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Abstract—Remaining useful life estimation is a research topic
of high relevance in the area of structural mechanics. To predict
the remaining useful lifetime of a motor, domain experts com-
monly employ physical simulations based on 3D-CAD models.
However, this process is laborious and in many cases no 3D-CAD
model is available. Also, setting up a simulation might require
substantial efforts or might even be infeasible. This article focuses
on the machine learning based estimation of the remaining useful
life of unknown, derived motor types of an electric motor class
based on simulations of known motor types, as well as data sheets
and measurements. In particular, we propose the hybrid fusion
method moSAIc that allows to transfer the knowledge inherent
in physical degradation models of motors to unknown instances.
Our experiments show that moSAIc outperforms other state-of-
the-art methods by a large margin in terms of both accuracy
and robustness. Furthermore, compared to purely data-driven
methods such as neural networks, moSAIc is explainable allowing
domain experts to understand the reason for the predictions.

Index Terms—RUL Estimation, Hybrid Modeling, Structural
Mechanic Simulation, Machine Learning for Fleet, Ensemble
Methods, Structural Health Monitoring

I. INTRODUCTION

The digitization of industrial processes is rapidly accelerat-
ing and shows its impact in every phase of the product life
cycle of a component. On the one hand, in the design phase
of a component theoretical simulation models are set up to
guarantee its performance specifications. On the other hand,
more and more operational data of the component is provided
by IoT-capable systems from the shop floor of industrial
productions. The consequence of this evolution is a larger
and richer database for applications that are data hungry, such
as many machine learning algorithms. Industrial components
are exposed to lifetime degradation during their operation
phase due to different and hard-predictable loading profiles. A
strategy to monitor this degradation process is Condition-based
Maintenance (CBM). With this strategy, real-time capable
condition monitoring can be used to decrease the amount of
unnecessary maintenance operations [1]. A fundamental pillar
activity in CBM is prognostics, or estimating the remaining
lifetime of components in operation. This estimate is calcu-
lated considering the processing of the recorded sensors data,
and applying the proper state estimation and failure diagnosis
methods, as detailed in [2]. In this work, a novel method is
proposed to estimate the remaining useful life of a component
in the context of CBM, based on the combination of existing
models.

In the following, the system and model definitions according
to [3] are introduced to clearly define the setup for which
the method is applied. [3] defines a dynamic system where
u(t) is the input signal, x(t) is the system state, dm(t), dnm(t)
are measurable respectively non-measurable disturbances, and
y(t) is the system output. This system can be modeled
using different approaches. Design engineers normally use the
theoretical modeling approach based on first principals that
describe the physics of the system, especially the evolution
of the system state x(t). Models derived from first principals
result in so called White-Box Models.

In contrast to a White-Box Model, the system can be
modeled using some flexible mathematical model, such as
a neural network, by solely using measurements on input,
output, and disturbances. Here, the system state x(t) might
not have a clear physical interpretation. Such models are called
Black-Box Models.

In the literature the combination of both model types are
usually called Grey-Box Model. Models of such type consist
of parts that are described using first principles and parts that
are derived from observed data [3].

In this article, a situation is considered where no White-
Box Model - in this case no physical simulation model for
the particular motor type - is available. However, White-Box
Models of related motor types are at hand. A straightforward
approach to obtain an estimate of the remaining useful life
(RUL) is to search for the most similar motor and employ the
corresponding theoretical simulation model. For example, the
aging behavior of a motor is highly dependent on the under-
lying geometry and the material properties. This information
is typically stored in the catalog data. Thus, one could apply a
similarity search based on features listed in the motors’ catalog
and either employ a model corresponding to the most similar
motor or derive a weighting scheme.

In this work, moSAIc - a novel method to compute the
RUL of a motor in the case no suitable White-Box Model
is available is proposed. It goes beyond existing weighting
schemes and Grey-Box Models in the sense that it rather
constitutes a Hybrid Model that combines existing White-Box
Models using a data-driven fusion method represented by the
fusion operator } [4]. The corresponding block diagram of a
hybrid method like moSAIc is shown in Figure 1. In this case,
u(t) consists of the boundary conditions of the model. These
are physically parallel misalignment, angular misalignment



and torque. xi(t) is represented through a finite element (FE)
model of an existing motor predicting its specific RUL, and dm

is considered to be the modeling error due to simplifications
of the FE models.

Fig. 1. Block diagram of a hybrid model

This article focuses on the RUL estimation of electric
asynchronous motors using a hybrid modeling approach con-
sisting of combined RUL estimation models using a novel
ensemble approach. Section II provides an overview about
relevant state-of-the-art methods. Section III introduces the
underlying structural mechanics model that is used to estimate
the lifetime of motors and to generate data for experiments.
The different operating conditions are also described, along
with the different motor variants used to build up the fleet.
Section IV describes the pillars of the ensemble method used
to build moSAIc. In Section V the experimental conditions
and the evaluation procedure are outlined and the results
of the experimental study are described. In particular, the
performance of moSAIc is compared to feed-forward neural-
networks, direct similarity searches, and weighted similarity
search methods. Finally, Section VI contains the conclusions.

II. RELATED METHODS

A. RUL Estimation

RUL estimation is an important task in condition based
maintenance. Many approaches have been investigated in
the literature to address, e.g., the question of estimating
the lifetime of components in service. [5] summarizes these
frameworks and give a comprehensive review of the methods.

The traditional and most-common approach for assessing
RUL is based on physics-based simulation models. Hereby, the
simulation models are used to evaluate the stress distribution
on the motor under certain operating conditions. From the
resulting stress distribution, critical regions are identified and
the corresponding stress values are input to SN-curves with
the goal of computing the corresponding number of cycles to
failure.

In order to introduce this approach into an online monitoring
framework, the sensor signals are analyzed to identify the
operating conditions and anomalies, which would then be
fed into the simulation model as boundary conditions. An
alternative which avoids this signal processing step is to

estimate RUL using statistical models. These RUL models
analyze directly the raw sensor signals, which are modelled to
follow a gamma-distributed random variable which correlates
directly to the lifetime of the motor. [6] gives some details
about these approaches. The challenge underlying stochastic
models is the identification of the parameters that fit the
probability distribution to the specific motor’s degradation
behavior under consideration. On the other hand, setting up
a physical simulation is time consuming and requires a lot of
expertise. Moreover, these models require detailed information
about the motor type under consideration (e.g. a CAD-model)
which may not be available.

Both the stochastic and the physical models fall under
the category of white-box models. In contrast, data-driven
approaches, also called black-box models, attempt to estimate
RUL directly based on observed sensor signals. In e.g. [7],
the authors propose an approach based on deep convolutional
neural networks. In [8] an ensemble learning-based approach is
used to estimate the RUL by fusing several multi-layer neural
networks, by dynamically allocating weights to each. On the
level of grey-box models, many research has been conducted
trying to utilize sensor-data-based model updating techniques
such as Kalman filters to calibrate the physical model and the
current state of the running machinery, e.g. [9]. Additionally,
regression models of health indicators which correlate directly
to RUL can be applied based on the obtained sensor data which
is acquired from the bearings [10]. Also, different hybrid
approaches are used in the literature to estimate the RUL of
a machinery. [11] introduce a hybrid framework combining
data-driven and model-based methods for remaining useful life
(RUL) prediction using similarity-based prediction methods. A
physical degradation model in the form of an analytical system
equation is combined with two data-driven techniques, one
for estimating the measurement model and one for predicting
future measurements. The method is applied to a battery RUL
estimation use case where it outperforms comparable single
model-based or data-driven approaches. Hereby a weighted
average function combines historical measurement datasets to
predict future measurements. The Euclidean or Mahalanobis
distance is used to determine the weight of each historical
dataset in a linear model. A hybrid soft computing model
comprising the Fuzzy Min-Max (FMM) neural network and
the Classification and Regression Tree (CART) for motor fault
detection and diagnosis is introduced in [12]. They use the
current signal of the induction motor to detect different types
of faults, e.g., stator winding faults or broken rotor bars, to
compute the RUL of the induction motor.

B. Ensemble Methods

When training supervised machine learning methods, one
searches through the hypothesis space to find a suitable
mapping that related the input to the output. In most settings,
different competing approaches are available to perform the
task under consideration. The most common routine is to select
the method that shows the best performance on a validation
set while discarding all other methods. However, restricting



oneself to a single method ignores the fact that in many
cases there is no single technique that strictly outperforms all
others. It is rather the case that the employed methods achieve
different levels of performance in different input regions. This
implies that different approaches may complement each other.
Moreover, the restriction to one single method is wasteful in
the sense that it does not make use of the resources employed
for constructing the algorithms that are ignored in the deploy-
ment period. To overcome these drawbacks, one can combine
multiple data-driven algorithms to form one joint committee of
methods. This procedure is commonly referred to as ensemble
methods. Related to the domain under consideration, [8] and
[13] propose ensemble methods for RUL estimation.

When employing multiple methods simultaneously one
needs to aggregate different predictions. [13] compares dif-
ferent aggregation methods such as simple voting mechanism
and various weighting scheme formulations in the context of
RUL estimation. In particular, they find that an optimization-
based weighting achieves the best performance. [14] proposes
a weighting schemes that either consider the variance of the
estimators or whether a given estimator has seen data that
is similar to the input under consideration. Gating is another
popular weighting scheme. The underlying idea is that a
trainable meta-algorithm produces linear weight that allow to
average over the available methods. Often, a neural network
is used for the gating mechanism [15]. The Gating Network
outputs a vector that acts as a chooser which methods to
consult.

III. STRUCTURAL MECHANICS MODEL

Before proceeding, first the mathematical notation which is
used throughout this work will be defined: Scalars are given by
either lower or upper case letters (x ∈ R or X ∈ R), vectors
by bold lower case letters (x ∈ Rn), matrices by bold upper
case letter (X ∈ Rn×m), and sets by capital greek letters (e.g.,
∆).

A. FEM Model

The finite elements method (FEM) has gained a wide con-
sent over the past decades in describing structural mechanics
phenomena. This is mainly due to its robustness and satisfac-
tory performance. In this work, FEM is utilized to simulate the
motor’s response to given operating conditions and estimate
its RUL. Typically, the raw solutions of a FE solver are
the displacements of the system, while stresses can then be
retrieved from the post-processing of the displacement. For
each material, the cyclic load bearing capacity, in terms of load
cycles (N), with respect to a stress value (S) is described by an
SN-curve. SN-curves are typically obtained from experiments
conducted on material samples by manufacturers or are defined
through empirical mathematical models, such as Basquin or
Wöhler models. Since stress is a second-order tensor, while the
SN-curve requires a scalar value on the stress scale, the stress
tensor is reduced to a single component, either by selecting
the most influential component to the damage process, e.g.,
shear stress in a given plane, or by calculating an equivalent

stress Seq from the full tensor, such as the maximum principal
stress [16].

In this work, electric motors are investigated with regard
to their lifetime. The aim is to generate a fleet of similar
motors, and investigate how the change in operating condi-
tions, material and geometry influence their RULs. For this
purpose, Figure 2 shows the adopted geometry for a pseudo-
motor. It consists of selected principal sub-components of
a motor, such as housing, rotor, stator, shaft, and bearings.
Other sub-components, such as the windings and slip-rings,
are intentionally left out to reduce the complexity of the
model. Additionally, the modeling selected features are over-
simplified for the same reason; the housing fins, for instance,
have been completely eliminated, and a simple hollow cylinder
is used to model the housing.

The above mentioned simplification results in a modeling
error which cannot be neglected. Unfortunately, setting up
a comprehensive FE model for a fleet of motors can be
quite cumbersome. This is due to the fact that the amount of
geometric details, which require effort in geometry preparation
and meshing, would eventually require long pre-processing
and solution times. On the other hand, the model’s simplicity
helps synthesizing the required training data while utilizing
negligible computational resources.

Stator

Rotor

Bearing

Housing

Shaft

housing length

rotor length Angular
misalignement

Parallel
misalignement

Torque

Feet

Fig. 2. Section cut through the motor model

Figure 2 shows a cross-section of the motor structure which
is utilized in this work including the parameters that differ
for motor variants of the fleet. In this work, 18 motors were
created by the combination of the three variable parameters
mentioned above. Table I summarizes the combinations where
E ∈ R is the elastic modulus and ν ∈ R is the Poisson ratio.

Another aspect that influences the lifetime of the motor
is the operating condition. Aside from nominal design loads,
during operation, motors are subjected to operation anomalies,
among which the most famous is the misalignment of the
shaft’s driving-end. Misalignment in motors is classified into
parallel and angular misalignments, referred to in this work
as δ, ϕ ∈ R, respectively. Moreover, a significant operating
condition imposed on the motor is the torque (T ∈ R),
which varies depending on the load induced by the driven
component. These operating conditions are imposed on the
simulation model as boundary conditions. Since motors of a
similar family are considered in the fleet, a nominal power,
P = 250 W , is taken to be equal for all motors. To estimate
the lifetime for motors with unknown simulation models based



TABLE I
VARIANTS OF MOTOR FLEET AND THEIR CORRESPONDING PROPERTIES

Model
Num.

Housing
Material

Housing
Length in mm

Rotor
Length in mm

1

Aluminum
Al 5086

E = 72 GPa
ν = 0.33

165.0
30.0

2 50.0
3 70.0
4

195.0
30.0

5 50.0
6 70.0
7

225.0
30.0

8 50.0
9 70.0

10

Cast Iron
UNI 5007 Grade 25

E = 90 GPa
ν = 0.3

165.0
30.0

11 50.0
12 70.0
13

195.0
30.0

14 50.0
15 70.0
16

225.0
30.0

17 50.0
18 70.0

on motors with known simulation models, the response of
the latter motors with respect to the aforementioned operating
conditions must be learned (see Section IV). The ranges of
operating conditions are denoted in Equation 1 by R.

Ω ∈ R
(
T =

25

13
, r =

25

3

)
=: RΩ,

∆ ∈ R (δ = 0.20, δ = 0.30) =: R∆,

Φ ∈ R (ϕ = 0.25, ϕ = 0.35) =: RΦ.

(1)

B. RUL Computation

Let Uijk := {Ωi,∆j ,Φk}, where Ωi ∈ RΩ, ∆i ∈ R∆,
Φi ∈ RΦ, be a set of torques, parallel and angular mis-
alignments, respectively, bounded by the spaces defined in
Equation (1). These operating conditions serve as input to a
white-box model system , which is the motor’s FE model.
Hereby, the ranges of chosen operating conditions are such
that they lead to a deterioration of the lifetime of the motor.
The lifetime estimation at the most critically loaded position is
the output of this system, evaluated according to the Basquin
equation, given by

Seq = Sf n
z
L , (2)

where Seq is the equivalent scalar value of the stress tensor
as discussed earlier. nL ∈ N denotes the corresponding
number of load cycles until the end of the useful lifetime,
Sf ∈ R and z ∈ R are the fatigue strength and the fatigue
coefficient, respectively. The largest maximum principal stress
(Seq = 90 MPa) lies at the root of the shaft’s drive end, see
Figure 3, and lies well below the yield strength of the shaft’s
material (AISI 1045), typically Sy = 410MPa. Since carbon
steel is a homogeneous, isotropic material, it experiences the
linear relationship between stress S and strain Es governed by
the material tensor C. Herein, since U11,11,11 is the severest
operating condition, it yields the maximum strain, and hence
stress. Therefore, other combinations of operating conditions
would yield values well below Sy, making high-cycle fatigue

(HCF) the mechanism of lifetime deterioration, thus, the use
of Basquin model is justified [17].

Fig. 3. Distribution of the maximum principal stresses for the operating
conditions Uijk = { 25

3
, 0.3, 0.35}

IV. OUR METHOD

In this section moSAIc is introduced, a hybrid model that
combines existing white-box models using a data-driven fusion
method. The underlying idea is to exploit the implicit relation-
ship between the geometry, the material properties of motors,
and their aging behavior in order to transfer simulations mod-
els to motors where no specific white-box models is available.
More concretely, consider the set of available simulations M,
where each f : RΩ×Rδ×Rϕ → R≥0 for f ∈M corresponds
to a FEM model described in Section III-A. Further, suppose
an indexed subset B := {f b

1 , f
b
2 , . . . , f

b
nb
} ⊂ M from the set

of all available simulations has been selected. A framework to
transfer simulation models to unknown motors is proposed, in
which the models in B span the space of attainable hybrid
models. Thus, in analogy to the role of bases in linear
algebra, the elements of B can be called basis simulations
which is indicated by the superscript b. Furthermore, let
yi := f b

i (u) denote the predicted RUL produced by the
i−th basis simulation depending on the arbitrary but fixed
sensor input u ∈ RΩ ×Rδ ×Rϕ. Since the basis simulations
are not designed to produce accurate results for the motor
under consideration, it can be expected that most predictions
are imprecise. Nevertheless, they may still contain useful
information concerning the RUL of the unknown motor. The
exact amount of information is determined by the underlying
physical properties of the motors and models at hand. Among
these, the geometry as well as the material properties play a
particularly important role. This information is typically stored
in the data sheet of a motor. The aim is to assign weights to
the RULs produced by the basis models y := (y1, y2, . . . , ynb

)
that allow us to form an aggregate prediction. The approach
shares similarity with the ensemble methods described in
Section II in the sense that multiple simulation models are
employed with the aim to combine them by forming an
aggregate prediction. Analogously to a committee of expert,
each of the basis simulations outputs a prediction of the RUL.



Then an aggregation mechanism decides which experts to
consult.

After having obtained the estimations of the RULs y, a
gating-network decides how much weight to put on each
expert’s prediction based on the catalog data. Since the relation
between the physical characteristics of a motor and its aging
behavior is potentially highly non-linear, a feed-forward neural
network for the gating mechanism is employed. More con-
cretely, let c ∈ Rnc denote the catalog data of the motor under
consideration. c along with the sensor data serves as input to
a neural network g : RΩ ×Rδ ×Rϕ ×Rnc → Rnb , where no
non-linearity is applied in the output layer. In order to ease the
notation let w(u, c) := (w1(u, c), w2(u, c), . . . , wnb

(u, c))
denote the output of g depending on the catalog data. Sub-
sequently, the entries of w(u, c) serve as linear coefficients
to weight the predictions of the basis simulations. More
concretely, during the training process the aim is to fit the
parameters of g such that

f̃(u) ≈< w(u, c),y > , (3)

where f̃ denotes the simulation model of the training motor
under consideration and < ·, · >: Rnb × Rnb → R indicates
the Euclidean inner product. From a functional point of view
this implies that the hybrid model based on moSAIc for the
unknown motor is given by

f h(·) =

nb∑
i=1

wi(u, c)f b
i (·) . (4)

Figure 4 illustrates the basic architecture of moSAIc for the
case nb = 3. Concerning the neural network g, various
architectures are possible. In this work, only neural network
with constant hidden layer sizes are considered. Furthermore,
experiments with considering only the catalog data c as input
of g has been executed, but are not reported in this article.
While this modification limits the expressiveness of our model,
it may lead to more robust results.

Fig. 4. The architecture of our method.

After putting a test and validation set aside, the data that
does not correspond to the basis simulations is employed
during training in order to fit the parameters of g. More

precisely, the training data is denoted with T , where the set
T contains all sensor data, catalog data, and RUL predictions
triples that do not correspond to the basis simulations. During
training our objective is to minimize the loss function

L =
∑

(u,c,f̃(u))∈T

f̃(u)−< w(u, c),y >︸ ︷︷ ︸
f h(u)


2

+λ||g||2F , (5)

where ||g||2F denotes the sum of the squared Frobenius norms
of the weight matrices in g. Furthermore, λ is a hyper
parameter that determines the strength of the L2-regularizer.
Equation (5) is minimized using a stochastic gradient method.

moSAIc can be thought of as an implicit similarity based
matching of motors and simulations. However, it comes with
a major advantages over a simple similarity search, i.e.,
comparing the catalog data of different motors and applying
the simulations of the motor that is most similar (or compute a
weighted average) to the motor at hand: It is a priori not clear
how the catalog data influences the aging behavior, e.g., in
cases where the catalog data may contain uninformative data.
Moreover, the link between the catalog data and the aging
behaviour may be highly non-linear and depend on the current
sensor input. By training a neural network to match motors and
simulation models, this mapping from data is learned instead
of having to specify it in advance.

V. EXPERIMENTS

A. Implementation and Evaluation

moSAIc is trained and evaluated on the data described in
Section III. The RUL for each motor is measured in months,
by solving Equation 2 , as follows:

RUL =
nL
κ

=
1

κ
z

√
Seq
Sf

, (6)

where κ is a conversion factor from load cycles to months
depending on the rotating speed of the motor, calculated
from the torque Ω and power P , and considering the motor’s
average number of operating hours. Further, moSAIc as fusion
operator } is compared to other fusion operators mentioned in
Section IV: two similarity search based methods (best match
and weighted) and a direct estimation of the RUL based
on neural networks. The similarity based methods consist of
comparing the catalog data of all basis motors and compute the
Euclidean distance between the normalized feature vectors (see
Table I). Then either the simulation model that is most similar
to the unknown motor or employ a weighted average where
the coefficients are derived from the inverse of the distances is
applied. Also, experiments with different weighting schemes
(e.g., based on cosine or Jaccard distances) has been done
but it was found that they did not improve the performance.
For all neural networks that are considered in this work a
feedforward neural network with constant hidden layer size
and relu-activation function is employed. For experimental



TABLE II
RESULTS OF ALL EVALUATED METHODS: THE NUMBERS IN BRACKETS

CORRESPOND TO THE STANDARD ERRORS IN THE MONTE CARLO
CROSS-VALIDATION SETTING.

Metric MSE MAE
Neural Network 124.25 (31.67) 5.52 (0.74)

Similarity Search 510.97 (95.13) 11.29 (1.09)
Weighted Similarity Search 398.28 (54.26) 9.98 (0.79)

moSAIc 93.70 (19.83) 4.48 (0.41)

consistency, all methods within the same framework as moSAIc
in Python and TensorFlow were re-implemented.

To guarantee a fair evaluation in a realistic setting, we em-
ployed the following Monte Carlo cross-validation approach:
First, randomly four basis motors and five training motors were
sampled whose data is employed during training to fit the
parameters of the neural network g. The remaining data is not
shown to the algorithm during training, but serves as validation
set in order to approximate the performance. This procedure
is iterated ten times. The resulting errors on the validation set
for each iteration are then averaged to obtain an estimation of
the overall error. These results along with the corresponding
standard errors are reported in the next section.

Having tried optimizers such as stochastic gradient de-
scent, Adam, and AdaGrad, it has been found that the
Adam optimizer resulted in the best convergence in this
case. The number of hidden layers in the neural network
was tuned from the range {1, 2, 5, 10} and the number
of neurons for each layer was chosen from the range
{10, 20, 50}. The regularization parameter was chosen among
{10−1, 10−2, 10−3, 10−4, 10−5, 10−6} and the learning rate
was set to 10−5.

B. Results

Table II displays the results of all methods under consid-
eration. moSAIc outperforms the other methods in terms of
having a lower mean squared error and median squared error
by a significant margin. More concretely, when measured with
respect to the mean squared error and median absolute error,
moSAIc outperform all other baseline methods by at least 20%.
Moreover, moSAIc is also more robust in the sense that the
standard deviation is significantly lower than for the other
methods.

VI. CONCLUSION

The hybrid fusion method moSAIc, which allows to transfer
the knowledge inherent in physical degradation models of
motors to unknown instances, was proposed. The basic idea
is to model the relation between both the geometry and the
material properties of a motor and its aging behaviour via
neural networks. To validate the effectiveness of the method
experiments based on simulated data were conducted. To sum
up, the main findings of the study are:

• moSAIc outperforms the other baseline methods in terms
of accuracy and robustness.

• moSAIc reduces the time effort to estimate RUL of an
unknown motor in comparison to other state-of-the-art
methods.

So far, only an ensemble of physical simulation models has
been considered. While their predictions are aggregated via a
trainable neural network, the simulation models themselves are
static in the sense that their predictions do not change during
training. In future work, we will explore model improvements
by using trainable experts. Further, it is planned to experiment
with relevance propagation [18] in order to make the results
of moSAIc even more explainable.
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