ones for
the time index neurons of interest.
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7.10 Online Learning and the Semantic-Attractor Learning Hypothesis

An interesting feature of the proposed model is that no learning or adaptation is necessary in opera-
tion, as long as sensory information can be described by the entities and predicates already known.
The only structural adaptation that happens online is the forming of the index neuron et and its
representation pattern aet .

If decoding is not successful, e.g., if the decoded triples have low likelihood, one might consider a
mechanism for introducing new index neurons with new latent representations for entities and pred-
icates not yet stored in memory. Thus, only when the available resources (entities and predicates)
are insufficient for explaining the sensory data, new index neurons for entities and predicates are
introduced.

At a slower time scale it might be necessary to fine-tune all parameters in the system, possibly also
the latent representations for entities and predicates. One might look at the model in Figure 10 as a
complex neural network with inputs u:,:,t and targets ps, p, oq, possibly with some recurrence via the
prediction module. Powerful learning algorithms are available to train such a system in a supervised
way, and this might be the solution in a technical application. Of course for a biological system, the
target information is unavailable.

So how can such a complex system be trained without clear target information? The future prediction
model can be trained to lead to high quality predictions of future sensory inputs [70, 36, 117, 81, 83,
138, 64, 55, 53]. For the remaining parameters we suggest a form of bootstrap learning: the model
parameters should be adapted such that they lead to stable semantic interpretation of sensory input.
We call this the semantic-attractor learning hypothesis: In a sense the semantic descriptions form
attractors for decoded sensory data and, conversely, the attractors are adapted based on sensory data.
This can be related to the phenomenon of “emergence” which is a process whereby larger patterns
and regularities arise through interactions among smaller or simpler entities that themselves do not
exhibit such properties. Thus the emerging semantics hypothesis is that the semantic description is
an emergent property of the sensory inputs!

7.11 Working Memory Exploits the Memory Representations for Tasks like Prediction and
Decision Making

On the top right of Figure 10 we see a future-prediction model which estimates the next htime
t � aet

based on its past values and based on the latent representation for the individual aes . Note that aes is
not considered constant; for example, an individual might be diagnosed with a disease, which would
be reflected in a change in aes . Large differences between predicted and sensory-decoded latent
representations aet represent novelty and might be a component of an attention mechanism. As
discussed before, novelty might be an important factor that determines which sensory information
is stored in episodic memory, as speculated by other models and supported by cognitive studies [37,
75, 124, 53, 15].

An interesting aspect is that the predicted htime
t can be semantically decoded for a cognitive anal-

ysis of predicted events (see Figure 10) and can lead to mental imagery, a sensory representation
of predicted events. Mental imagery can be viewed as the conscious and explicit manipulation of
simulations in working memory to predict future events [13]. The link between episodic memory
and mental imagery has been studied in [123] and [65].

In Section 6 we discussed a predictive ARX model and an RNN model. In human cognition, both
might be significant: The RNN would be part of the model dynamics, whereas the ARX model
would purely serve as a predictive component.

Prediction of events and actions on a semantic level is sometimes considered to be one of the im-
portant functions of a cognitive working memory [109]. Working memory is the limited-capacity
store for retaining information over the short term and for performing mental operations on the
contents of this store. As in our prediction model, the contents of working memory could either
originate from sensory input, the episodic buffer, or from semantic memory [54]. Cognitive models
of working memory are described in [12, 9, 11, 34, 47] and computational models are described in
[100, 41, 50, 25, 76, 109].
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The terms “predictive brain” and “anticipating brain” emphasize the importance of “looking into the
future”, namely prediction, preparation, anticipation, prospection or expectations in various cogni-
tive domains [29]. Prediction has been a central concept in recent trends in computational neuro-
science, in particular in recent Bayesian approaches to brain modelling [70, 36, 117, 81, 83, 138,
64, 55, 53]. In some of these approaches, probabilistic generative models generate hypothesis about
observations (top-down) assuming hidden causes, which are then aligned with actual observations
(bottom-up).

Working memory is not the only brain structure involved in prediction. Predictive control is crucial
for fast and ballistic movements where the cerebellum plays a crucial role in implicit tasks. The
cerebellum is involved in trial-and-error learning based on predictive error signals [54]. Reward
prediction is a task of the basal ganglia where dopamine neurons encode both present rewards and
future rewards, as a basis for reinforcement learning [54, 57].

Working memory, assumed to be located in the frontal cortex, can use the representations in Fig-
ure 10 in many ways, not just for prediction. In general, working memory is closely tied to complex
problem solving, planning, organizing, and decision support, and might assume an important role in
consciousness. There is evidence that a strong working memory is associated with general intelli-
gence [57].

One influential cognitive model of working memory is Baddeleys multicomponent model [12]. Cog-
nitive control is executed by a central executive system. It is supported by two subsystems respon-
sible for maintenance and rehearsal: the phonological loop, which maintains verbal information
and the visuospatial sketchpad, which maintains visual and spatial information. More recently the
episodic buffer has been added to the model. The episodic buffer integrates short-term and long-
term memory, holding and manipulating a limited amount of information from multiple domains
in time and spatially sequenced episodes (Figure 1). There is an emerging consensus that functions
of working memory are located in the prefrontal cortex and that a number of other brain areas are
recruited [110, 54]. More precisely, the central executive is attributed to the dorsolateral prefrontal
cortex, the phonological loop with the left ventrolateral prefrontal cortex (the semantic information
is anterior to the phonological information) and the visuospatial sketchpad in the right ventrolateral
prefrontal cortex [57]. The function of the frontal lobe, in particular of the orbitofrontal cortex,
includes the ability to project future consequences (predictions) resulting from current actions [57].

8 Conclusions and Discussion

We have discussed how a number of technical memory functions can be realized by representation
learning and we have made the connection to human memory. A key assumption is that a knowledge
graph does not need to be stored explicitly, but only latent representations of generalized entities
need to be stored from which the knowledge graph can be reconstructed and inductive inference
can be performed (tensor memory hypothesis). Thus, in contrast to the knowledge graph, where an
entity is represented by a single node in a graph and its links, in embedding learning, an entity has
a distributed representation in form of a latent vector, i.e., in form of multiple latent components.
Unique representations lead to a global propagation of information across all memory functions
during learning [104].

We proposed that the latent representation for a time t, which summarizes all sensory information
present at time t, is the basis for episodic memory and that semantic memory depends on the latent
representations of subject, predicate, and object. One theory we support is that semantic memory is a
long-term aggregation of episodic memory. The full episodic experience depends on both semantic
(“who” and “what”) and context representations (“where” and “when”). On the other hand there
is also a certain independence: the pure storage of episodic memory does not depend on semantic
memory and semantic memory can be acquired even without a functioning episodic memory. The
same relationships between semantic and episodic memories can be found in the human brain.

The latent representations of the semantic memory, episodic memory, and sensory memory can
support working memory functions like prediction and decision support. In addition to the latent
representations, the models contain parameters (e.g., neural network weights) in mapping functions,
memory models and prediction models. One can make a link between those parameters and implicit
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skill memory [122]. Refining the mapping from sensory input to its latent representation corresponds
to perceptual learning in cognition.

We showed how both a recall of previous memories and the mental imagery of future events and
sensory impressions can be supported by the presented model.

More details on concrete technical solutions can be found in [48, 49] where we also present suc-
cessful applications to clinical decision modeling, sensor network modeling and recommendation
engines.
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[49] Cristóbal Esteban, Volker Tresp, Yinchong Yang, Stephan Baier, and Denis Krompaß. Pre-
dicting the co-evolution of event and knowledge graphs. arXiv preprint, 2015.

[50] Michael J Frank, Bryan Loughry, and Randall C OReilly. Interactions between frontal cor-
tex and basal ganglia in working memory: a computational model. Cognitive, Affective, &
Behavioral Neuroscience, 1(2):137–160, 2001.

[51] Paul W Frankland and Bruno Bontempi. The organization of recent and remote memories.
Nature Reviews Neuroscience, 6(2):119–130, 2005.

[52] Paul W Frankland, Cara O’Brien, Masuo Ohno, Alfredo Kirkwood, and Alcino J Silva. α-
camkii-dependent plasticity in the cortex is required for permanent memory. Nature, 411
(6835):309–313, 2001.

[53] Karl Friston. The free-energy principle: a unified brain theory? Nature Reviews Neuroscience,
11(2):127–138, 2010.

[54] Michael S Gazzaniga, Richard B Ivry, and George Ronald Mangun. Cognitive Neuroscience:
The biology of the mind. New York: WW Norton, fourth edition edition, 2013.

[55] Dileep George and Jeff Hawkins. Towards a mathematical theory of cortical micro-circuits.
PLoS Comput Biol, 5(10):e1000532, 2009.

[56] Mark A Gluck, Martijn Meeter, and Catherine E Myers. Computational models of the hip-
pocampal region: linking incremental learning and episodic memory. Trends in cognitive
sciences, 7(6):269–276, 2003.

[57] Mark A Gluck, Eduardo Mercado, and Catherine E Myers. Learning and memory: From
brain to behavior. Palgrave Macmillan, 2013.

[58] Ian Goodfellow, Aaron Courville, and Yoshua Bengio. Deep learning. Book in preparation
for MIT Press, 2015.

[59] Elizabeth Gould, Alison J Reeves, Michael SA Graziano, and Charles G Gross. Neurogenesis
in the neocortex of adult primates. Science, 286(5439):548–552, 1999.

[60] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

[61] Daniel L Greenberg and Mieke Verfaellie. Interdependence of episodic and semantic mem-
ory: evidence from neuropsychology. Journal of the International Neuropsychological soci-
ety, 16(05):748–753, 2010.

[62] Thomas L Griffiths, Mark Steyvers, and Alana Firl. Google and the mind predicting fluency
with pagerank. Psychological Science, 18(12):1069–1076, 2007.

[63] Thomas L Griffiths, Mark Steyvers, and Joshua B Tenenbaum. Topics in semantic represen-
tation. Psychological review, 114(2):211, 2007.

[64] Thomas L Griffiths, Charles Kemp, and Joshua B Tenenbaum. Bayesian models of cognition.
In The Cambridge Handbook of Computational Psychology. Cambridge University Press,
2008.

27



[65] Demis Hassabis and Eleanor A Maguire. Deconstructing episodic memory with construction.
Trends in cognitive sciences, 11(7):299–306, 2007.

[66] Geoffrey Hinton. A practical guide to training restricted boltzmann machines. Momentum, 9
(1):926, 2010.

[67] Geoffrey E Hinton. Implementing semantic networks in parallel hardware. In Parallel models
of associative memory, pages 161–187. Erlbaum, 1981.

[68] Geoffrey E Hinton and James A Anderson. Parallel Models of Associative Memory: Updated
Edition. Psychology Press, 2014.

[69] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with
neural networks. Science, 313(5786):504–507, 2006.

[70] Geoffrey E Hinton and Richard S Zemel. Autoencoders, minimum description length, and
helmholtz free energy. Advances in neural information processing systems, pages 3–3, 1994.

[71] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9
(8):1735–1780, 1997.

[72] Thomas Hofmann. Probabilistic latent semantic indexing. In Proceedings of the 22nd annual
international ACM SIGIR conference on Research and development in information retrieval,
pages 50–57. ACM, 1999.

[73] John J Hopfield. Neural networks and physical systems with emergent collective computa-
tional abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

[74] Alexander G. Huth, Wendy A. de Heer, Thomas L. Griffiths, Frédéric E. Theunissen, and
Jack L. Gallant. Natural speech reveals the semantic maps that tile human cerebral cortex.
Nature, 2016.

[75] Laurent Itti and Pierre F Baldi. Bayesian surprise attracts human attention. In Advances in
neural information processing systems, pages 547–554, 2005.

[76] John Jonides, Richard L Lewis, Derek Evan Nee, Cindy A Lustig, Marc G Berman, and
Katherine Sledge Moore. The mind and brain of short-term memory. Annual review of
psychology, 59:193, 2008.

[77] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating image de-
scriptions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3128–3137, 2015.

[78] Charles Kemp, Joshua B. Tenenbaum, Thomas L. Griffiths, Takeshi Yamada, and Naonori
Ueda. Learning systems of concepts with an infinite relational model. In Proceedings of the
Twenty-First National Conference on Artificial Intelligence, volume 3 of AAAI’06, page 5,
2006.

[79] Takashi Kitamura, Christopher J Macdonald, and Susumu Tonegawa. Entorhinal–
hippocampal neuronal circuits bridge temporally discontiguous events. Learning & memory
(Cold Spring Harbor, NY), 22(9):438–443, 2015.

[80] Takashi Kitamura, Chen Sun, Jared Martin, Lacey J Kitch, Mark J Schnitzer, and Susumu
Tonegawa. Entorhinal cortical ocean cells encode specific contexts and drive context-specific
fear memory. Neuron, 87(6):1317–1331, 2015.

[81] David C Knill and Alexandre Pouget. The bayesian brain: the role of uncertainty in neural
coding and computation. Trends in Neurosciences, 27(12):712–719, 2004.

[82] Teuvo Kohonen. Self-organization and associative memory, volume 8. Springer, 2012.

[83] Konrad P Körding, Shih-pi Ku, and Daniel M Wolpert. Bayesian integration in force estima-
tion. Journal of Neurophysiology, 92(5):3161–3165, 2004.

[84] Denis Krompaß, Xueyan Jiang, Maximilian Nickel, and Volker Tresp. Probabilistic Latent-
Factor Database Models. In Proceedings of the 1st Workshop on Linked Data for Knowledge
Discovery (ECML PKDD), 2014.

[85] Denis Krompaß, Stephan Baier, and Volker Tresp. Type-constrained representation learning
in knowledge graphs. In The Semantic Web–ISWC 2015, pages 640–655. Springer Interna-
tional Publishing, 2015.

28



[86] Ankit Kumar, Ozan Irsoy, Jonathan Su, James Bradbury, Robert English, Brian Pierce, Pe-
ter Ondruska, Ishaan Gulrajani, and Richard Socher. Ask me anything: Dynamic memory
networks for natural language processing. arXiv preprint arXiv:1506.07285, 2015.

[87] Thomas K Landauer and Susan T Dumais. A solution to plato’s problem: The latent semantic
analysis theory of acquisition, induction, and representation of knowledge. Psychological
review, 104(2):211, 1997.

[88] Thomas K Landauer, Peter W Foltz, and Darrell Laham. An introduction to latent semantic
analysis. Discourse processes, 25(2-3):259–284, 1998.

[89] Hugo Larochelle, Dumitru Erhan, and Yoshua Bengio. Zero-data learning of new tasks. AAAI,
1(2):3, 2008.

[90] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–
444, 2015.

[91] Hanne Lehn, Hill-Aina Steffenach, Niels M van Strien, Dick J Veltman, Menno P Witter, and
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9 Appendix

9.1 Cost Functions

The cost function is the sum of several terms. The tilde notation X̃ indicates subsets which cor-
respond to the facts known in training. If only positive facts with Value � True are known, neg-
ative facts can be generated using, e.g., local closed world assumptions [106]. We use negative
log-likelihood cost terms. For a Bernoulli likelihood, � logP px|θq � logr1 � exptp1 � 2xqθus
(cross-entropy) and for a Gaussian likelihood � logP px|θq � const� 1

2σ2 px� θq2.

9.1.1 Semantic KG Model

The cost term for the semantic KG model is
costsemantic � �

¸
xs,p,oPX̃

logP pxs,p,o|θ
semantic
s,p,o pA,W qq

where A stands for the latent representations and W stands for the parameters in the functional
mapping.

9.1.2 Episodic Event Model

costepisodic � �
¸

zs,p,o,tPZ̃

logP pzs,p,o,t|θ
episodic
s,p,o,t pA,W qq

9.1.3 Sensory Buffer

costsensory � �
¸

uq,γ,tPŨ

logP puq,γ,t|θ
sensory
q,γ,t pA,W qq

9.1.4 Future-Prediction Model

The cost function for the ARX prediction model is

costpredict � �
¸
t

logP paet |f
predictpaet�1

,aet�2
, . . . ,aet�W ,aeindiviual , A,W q

9.1.5 Regularizer

To regularize the solution we add
λA}A}

2
F � λW }W }2F

where } � }F is the Frobenious norm and where λA ¥ 0 and λW ¥ 0 are regularization parameters.
If we use M -mappings, we regularize M instead of A and we include λM }M}2F .

9.2 Sampling using Function Approximators

Figure 11 shows how samples using function approximators (e.g., a NN) can be generated for the
semantic KG and Figure 12 shows the semantic decoding.
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Figure 11: Semantic KG sampling using a general function approximator, e.g., a feedforward neural
network. A: A subject is sampled based on P psq9 expβaJesh

subject. hsubject is a learned latent vector.
B: An predicate is sampled based on P pp|sq9 expβaJeph

predicate. hpredicate is a learned function of the
sample s. C: An object is sampled based on P po|s, pq9 expβaJeoh

object. hobject is a learned function
of the sample s, p.
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Figure 12: The semantic decoding using a general function approximator, e.g., a feedforward neural
network. A: The sensory memory produces htime

t � aet based on u:,:,t. aet is represented in the
weights of index neuron et. B: aet is then the input to the left model and a subject s is sampled
based on P ps|tq9 expβaJesh

subject. C: With aet and the sampled subject as inputs, a predicate p is
sampled based on P pp|s, tq9 expβaJeph

predicate. D: With aet and the sampled subject and predicate
as inputs, an object o is sampled based on P po|s, p, tq9 expβaJeoh

object.
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