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Abstract. Visual Question Answering (VQA) is concerned with answer-
ing free-form questions about an image. Since it requires a deep semantic
and linguistic understanding of the question and the ability to associate
it with various objects that are present in the image, it is an ambitious
task and requires multi-modal reasoning from both computer vision and
natural language processing. We propose Graphhopper, a novel method
that approaches the task by integrating knowledge graph reasoning, com-
puter vision, and natural language processing techniques. Concretely,
our method is based on performing context-driven, sequential reasoning
based on the scene entities and their semantic and spatial relationships.
As a first step, we derive a scene graph that describes the objects in
the image, as well as their attributes and their mutual relationships.
Subsequently, a reinforcement learning agent is trained to autonomously
navigate in a multi-hop manner over the extracted scene graph to gener-
ate reasoning paths, which are the basis for deriving answers. We conduct
an experimental study on the challenging dataset GQA, based on both
manually curated and automatically generated scene graphs. Our results
show that we keep up with human performance on manually curated
scene graphs. Moreover, we find that Graphhopper outperforms another
state-of-the-art scene graph reasoning model on both manually curated
and automatically generated scene graphs by a significant margin.

Keywords: Visual Question Answering (VQA) · Knowledge graph
reasoning · Scene graph reasoning · Multi-modal reasoning ·
Reinforcement learning

1 Introduction

Visual Question Answering (VQA) is a challenging task that involves under-
standing and reasoning over two data modalities, i.e., images and natural lan-
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Fig. 1. Example of an image and the corresponding scene graph. Since the scene graph
is a directed graph with typed edges, it resembles a knowledge graph and permits the
application of knowledge-base completion techniques.

guage. Given an image and a free-form question which formulates a query about
the presented scene—the issue is for the algorithm to find the correct answer.

VQA has been studied from the perspective of scene and knowledge graphs
[6,33], as well as vision-language reasoning [1,10]. To study VQA, various real-
world data sets, such as the VQA data set [4,24], have been generated. It has
been argued that, in the VQA data set, many of the apparently challenging
reasoning tasks can be solved by an algorithm through exploiting trivial prior
knowledge, and thus by shortcuts to proper reasoning (e.g., clouds are white
or doors are made of wood). To address these shortcomings, the GQA dataset
[17] has been developed. Compared to other real-world datasets, GQA is more
suitable for evaluating reasoning abilities since the images and questions are
carefully filtered to make the data less prone to biases.

Plenty of VQA approaches are agnostic towards the explicit relational struc-
ture of the objects in the presented scene and rely on monolithic neural network
architectures that process regional features of the image separately [2,39]. While
these methods led to promising results on previous datasets, they lack explicit
compositional reasoning abilities, which results in weaker performance on more
challenging datasets such as GQA. Other works [15,31,34] perform reasoning
on explicitly detected objects and interactive semantic and spatial relationships
among them. These approaches are closely related to the scene graph representa-
tions [19] of an image, where detected objects are labeled as nodes and relation-
ships between the objects are labeled as edges. In this work, we aim to combine
VQA techniques with recent research advances in the area of statistical relation
learning on knowledge graphs (KGs). KGs provide human-understandable, struc-
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tured representations of knowledge about the real world via collections of factual
statements. Inspired by multi-hop reasoning methods on KGs such as [8,12,38],
we propose Graphhopper, a novel method that models the VQA task as a path-
finding problem on scene graphs. The underlying idea can be summarized with
the phrase: Learn to walk to the correct answer. More specifically, given an
image, we consider a scene graph and train a reinforcement learning agent to
conduct a policy-guided random walk on the scene graph until a conclusive infer-
ence path is obtained. In contrast to purely embedding-based approaches, our
method provides explicit reasoning chains that lead to the derived answers. To
sum up, our major contributions are as follows.

– Graphhopper is the first VQA method that employs reinforcement learning
for multi-hop reasoning on scene graphs.

– We conduct a thorough experimental study on the challenging VQA dataset
named QGA to show the compositional and interpretable nature of our model.

– To analyze the reasoning capabilities of our method, we consider manually
curated (ground truth) scene graphs. This setting isolates the noise asso-
ciated with the visual perception task and focuses solely on the language
understanding and reasoning task. Thereby, we can show that our method
achieves human-like performance.

– Based on both the manually curated scene graphs and our own automatically
generated scene graphs, we show that Graphhopper outperforms the Neural
State Machine (NMS), a state-of-the-art scene graph reasoning model that
operates in a setting, similar to Graphhopper.

Moreover, we are the first group to conduct experiments and publish the
code on generated scene graphs for the GQA dataset.1 The remainder of this
work is organized as follows. We review related literature in the next section.
Section 3 introduces the notation and describes the methodology of Graph-
hopper. Section 4 and Sect. 5 detail an experimental study on the benchmark
dataset GQA. Furthermore, through a rigorous study using both manually-
curated ground-truth and generated scene graphs, we examine the reasoning
capabilities of Graphhopper. We conclude in Sect. 6.

2 Related Work

Visual Question Answering: Various models have been proposed that perform
VQA on both real-world [4,17] and artificial datasets [18]. Currently, leading
VQA approaches can be categorized into two different branches: First, mono-
lithic neural networks, which perform implicit reasoning on latent representations
obtained from fusing the two data modalities. Second, multi-hop methods that
form explicit symbolic reasoning chains on a structured representation of the
data. Monolithic network architectures obtain visual features from the image
either in the form of individual detected objects or by processing the whole

1 Code is available at: https://github.com/rajatkoner08/Graphhopper.

https://github.com/rajatkoner08/Graphhopper
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image directly via convolutional neural networks (CNNs). The derived embed-
dings are usually scored against a fixed answer set along with the embedding
of the question obtained from a sequence model. Moreover, co-attention mech-
anisms are frequently employed to couple the vision and the language models
allowing for interactions between objects from both modalities [2,5,20,40,41].
Monolithic networks are among the dominant methods on previous real-world
VQA datasets such as [4]. However, they suffer from the black-box problem and
possess limited reasoning capabilities with respect to complex questions that
require long reasoning chains (see [7] for a detailed discussion).

Explicit reasoning methods combine the sub-symbolic representation learn-
ing paradigm with symbolic reasoning approaches over structured representa-
tions of the image. Most of the popular explicit reasoning approaches follow
the idea of neural module networks (NMNs) [3] which perform a sequence of
reasoning steps realized by forward passes through specialized neural networks
that each correspond to predefined reasoning subtasks. Thereby, NMNs con-
struct functional programs by dynamically assembling the modules resulting in
a question-specific neural network architecture. In contrast to the monolithic
neural network architectures described above, these methods contain a natural
transparency mechanism via functional programs. However, while NMN-related
methods (e.g., [14,26]) exhibit good performance on synthetic datasets such
as CLEVR [18], they require functional module layouts as additional supervi-
sion signals to obtain good results. Closely related to our method is the Neural
State Machine (NSM) proposed by [16]. NSM’s underlying idea consists of first
constructing a scene graph from an image and treating it as a state machine.
Concretely, the nodes correspond to states and edges to transitions. Then, con-
ditioned on the question, a sequence of instructions is derived that indicates
how to traverse the scene graph and arrive at the answer. In contrast to NSM,
we treat path-finding as a decision problem in a reinforcement learning setting.
Concretely, we outline in the next section how extracting predictive paths from
scene graphs can be naturally formulated in terms of a goal-oriented random
walk induced by a stochastic policy that allows the approach to balance between
exploration and exploitation. Moreover, our framework integrates state-of-the-
art techniques from graph representation learning and NLP. This paper only
considers basic policy gradient methods, but more sophisticated reinforcement
learning techniques will be employed in future works.

Statistical Relational Learning: Machine learning methods for KG reasoning
aim at exploiting statistical regularities in observed connectivity patterns. These
methods are studied under the umbrella of statistical relational learning (SRL)
[27]. In recent years, KG embeddings have become the dominant approach in
SRL. The underlying idea is that graph features that explain the connectivity
pattern of KGs can be encoded in low-dimensional vector spaces. In the embed-
ding spaces, the interactions among the embeddings for entities and relations
can be efficiently modeled to produce scores that predict the validity of a triple.
Despite achieving good results in KG reasoning tasks, most embedding-based
methods have problems capturing the compositionality expressed by long rea-
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soning chains. This often limits their applicability in complex reasoning tasks.
Recently, multi-hop reasoning methods such as MINERVA [8] and DeepPath [38]
were proposed. Both methods are based on the idea that a reinforcement learn-
ing agent is trained to perform a policy-guided random walk until the answer
entity to a query is reached. Thereby, the path finding problem of the agent can
be modeled in terms of a sequential decision making task framed as a Markov
decision process (MDP). The method that we propose in this work follows a
similar philosophy, in the sense that we train an RL agent to navigate on a
scene graph to the correct answer node. However, a conceptual difference is that
the agents in MINERVA and DeepPath perform walks on large-scale knowledge
graphs exploiting repeating statistical patterns. Thereby, the policies implicitly
incorporate approximate rules. In addition, instead of free-form processing ques-
tions, the query in the KG reasoning setting is structured as a pair of symbolic
entities. That is why we propose a wide range of modifications to adjust our
method to the challenging VQA setting.

3 Method

The task of VQA is framed as a scene graph traversal problem. Starting from
a hub node that is connected to all other nodes, an agent sequentially samples
transitions to neighboring nodes on the scene graph until the node correspond-
ing to the answer is reached. In this way, by adding transitions to the current
path, the reasoning chain is successively extended. Before describing the deci-
sion problem of the agent, we introduce the notation that we use throughout
this work.

Notation: A scene graph is a directed multigraph where each node corresponds
to a scene entity which is either an object associated with a bounding box or an
attribute of an object. Each scene entity comes with a type that corresponds to
the predicted object or attribute label. Typed edges specify how scene entities
are related to each other. More formally, let E denote the set of scene entities
and consider the set of binary relations R. Then a scene graph SG ⊂ E × R × E
is a collection of ordered triples (s, p, o) - subject, predicate, and object. For
example, as shown in Fig. 1, the triple (motorcycle-1, has part, tire-1) indicates
that both a motorcycle (subject) and a tire (object) are detected in the image.
The predicate has part indicates the relation between the entities. Moreover, we
denote with p−1 the inverse relation corresponding to the predicate p. For the
remainder of this work, we impose completeness with respect to inverse relations
in the sense that for every (s, p, o) ∈ SG it is implied that (o, p−1, s) ∈ SG.

Environment. The state space of the agent S is given by E × Q where E are the
nodes of a scene graph SG and Q denotes the set of all questions. The state at
time t is the entity et at which the agent is currently located and the question
Q. Thus, a state St ∈ S for time t ∈ N is represented by St = (et, Q). The set
of available actions from a state St is denoted by ASt

. It contains all outgoing
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Fig. 2. The architecture of our scene graph reasoning module.

edges from the node et together with their corresponding object nodes. More
formally, ASt

= {(r, e) ∈ R × E : St = (et, Q) ∧ (et, r, e) ∈ SG} . Moreover, we
denote with At ∈ ASt

the action that the agent performed at time t. We include
self-loops for each node in SG that produce a NO OP -label. These self-loops
allow the agent to remain at the current location if it reaches the answer node.
Furthermore, the introduction of inverse relations allows agent to transit freely
in any direction between two nodes (Fig. 2).

The environments evolve deterministically by updating the state accord-
ing to previous action. Formally, the transition function at time t is given by
δt(St, At) := (et+1, Q) with St = (et, Q) and At = (r, et+1).

Auxiliary Nodes: In addition to standard entity relation nodes present in a
scene graph, we introduce a few auxiliary nodes (e.g. hub node). The underlying
rationale for the inclusion of auxiliary nodes is that they facilitate the walk for
the agent or help to frame the QA-task as a goal-oriented walk on the scene
graph. These additional nodes are included during run-time graph traversal,
but they are ignored during the compile time such as when computing node
embedding. For example, we add a hub node (hub) to every scene graph which
is connected to all other nodes. The agent then starts the scene graph traversal
from a hub with global connectivity. Furthermore for a binary question, we add
YES and NO nodes to the scene entities that correspond to the final location of
the agent. The agent can then transition to either the YES or the NO node.

Question and Scene Graph Processing. We initialize words in Q with GloVe
embeddings [29] with dimension d = 300. Similarly we initialize entities and
relations in SG with the embeddings of their type labels. In the scene graph, the
node embeddings are passed through a multi-layered graph attention network
(GAT) [36]. Extending the idea from graph convolutional networks [22] with
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a self-attention mechanism, GATs mimic the convolution operator on regular
grids where an entity embedding is formed by aggregating node features from
its neighbors. Relations and inverse relations between nodes allows context to
flow in both ways through GAT. Thus, the resulting embeddings are context-
aware, which makes nodes with the same type, but different graph neighbor-
hoods, distinguishable. To produce an embedding for the question Q, we first
apply a Transformer [35], followed by a mean pooling operation.

Finally, since we added auxiliary YES and NO nodes to the scene graph for
binary questions, we train a feedforward neural network to classify query-type
(i.e., questions that query for an object in the depicted scene) and binary ques-
tions. This network consists of two fully connected layers with ReLU activation
on the intermediate output. We find that it is easy to distinguish between query
and binary questions (e.g., query questions usually begin with What, Which,
How, etc., whereas binary questions usually begin with Do, Is, etc.). Since our
classifier achieves 99.99% accuracy we will ignore the error in question classifi-
cation in the following discussions.

Policy. We denote the agent’s history until time t with the tuple Ht =
(Ht−1, At−1) for t ≥ 1 and H0 = hub along with A0 = ∅ for t = 0. The his-
tory is encoded via a multilayered LSTM [13]

ht = LSTM (at−1) , (1)

where at−1 = [rt−1, et] ∈ R
2d corresponds to the embedding of the previous

action with rt−1 and et denoting the embeddings of the edge and the target
node into R

d, respectively. The history-dependent action distribution is given
by

dt = softmax (At (W2ReLU (W1 [ht,Q]))) , (2)

where the rows of At ∈ R
|ASt |×d contain latent representations of all admissible

actions. Moreover, Q ∈ R
d encodes the question Q. The action At = (r, e) ∈ ASt

is drawn according to categorical (dt). Equations (1) and (2) induce a stochastic
policy πθ, where θ denotes the set of trainable parameters.

Rewards and Optimization. After sampling T transitions, a terminal reward is
assigned according to

R =

{
1 if eT is the answer to Q,

0 otherwise.
(3)

We employ REINFORCE [37] to maximize the expected rewards. Thus, the
agent’s maximization problem is given by

arg max
θ

EQ∼T EA1,A2,...,AN ∼πθ

[
R

∣∣∣∣ ec

]
, (4)

where T denote the set of training questions. During training the first expecta-
tion in Eq. (4) is substituted with the empirical average over the training set. The
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second expectation is approximated by the empirical average over multiple roll-
outs. We also employ a moving average baseline to reduce the variance. Further,
we use entropy regularization with parameter λ ∈ R≥0 to enforce exploration.
During inference, we do not sample paths but perform a beam search with width
20 based on the transition probabilities given by Eq. (2).

Additional details on the model, the training and the inference procedure
along with sketches of the algorithms, and a complexity analysis can be found
in the supplementary material.

4 Dataset and Experimental Setup

In this section we introduce the dataset and detail the experimental protocol.

4.1 Dataset

The GQA dataset [17] has been introduced with the goal of addressing key short-
comings of previous VQA datasets, such as CLEVR [18] or the VQA dataset [4].
GQA is more suitable for evaluating the reasoning and compositional abilities of
a model in a realistic setting. It contains 113K images, and around 1.2M ques-
tions split into roughly 80%/10%/10% for the training, validation, and testing.
The overall vocabulary size consists of 3097 words, including 1702 object classes,
310 relationships, and 610 object attributes.

Due to the large number of objects and relationships present in GQA, we
used a pruned version of the dataset (see Sect. 5) for our generated scene graph.
In this work, we have conducted two primary experiments. First, we report the
results on manually curated scene graphs provided in the GQA dataset. In this
setting, the true reasoning and language understanding capabilities of our model
can be analyzed. Afterward, we evaluate the performance of our model with the
generated scene graphs on pruned GQA dataset. It shows the performance of
our model on noisy generated data. We have used state of the art Relation
Transformer Network (RTN) [23] for the scene graph generation and DetectoRS
[30] for object detection. We have conducted all the experiments on “test-dev”
split of the GQA.
Question Types: The questions are designed to evaluate the reasoning abilities
such as visual verification, relational reasoning, spatial reasoning, comparison,
and logical reasoning. These questions can be categorized either according to
structural or semantic criteria. An overview of the different question types is
given in supplementary (see Table 4).

4.2 Experimental Setup

Scene Graph Reasoning: Regarding the model parameters, we apply 300 dimen-
sional GloVe embeddings to both the questions and the graphs (i.e., edges and
nodes). Moreover, we employ a two-layer GAT [36] model. The dropout [32]
probability of each layer is set to 0.1. The first layer has eight attention heads.
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Each head has eight latent features which are concatenated to form the output
features of that layer. The output layer has eight attention heads with mean
aggregation, so that the output also has 300-dimensional features. We apply
dropout with p = 0.1 to the attention coefficients at each layer. This essentially
means that each node is exposed to a stochastically sampled neighborhood dur-
ing training. Moreover, we employ a two-layer Transformer [35] decoder model.
The model dimension is set to 300, and the key and query dimensions are both
set to 64 with dropout p = 0.1. The LSTM of the policy networks consists of
a uni-directional layer with hidden size 300. Finally, the agent performs a fixed
number of transitions. In question answering, most questions concern one subject
to be explored within one reasoning path originated from the start node. Hence,
we set the maximum number of steps to 4, without resetting. By contrast, the
binary questions have 8 steps and a reset frequency of 4. In other words, the
agent is prompted to the hub node after the fourth step.

Training the Graphhopper: In terms of the training procedure, the GAT, the
Transformer, and the policy networks are initialized with Glorot [11] initializa-
tion. We train our model with data from the val balanced questions tier. We use
a batch size of 64 and sample a batch of questions along with their associated
graphs. We collect 20 stochastic rollouts for each question performed in a vector-
ized form to utilize parallel computation. For each batch, we collect the rewards
when a complete forward pass is done. Then the gradients are approximated
from the rewards and applied to update the weights. We employ the Adam opti-
mizer [21] with a learning rate of 10−4 for all trainable weights. The coefficient
for the action entropy, which balances exploration and exploitation, starts from
0.2 and decreases exponentially at each step with a factor 0.99.

Next to other standard Python libraries, we mainly employed PyTorch [28].
All experiments were conducted on a machine with one NVIDIA RTX 2080 Ti
GPU and 64 GB RAM. Training the scene graph reasoner of Graphhopper for
40 epochs on GQA takes around 10 h, testing about 1 h.

4.3 Performance Metrics

Along with the accuracy (i.e., Hits@1) on open questions (“Open”), binary ques-
tions (yes/no) (“Binary”), and the overall accuracy (“Accuracy”), we also report
the additional metric “Consistency” (answers should not contradict themselves),
“Validity” (answers are in the range of a question; e.g., red is a valid answer when
asked for the color of an object), “Plausibility” (answers should be reasonable;
e.g., red is a reasonable color of an apple reasonable, blue is not), as proposed
in [17].

5 Results and Discussion

As outlined before, VQA is a challenging task, and there is still a significant per-
formance gap between state-of-the-art VQA methods and human performance on
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challenging, real-world datasets such as GQA (see [17]). Similar to other existing
methods, our architecture involves multiple components, and it important to be
able to analyse the performance of the different modules and processing steps in
isolation. Therefore we first present the results of our experiments on manually
curated, ground-truth scene graphs provided in the GQA dataset and compare
the performance of Graphhopper against NSM and humans. This setting allows
us to isolate the noise from the visual perception component and quantify our
methods’ reasoning capabilities. Subsequently, we present the results with our
own generated scene graphs.

In addition, we also observed that the inclusion of auxiliary nodes helps the
agent to achieve efficient performance. Hub node performs better compare to
starting from any random nodes, as its facilitate easier forward and backtracking
from a node. For binary question instead of YES or NO node, we experimented
where the path of the agent was processed by another classifier (e.g., a logis-
tic regression) and the classification logits were assigned as rewards. However,
this led to inferior results; most likely due to the absence of a weight-sharing
mechanism and due to the noisy reward signal produced by the classifier. These
observations supports our assumption on the role of auxiliary nodes we have
used in scene graph.

Reproducing NSM: [15] proposed the state of the art method named NSM for
VQA. NSM is the conceptually most similar method, as it also exploits the scene
graph reasoning for VQA. We consider NSM to be our baseline method for com-
parison. However, their approach to reasoning is different from ours. To compare
the reasoning ability of our method with the same generated scene graph, we
tried to reproduce NSM, as the code for NSM is not open-sourced. We have used
the available parameters from [15] and the implementation from [9].

Table 1. A comparison of Graphhopper with human performance and NSM based on
manually curated scene graphs.

Method Binary Open Consistency Validity Plausibility Accuracy

Human [17] 91.2 87.4 98.4 98.9 97.2 89.3

NSM [15] 51.03 18.79 81.36 83.69 79.12 34.5

Graphhopper 92.18 92.40 91.92 93.68 93.13 92.30

5.1 Results on Manually Curated Scene Graphs

In this section, we report on an experimental study with Graphhopper on the
manually curated scene graphs provided along with the GQA dataset. Table 1
shows the performance of Graphhopper and compares it with the human perfor-
mance reported in [17] and with the performance of NSM on the same underlying
manually curated scene graphs. We find that Graphhopper strictly outperforms
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NSM with respect to all performance measures. In particular, on the open ques-
tions, the performance gap is significant. Moreover, Graphhopper also slightly
outperforms humans with respect to the accuracy on both types of questions.
On the other hand, concerning the supplementary performance measures con-
sistency, validity, and plausibility, Graphhopper is outperformed by humans but
nevertheless consistently reaches high values. Overall, these results can be seen
as a testament of the reasoning capabilities and establish an upper bound to the
performance of Graphhopper.

5.2 Results on Automatically Generated Graph

The process of generating a graph representation for visual data is a costly and
complex procedure. Although the scene graph generation is not the main focus
of this work, it constituted one of the major challenges to create good scene
graph for GQA due to the following facts:

– There is no open source code for GQA scene graph generation or object
detection.

– A large number of instances and an uneven class distribution in GQA leads to
a significant drop in the accuracy compared to existing scene graph datasets
(see [24]).

– There is a lack of attribute prediction models in modern object detection
frameworks.

In this work, we address all of these challenges as our model’s performance is
directly dependent on the quality of the scene graph. We will also open-source our
code base for transparency and accelerate the development scene graph-based
reasoning for VQA.

Generation of Scene Graph: To address these problems, first, we choose two
state-of-the-art network, RTN [23] for scene graph generation, and DetectoRS
[30] for object detection. The transformer [35] based architecture of RTN and
its contextual scene graph embedding is most closely related to our architecture
and for our future expansion. To make Graphhopper generic to any scene graph
generator, we haven’t use contextualized embedding from RTN, instead we rely
on GAT for contextualization.

Pruning of GQA: GQA has more than 6 times the number of relationships
compared to Visual Genome [24], which is the most used scene graph generation
dataset, and contains more than 18 times the number of objects compared to the
most common object detection dataset COCO [25]. Also, the class distribution
is highly skewed which causes a significant drop in the accuracy for both the
object detection and the scene graph generation task. To efficiently prune the
number of instances, we take the first 800 classes, 170 relationships, and 200
attributes based on their frequency of occurrence in the training questions and
answers. This pruning allows us to reduce more than 60% of the words while
covering more than 96% of the combined answers in the training set.
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Fig. 3. Three examples question and the corresponding images and paths.

Attribute Prediction: One of the shortcomings of existing scene graph generation
and object detection networks is that they do not predict the attributes (e.g., the
color or size of an object) of a detected object. Therefore, we have incorporated
the attribute prediction for answering the question on GQA. Contextualized
object embedding from RTN [23] is used for attribute prediction as

Pattribute = σ(W (Objcontext, Pobj)) , (5)

where W , Objcontext, Pobj , Pattribute are the weight matrices of a linear layer, the
contextual embedding of an object, the probability distribution over all objects
and the probability distribution over the attributes. σ denotes the sigmoid func-
tion.

We have trained both the object detector and the scene graph generator on
a pruned version of GQA with their respective default parameters after the pre-
possessing. This helps to increase the coverage of all the instances (e.g., objects,
attributes, relationships) on training questions from 52% to 77% implying that
our generated scene graph now covers 77% of all instances that represent answers
to the training questions.

Table 2. A comparison of our method with NSM, based on generated scene graphs.
Graphhopper (pr) indicates that we employed predicted relations from RTN [23].

Method Binary Open Consistency Validity Plausibility Accuracy

NSM [15] 51.88 19.83 82.01 86.28 81.75 35.34

Graphhopper 69.48 44.69 83.64 89.42 85.13 56.69

Graphhopper (pr) 85.84 77.27 92.98 92.26 89.50 81.41
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(a) Experiments on Manually Curated Scene Graph

(b) Experiments on Ground Truth objects and predicted relation from RTN [23]
as Relation predictor.

(c) Experiments on Generated Scene Graph using DetectoRS [30] object detector
and RTN [23] as Scene Graph generator.

Fig. 4. Comparison of the performance of our model on various Scene Graph genera-
tion settings, (left) accuracy across various semantic instances (“Attribute”, “Global”,
“Relation” etc.) required to answer a question (middle) accuracy on multiple types of
question category (“Choose”, “Logical”, “Verify” etc.) and (right) accuracy on mini-
mum number of steps needed to reach the answer node.
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Table 2, shows the performance of Graphhopper in two settings: First, with
a generated graph where we predict the classes, the attributes, and relation-
ships using our own pipeline. Second, where we only use the predicted relation-
ships from RTN [23] (with ground truth objects and attributes). We find that
Graphhopper consistently outperforms NSM [15] based on the generated graph.
Moreover, in the “pr” or predicted relations setting, it achieves an even higher
score as the graphs do not contain any misprediction from the object detector.
These encouraging results show superior reasoning abilities both on the gener-
ated graph and generated relationships between objects.

5.3 Discussion on the Reasoning Ability

To further analyze the reasoning abilities of Graphhopper, Fig. 4 disentangles
the results according to different types of questions: 5 semantic types (left) and
5 structural types (middle). Moreover, we report the performance of Graphhop-
per according to the length of the reasoning path (right) (see the supplemen-
tary material for additional information). Moreover, we show the performance of
Graphhopper separately for each of the three scene graph settings that we con-
sidered in this work. Figure 4a shows performance on a manually curated scene
graph that depicts the actual performance in an ideal environment. Figure 4b
illustrates the performance based on only the predicted relationships between
objects. This setting shows the performance of Graphhopper along with a scene
graph generator. Finally, Fig. 4c depicts the performance based on the object
detector, the scene graph generator, and Graphhopper. First and foremost, we
find that Graphhopper consistently achieves high accuracy on all types of ques-
tions in every setting. Moreover, we find that the performance of Graphhopper
does not suffer if answering the questions requires many reasoning steps. We con-
jecture that this is because high-complexity questions are harder to answer, but
due to proper contextualization of the embeddings (e.g., via the GAT and the
Transformer), the agent can extract the specific information that identifies the
correct target node. The good performance on these high-complexity questions
can be seen as evidence that Graphhopper can efficiently translate the question
into a transition on the scene graph hopping until the correct answer is reached.

Examples of Reasoning Path: Figure 3 shows three examples of scene graph
traversals of Graphhopper that lead to the correct answer. One can see in these
examples that the sequential reasoning process over explicit scene graph entities
makes the reasoning process more comprehensible. In the case of wrong predic-
tions, the extracted path may offer insights into the mechanics of Graphhopper
and facilitate debugging.

6 Conclusion

We have proposed Graphhopper, a novel method for visual question answering
that integrates existing KG reasoning, computer vision, and natural language



Graphhopper 125

processing techniques. Concretely, an agent is trained to extract conclusive rea-
soning paths from scene graphs. To analyze the reasoning abilities of our method,
we conducted a rigorous experimental study on both manually curated and gen-
erated scene graphs. Based on the manually curated scene graphs we showed that
Graphhopper reaches human performance. Moreover, we find that, on our own
automatically generated scene graph, Graphhopper outperform another state-of-
the-art scene graph reasoning model with respect to all considered performance
metrics. In future works, we plan to combine scene graphs with common sense
knowledge graphs to further enhance the reasoning abilities of Graphhopper.
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