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Going Digital: A Survey on Digitalization and Large
Scale Data Analytics in Healthcare

Volker Tresp, J. Marc Overhage, Markus Bundschus, Shahrooz Rabizadeh, Peter A. Fasching, Shipeng Yu

Abstract—We provide an overview of the recent trends towards
digitalization and large scale data analytics in healthcare. It
is expected that these trends are instrumental in the dramatic
changes in the way healthcare will be organized in the future.
We discuss the recent political initiatives designed to shift care
delivery processes from paper to electronic, with the goals of
more effective treatments with better outcomes; cost pressure
is a major driver of innovation. We describe newly developed
networks of healthcare providers, research organizations and
commercial vendors to jointly analyze data for the development
of decision support systems. We address the trend towards
continuous healthcare where health is monitored by wearable and
stationary devices; a related development is that patients increas-
ingly assume responsibility for their own health data. Finally we
discuss recent initiatives towards a personalized medicine, based
on advances in molecular medicine, data management, and data
analytics.

I. INTRODUCTION

Data have always been the basis for a scientific approach
to healthcare: diagnostics are supported by physiological
measurement, laboratory data and diagnostic imaging; the
analysis of treatment efficiency and potential disease causes
is based on clinical and epidemiological studies. Study design
and data acquisition used to be the main challenges whereas
data volume and data management were not. We expect that
this will change rapidly as new sources of healthcare data
become increasingly relevant. The newly generated data sets
are high-dimensional and abundant; data volume is simply
exploding. In the same sense as “digitalization” stands for
the increasing digital presence of individuals, services, and
“things” in general, the term “digital health” is associated with
the wealth of health-related data becoming available in digital
form [1]. The management and the analysis of these data with
the goal of gaining insights and making insights actionable
is sometimes referred to as Healthcare Big Data [2], [3], [4].
Whereas the term “Big Data” might quickly fall out off fashion,
the underlying issues and technological challenges covered in
this paper most likely will not.
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Driving forces for the changes include a number of recent
political initiatives designed to shift care delivery processes
from paper to electronic, with the goals of more effective
treatments with better outcomes; cost pressure is a major
driver of innovation. One example is the Health Information
Technology for Economic and Clinical Health Act (HITECH
Act) in the U.S. The focus of the HITECH Act is the meaningful
use of an interoperable electronic health record (EHR), enabling
the exchange of information across institutions. The overriding
goals are that each involved healthcare professional has com-
plete patient information, that patients are treated by the best
available institution for their problems, that medical research
results can have more immediate impact, and that overall
effectiveness is increased. In the context of these initiatives,
large volumes of data will be collected and many improvements
in healthcare will be based on the analysis of these data, with
improved outcome at manageable cost as main goal. As a
precondition to realizing the full potential, fundamental changes
in the healthcare system might be required and data privacy,
data ownership and data security issues must be resolved.

“Variety” and “volume” are the Big Data aspects most
relevant to healthcare. Variety means that detailed informa-
tion about an individual must be available to personalize
recommendations and interventions. Examples of the latter two
are lifestyle recommendations, alarms, reminders, preventive
measures, screenings, referrals, and treatment recommendations.
Key issues are, first, how detailed patient information can be
acquired, managed and stored, second, how the “intelligence”
comes into the system and, third, how recommendations should
be optimally communicated to stake holders.

Volume is important to gain valid insights and actionable
solutions from healthcare data: If data on many individuals are
collected, one can perform statistical analysis, data mining and
train machine learning algorithms.

The goal of this paper is to provide an overview of how
digital health might affect the future of healthcare — and
the expected changes are dramatic. The paper is written for
the interested reader with limited prior exposure to healthcare
issues. It contains six major sections —organized along the
digitalization sources— which describe different digitalization
and analytics trends in some detail.

In the next section we consider the digitalization process
within the clinic. As mentioned, many advances in clinical
data management are based on a broader adoption of the EHR,
which is the main driver for a digitalization of the clinical
information systems. The introduction of a high quality EHR
can lead to an improvement in patient safety and can increase
transparency and accountability. It documents relevant clinical
patient information and its data are the basis for many forms
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of analysis and decision support. Implementing EHRs faces
challenges, mostly associated with the additional efforts and
costs and the fear that the center of attention might move away
from the patient to the IT system. We also discuss the current
clinical data situation: what type of data typically are available
and how they are documented and organized. We discuss the
importance of shared terminologies, data security and data
privacy.

Clinics increasingly collaborate in digitalization and Big Data
projects with university institutes with analytics competencies
and with commercial vendors. In Section III we describe a few
specific projects. We also discuss some of the statistical issues
that arise in integrating observed data from different sources,
e.g., various biases, hidden confounders and batch effects.

Payers, registries and national health systems, as the U.K.’s
NHS, have long collected healthcare related data across clinics.
A novel development in recent years is that clinics are
increasingly required to report data for purposes like quality
control and policy development. Also, a lot can be gained
if data can be exchanged between different care venues, as
for example in integrated care. Health information exchange
(HIE) encompasses all activities towards a mobilization of
digital healthcare information across organizations within a
region, community or hospital system [5]. We discuss the U.S.
HIPAA regulations and the danger of data de-identification.
The externalization of clinical data is covered in Section IV.

Healthcare increasingly becomes patient-centered and pa-
tients want to get in charge of their own health and their own
health data. Families want to keep health profiles and make them
accessible to authorized caregivers, like their family doctors.
These trends are supported by a number of evolving cloud-based
offerings. One can envision new IT platforms as basis for a
revolution in healthcare management, supporting both a patient
centric and a data centric view. Also, there are patients with
one or several serious, sometimes chronic diseases who want
to interact with a social community of patients with similar
problems. Social media used by these patients may provide
insights into drug effectiveness, adverse drug effects and can be
useful for the detection and the tracking of infectious diseases.
Patients are sometimes willing to make their data available for
research and other uses via platforms like PatientsLikeMe. We
discuss these developments in Section V.

Another big digitalization trend is increasing data capture
during the course of everyday activities. Smart phones can
collect fitness and health related data via a variety of sensors.
These data can be analyzed by patients via platforms and apps
and they can be communicated to healthcare providers. Over a
patient’s lifetime large amounts of personal data are collected
and data analytics is offered as a service by platform operators.
This mobile health (mHealth) supports efforts to “shift care
to the left”, i.e., to identify risk and intervene before disease
develops; there is an increasing emphasis on prevention, rather
then diagnosis and treatment. In addition to wearable devices,
ambient sensors will play a role, in particular for the care of
the elderly. These developments are discussed in Section VI.

Finally, there is a growing trend towards personalization in
healthcare (i.e., more precise and personalized care) partially but
not solely driven by the lower cost and increasing availability

of molecular data in form of genomic (including the whole
genome), proteomic and metabolic profiles. Treatment decisions
are more and more based on molecular patient profiles; as
a drawback, personalization comes at an increased level of
complexity that easily overwhelms the decision maker. Large-
scale analytics is essential for the generation of personalized
decision rules derived from large sets of data, in line with the
trend towards an evidence-based medicine. These are the topics
of Section VII.

Section VIII summarizes the developments with an attempt of
an evaluation and a discussion of opportunities and challenges.
In this paper we focus primarily on the situation in the U.S. The
main reason is that the U.S. is ahead in digitalization and large
scale data analytics in general, and in healthcare in particular.
Another reason is that the U.S. has the largest healthcare

market worldwide. We will highlight the situation in other
countries when relevant; in particular some of the developments
in the U.K. are highly innovative and demonstrate emerging
opportunities in a national healthcare system.

II. DIGITIZING HEALTHCARE DATA

A. Motivation
Healthcare is a large and complex enterprise that is relevant

to every person on the planet. The digitization of healthcare data
in a manner that is easy for computers to utilize is important
to support the delivery of care through data visualization, col-
laboration and clinical decision support. Recently, the concept
of a “learning healthcare system” has been introduced [6]. In a
learning healthcare system data harvested from the care process
is continuously analyzed and used to create insights into how
the care delivery process should evolve.

When data are digitized, it is possible to create new and
useful ways for visualization and analysis, with the potential to
provide better insights into a patient’s status and, optimistically,
better decisions [7]. Another important application for digitized
healthcare data is digitally supported clinical decision support
(CDS). CDS systems combine the data with clinical knowledge
to provide patient specific suggestions at the appropriate time
in the care process. These systems have been demonstrated to
improve the quality, safety and efficiency of care, though these
advantages have not been universally observed [8], [9]. Lack
of complete, timely and correct data frequently underlies the
failure to achieve these benefits.

Complete information from many patients is the basis for
analytics, i.e., statistical analysis, data mining and machine
learning. A few authors have attempted to characterize the ways
that healthcare systems hope to take advantage of analytics.
Bresnick and colleagues considered the following items [10]:
• Identifying at-risk patients
• Tracking clinical outcomes
• Performance measurement and management
• Clinical decision making at the point of care
• Length of stay prediction
• Hospital readmission prediction

The goal of the latter is to avoid costly penalties for hospital
readmissions, which were introduced by Medicare under the
2010 Patient Protection and Affordable Care Act (ACA).
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Insurance companies have started to use data analytics to
identify likely patients for hospital readmissions, which resulted
in a 40-50% reduction for patients with congestive heart
failure [11], [10].

Another study identifies the following uses for analytics [12]:
• Analytics-based drug discovery processes; study of drug

efficacy; detection of adverse drug effects and drug-drug
interactions

• Identification of better and safer therapies
• Optimal clinical trial designs and patient recruitment
• Evidence-based medicine to integrate clinical expertise

and research results to support best care decisions
• Protocol-based medicine that draws on research results

to identify best practices for specific conditions, medical
histories and patient populations

• Personalized medicine that blends diverse data sources,
including genetic profiles, with historical clinical data

These are mixes of descriptive tasks, prediction tasks and
prescriptive tasks [10].

Descriptive analytics is a classical data mining task and
extracts human understandable information from data in form of
simple rules (association rule mining) or in visual form (visual
analytics) [13]. Often the results are presented as a report.
Typical projects might be to identify areas for improvement
on clinical quality measures or on specific aspects of care. It
is important to note that the human is in the loop and draws
conclusions based on the findings [10].

For predictive analytics, traditional statistical methods or
machine learning can be used. The task might be to forecast
future procedures, diagnoses, or outcomes. Other tasks are
patient condition monitoring with different alarm functions. The
application of predictive models at the point of care requires a
robust and high-quality infrastructure, which enables real-time
data processing. “Medical devices must be fully integrated
to provide up-to-the-second information on patient vitals to
improve safety, while alerts and alarms have to be developed
and presented to clinicians without hopelessly disrupting their
workflows or annoying them into ignoring critical warning” [10].
The good news is that confounding factors, as long as their
statistical properties are stationary, can be ignored in pure
prediction problems; on the other hand, a predictive model
trained in one clinic might not work well in another clinic, e.g.,
due to different patient profiles.

Prescriptive analytics encompasses the ability to recommend
actions and to answer “what if” type of questions. Whereas a
predictive model might recommend an action that is “typically”
performed for a patient with particular properties, a prescriptive
analysis would be able to prescribe an action that would lead
to best predicted outcome. “Prescriptive analytics doesn’t just
predict what’s likely to happen, but actively suggests how
organizations can best take action to avoid or mitigate a negative
circumstance” [10]. The requirements on data quality and
system robustness are even greater. In particular, a prescriptive
analysis requires a careful analysis and consideration of hidden
confounders. Prescriptive analytics has been called “the future
of healthcare Big Data . . . the healthcare industry has an
enormous opportunity by taking advantage of these decision-
making abilities” [10].

B. The Electronic Health Record
For decades, much of what was documented about a patient

was in paper format and collected in a folder that was physically
moved across the clinical departments and was eventually filed.
Today, patient data are increasingly recorded and stored in an
electronic form, the electronic health record (EHR) [14]. The
EHR greatly improves the quality of the data documented and
supports improvements in patient care by enabling analysis and
decision support. In its most basic form, an EHR consists of the
same paper documents except that they are scanned and stored
digitally. Of course this does little to support analysis or clinical
decision making. More advanced systems contain machine
readable structured tables and digital reports, where ideally the
latter are machine readable and semantically annotated. In these
advanced systems, data are easily accessible to algorithms and
analytic tools.

As we will discuss in Section IV, the HITECH Act has stimu-
lated increased use of the EHR in both hospitals and ambulatory
practices across the U.S. [15], [16], [17]. Meaningful use, as
defined by HITECH, requires both the capability and actual use
of the EHR to perform functions such as electronic prescribing
and ordering of tests, electronic access to test results, medication
alerts, and tracking of lab tests. In addition medical guideline
support must be implemented. In some countries, the EHR
is standard (e.g., in the Netherlands, New Zealand, Norway,
Sweden and the U.K.), whereas countries like the U.S. and
Germany are lagging behind. Surveys found that, despite much
broader adoption over the last several years, U.S. physician
enthusiasm for EHRs has not improved in the last 5 years [18].
The authors attribute the physician’s lack of enthusiasm to
doctors not seeing enough benefit from the EHR and that EHR
products do not deliver all necessary functionalities, being
difficult to use, and not being interoperable with each other.
In addition, there are worries about data leakage, which is
increasing in frequency [19], and compliance with regulations.

C. Structured Data Capture
EHRs can only achieve their full potential if time and cost

associated with data capture can be kept under control. While
a good deal of clinical data can be obtained from other venues
such as laboratory or radiology systems or from devices (e.g.
vital signs, ventilators), a significant amount of data must be
entered by providers. Because of the time and effort required
for providers to capture structured data, they often question
if there is sufficient value to warrant the negative impact on
productivity [20], [21]. Contemporary EHRs are estimated to
require an additional 48 minutes per day, much of which is
devoted to documentation [22], [23].

Healthcare is complex, which is also reflected in the data:
There are hundreds of thousands of clinical concepts that have
to be represented. In order to accommodate this scale and
simplify representations, coding systems have been adopted for
clinical concepts. The concept of heart failure for example can
be represented in the International Classification of Disease
Version 9 Clinical Modification as "428.0". Unfortunately, there
are multiple coding systems for most clinical concepts, so
heart failure can also be represented by I50 (ICD-10), 16209
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(DiseaseDB), D00633 (MESH), 42343007 (SNOMED) and
others. Even more unfortunately, a good deal of data are coded
using idiosyncratic clinical codes that are unique to a specific
healthcare delivery system. This variation means that using
the data often requires mapping or translation between coding
systems which usually requires substantial human effort and,
in some cases, a specific data model.

In addition to direct entry by providers or their surrogates,
structured data can be derived directly from unstructured data
including free text, images and other signals.

Radiology involves the acquisition, analysis, storage and
handling of radiological images and certainly involves huge
amounts of data, in particular when the analysis involves
time, as in angiography, or all three spatial dimensions, as
in whole body screening. Pathology involves the analysis of
tissue, cell, and body fluid samples, typically via microscopic
imaging. As pathology is digitized, increasing amounts of digital
data are generated and need to be handled and stored. The
standard is that medical specialists interpret the radiological and
pathological images and describe the findings in written free-
text or unstructured reports, although there is a trend towards
template-based semi-structured reporting.

The computerized analysis of radiological and pathological
images is an established research area involving sophisticated
algorithms and is becoming increasingly clinically relevant [24],
[25], [26]. The analysis typically involves some form of
machine learning and the emerging field of deep learning
has increasing impact [27]. Analysis generates qualitative and
quantitative labels or tabs, which can be used in integrated
analytics studies [28].

Written text is a major medium: The exact numbers vary, but
a significant proportion of the clinically relevant information
is only documented in textual format. Besides radiological
and pathological reports, medically relevant textual sources
are reports from other departments, notes, referral letters and
discharge letters. Both researchers and commercial developers
have devoted considerable effort to improve the efficiency of
structured data capture from text and some hope that Natural
Language Processing (NLP) will obviate the need for structured
data capture; but advances have been incremental; while there is
progress in focused areas, information extraction from clinical
texts is notoriously difficult. Some of the reasons are that reports
are ungrammatical, contain short phrases, non-standardized
and overloaded abbreviations and employ an abundant use
of negations and lists. Structured reporting, where the text
is generated automatically and the physician simply enters
keywords and short pieces of text, would be a great advance,
but is currently not the standard [29], in part because it is
typically more time consuming for the provider.

Another issue is that the structured data entered by providers
or extracted from text need to be represented such that they
can be “understood” by a computer, in other words healthcare
systems need to be able to communicate effectively and in the
same formalized language. Some languages are essentially
simple taxonomies and vocabularies and are the basis for
standards used in the billing process, such as ICD for diagnosis,
CPT c©for procedures, and SNOMED codes for diseases or
conditions. For medications, there is the National Library of

Medicine’s RxNorm, the National Drug Code (NDC) and others.
Logical Observation Identifiers Names and Codes (LOINC c©)
define universal standards for identifying medical laboratory
and clinical observations.

For billing purposes all involved players are highly motivated
to employ the codes with great discipline. Implied statements
in general take on simple forms, like “Patient X has Disease
Y”.

This changes if one wants to express some detailed medical
finding accurately. Consider the phrases “43 yo female with
history of GERD woke up w/ SOB and LUE discomfort 1
day PTA. She presented to [**Hospital2 72**] where she
was ruled out for MI by enzymes. She underwent stress test
the following day at [**Hospital2 72**]. She developed SOB
and shoulder pain during the test.” In order to utilize the
information represented in this text, an application would
first need to map and code the entities in the phrases and
then formulate statements relating the complex sequential
observations with many subtle phrases only understandable
by trained experts. These challenges goes far beyond the
expressiveness of currently used medical formal languages.

Genomic, proteomic and other molecular data (discussed
more fully in Section VII), which are almost by their nature
digital, will add an extensive amount and variety of structured
data though, in current practice, an extremely limited subset
derived from the molecular data will be all that is necessary
for a particular application.

D. Data Silos
Other barriers to utilizing clinical data are the ubiquitous

clinical data silos. In addition to the fragmentation of a
patient’s data across various participants in the healthcare
ecosystem, each medical department historically has used its
own department-specific database and reporting system, and
only a portion of that information has typically been integrated
into the EHR [30]. As an example, before a provider sees a
laboratory test result displayed in their EHR, the data have
traveled along a complex and convoluted path to get there:
Laboratory instruments themselves are sophisticated computing
and data management systems that pass data through laboratory
instrument management systems and potentially laboratory
information systems, through an interface engine and eventually
to the EHR. Each phase supports specific data management and
monitoring tasks and adds and loses pieces of data [31]. Another
issue is that each data silo might code information differently,
and building wrappers for the purpose of data integration is
anything but simple. These challenges are the basis for the
recent preference for integrated EHR platforms to share a
common database across many departments, which largely
eliminate the data silos inside an organization. In fact healthcare
organizations have often accepted lesser functionality in order
to achieve this benefit.

E. Clinical Data Integration Efforts
Some providers may have implemented a separate research

data system such as i2b2 [32] or tranSMART [33]. These
systems extract clinically relevant information from the EHR
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and from other clinical resources and databases and integrate
them into the research database. A research database can be
a great resource for data analytics projects. Unfortunately
installing a research database can be extremely demanding
since it needs to access data from the data silos of the different
departments. As discussed these databases might all have
different structures and use different terminologies.

In contrast to clinical data, billing data —in part because of
its simplicity and in part out of necessity— are consistently
structured and are often part of a research database. Unfor-
tunately, billing data does not contain much of the clinically
relevant information and may not accurately and fully reflect
clinical reality. Reasons are that providers may not be as careful
in recording administrative data believing that it is not critical to
be exactly correct or, in some cases, billing data may be coded
to maximize reimbursement rather than to most accurately
reflect the patient’s clinical status.

Another important issue is that the temporal order of events
is often not well documented in the data. To analyze the causal
effects of a decision and to optimize decisions, it is important
to know which information was available to the decision maker
at the time of decision. At the current status of documentation,
reconstructing the temporal order of events can be difficult.

F. Privacy Protection and De-identification

De-identification is the process used to prevent a person’s
identity from being connected with information. Common uses
of de-identification include human subject research, which
requires privacy protection for research participants. Common
strategies for de-identifying data sets are deleting or masking
personal identifiers, such as name and Social Security Number,
and suppressing or generalizing quasi-identifiers, such as date
of birth and ZIP code. More sophisticated approaches use k-
anonymity, l-diversity, epsilon differential privacy, differential
identifiability coarsening, imputation, and data swapping [34].
Unfortunately, information can be lost in de-identification,
making the data potentially less useful for analysis.

De-identification is difficult for clinical data in general but
particular difficult for textual data since a personal identifier
might appear unexpectedly in the middle of a text and also
for genomic data, considering that a person’s genetic profile is
unique.

Appropriate patient consent may reduce the need for de-
identification [35].

III. MOBILIZING DATA IN A TRUSTED NETWORK

Integrated care is a worldwide trend in healthcare with the
goal of achieving a more coordinated and integrated form of
care provision. It may be seen as a response to the problems
associated with the fragmented delivery of health in many
countries. Integrated care —as some other forms of alliances
and inter-clinical collaborations— permits the integration and
evaluation of data from several sources. It supports analytics
projects since the patient sample size simply is larger if
compared to a single clinic, and since patients may stay for more
problems within an integrated care system and for a longer time

span, possibly all their life; thus data on a particular individual
are typically more complete.

In this section we describe representative projects where
clinic networks team up with research centers —which provide
expertise in data analytics, machine learning, and medical
informatics— to explore the potential of clinical data analytics.
The long-term vision behind these and similar projects is a
system where patient data are analyzed online, and research
insights rapidly becomes common practice, resulting in best
care for each patient.

A. The Pittsburgh Health Data Alliance

The Pittsburgh Health Data Alliance is a collaborative Big
Data effort involving Carnegie Mellon University (CMU), the
University of Pittsburgh (Pitt) and the University of Pittsburgh
Medical Center (UPMC). It is financed by the latter but all
three institutions contribute grant funding [36].

The stated goals are characteristic for these types of projects:
Primarily the consortium seeks to analyze and make use
of the massive amounts of data generated in the healthcare
system, including EHR patient information, diagnostic imaging,
prescriptions, genomic profiles, insurance records, and data
from wearable devices. The work will support the development
of evidence-based medicine, and lead to the augmentation of
disease-centered models with patient-centered models of care.
The vision is a data-driven medicine based on a large sample of
patients, which will assess an individual’s disease risk and make
personalized recommendations for treatments. Other intended
outcomes are spinoff companies and promotion of economic
development in the region [37].

The CMU plans to develop an automated patient diagnosis
system. Based on automatically retrieved symptoms and lab
findings the system searches medical literature and analyzes
patient data to provide possible diagnoses. To refine the
diagnosis additional tests might be requested.

The role of Pitt’s Center for Commercial Applications of
Healthcare Data (CCA) is to develop new technology for
potential use in commercial theranostics, combining diagnostics
with therapy and imaging systems. UPMC Enterprises leads
the efforts to transfer the results to for-profit startup companies.
A concrete collaboration topic concerns the early detection of
disease outbreaks by tracking of over-the-counter medication
sales. Involved are the “Real-Time Outbreak of Disease
Surveillance” (RODS) Laboratory at Pitt and the “Event and
Pattern Detection” (EPD) Lab at CMU’s Heinz College.

Being one of the first sizeable Big Data projects in healthcare,
the effort attracted the interest of a number of IT companies,
which are supplying high-performance database platforms,
business intelligence solutions, and platforms for integrating
patient records. In general, there is an increasing care provider
demand for Big Data functionalities in clinical information
systems and vendors are adapting to these needs. In fact,
considering the dramatic changes expected in healthcare, in
which IT is expected to play a major role, many IT vendors
are actively exploring future business opportunities.
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B. The Mayo Project
A collaborative effort between the Mayo Clinic and several

departments at the University of Illinois is part of a large
federal grant for the support of medical Big Data research [38].
The collaborative effort involves the Institute for Genomic
Biology, the Department of Computer Science, the Coordinated
Science Laboratory, the College of Engineering and the National
Center for Supercomputing Applications (NCSA). The effort
includes the setup of a new Center of Excellence for Big
Data Computing and a network to move and share the
data between researchers. The Campus Advanced Research
Network Environment (CARNE) has been created with the
goal of providing unrestricted high-speed access to off-campus
locations for specific research purposes. A major project is the
Knowledge Engine for Genomics, or KnowEnG1.

C. Neonatal Intensive Care at Kaiser Permanente
This is an early project that demonstrated the potential of Big

Data in intensive care. In current medical practice, newborns are
typically taken to the neonatal intensive care unit (NICU) if the
mother’s temperature rises above a threshold because this may
signal an increased risk of neonatal sepsis, a bacterial blood
infection [39]. Kaiser Permanente has used data analytics to
develop the interactive and online “Newborn Sepsis Calculator”
that determines the probability of neonatal sepsis, allowing the
care team to better determine which babies to evaluate and
treat for infection [40].

D. Indiana Network for Patient Care
The Regenstrief Institute was an early advocate for clinical

data interoperability based on information standards and
leveraged that work to enable health information exchange both
regionally and nationally. Regenstrief investigators implemented
the Indianapolis Network for Patient Care (INPC) in 1995 with
the goal of providing clinicians with data necessary for patient
diagnosis and treatment at the point of care. In 2016, over 100
hospitals, thousands of physician practices, ambulance services,
large local and the state public health departments, regional
laboratories and imaging centers, and payers participate in the
INPC. The federated data repository stores more than 4.7 billion
records, including over 118 million text reports from almost 15
million unique patients. The data are stored in a standard format,
with standardized demographic codes; laboratory test results are
mapped to a set of common test codes with standard units of
measure; medications, diagnoses, imaging studies, report types
are also mapped to standard terminologies. The flows of data,
which enable the INPC, support results delivery, public health
surveillance, results retrieval, quality improvement, research
and other services. Building on this experience, Regenstrief
investigators have informed the development of the nationwide
health information network program now called the eHealth
Exchange (“Exchange”).

The INPC data have been utilized by Regenstrief for many
Big Data studies and projects including:

1http://www.knoweng.org/

• The OMOP (Observational Medical Outcomes Partner-
ship) [41] and the subsequent OHDSI (Observational
Health Data Science and Informatics) [42] projects to
utilize large scale observational data for drug safety
studies

• The two projects were a basis for ConvergeHEALTH,
an effort spearheaded by Deloitte that aims to offer
comprehensive data sharing among key organizations.
Deloitte has an analytics platform that allows hospital
systems to compare results with tools designed to study
certain patient outcomes: their OutcomesMiner tool helps
users explore real-world outcomes for sub-populations
of interest

• The Merck-Regenstrief Institute “Big Data” Partnership –
Academic-Industry Collaboration to Support Personalized
Medicine was formed in 2012 to leverage the INPC
to support a range of research studies that use clinical
data to inform personalized healthcare. The partnership
has funded 50 projects to date. Industry commentators
have observed that such partnerships between industry
and academia, and between and among other payers,
are essential as neither sector alone can undertake such
projects

• The Indiana Health Information, a non-profit organization
created to sustain the INPC’s operations, entered into
a partnership agreement with a commercial predictive
analytics company, Predixion, to develop new predictive
applications aimed at further supporting the patient
and business needs of ACOs and hospitals. The INPC
database supports Predixion’s current and future solution
development

E. Clinical Data Intelligence
Clinical Data Intelligence (“Klinische Datenintelligenz”) is a

German project funded by the Federal Ministry for Economic
Affairs and Energy (BMWi) and involves two integrated care
providers, i.e., the University Hospital Erlangen and the Charité
Berlin, two globally acting companies, i.e., Siemens AG and
the Siemens Healthineers, and application and research centers
from the University of Erlangen, the German Research Centre
for Artificial Intelligence (DFKI), Fraunhofer, and Averbis [28],
[43].

The project puts particular emphasis on terminologies and
ontologies, on metadata extraction from textual sources and
radiological images and on the integration of medical guidelines
as a form of prior knowledge. As part of the project a central
research database is installed which serves all research and
application subprojects. The project also addresses business
models and clinical app infrastructures suitable for large-scale
data analytics.

The core functionalities are realized by an integrated learning
and decision system (ILDS). The ILDS accesses all patient
specific data and provides analytics, predictive and prescriptive
functionalities. The ILDS models and analyzes clinical decision
processes by learning from the EHR’s structured data such as
diagnosis, procedures, and lab results. The ILDS also analyzes
medical history, radiology, and pathology reports and includes
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guideline information. In addition, the ILDS considers genomic
data, and molecular data in general, to explore the application
of personalized medicine to clinical practice.

The ILDS will immediately be able to make predictions about
common practice of the form: “For a patient with properties
and problems X, procedure Y is typically done (in your clinic
system)”. More difficult, since it involves a careful analysis of
confounders, is a prescription of the form: “For a patient with
with properties and problems X, procedure Y is typically done
(in your clinic system) but procedure Z will probably result in
a better outcome”.

An important outcome of the project will be a set of
requirements for a future clinical documentation that will enable
more powerful data analytics in the future. For example, patient
complaints, symptoms, and clinical outcome are not always
well documented. Readmission within a certain period of time
(typically a month) is sometimes taken for a negative outcome.
Alternatively one might define a hospital stay of more than
a certain number of days as a negative outcome, where the
threshold is specific to the Diagnosis Related Group (DRG).
In some cases, for example after a kidney transplantation
or mastectomy, the patient is closely observed, and outcome
information is available, possibly over patient lifetime.

The ILDS partially uses deep learning (more specifically
recurrent neural networks) to model the sequential decision
processes in clinics [44].2

The project addresses two use cases in detail.
The first concerns nephrology. Kidney diseases cause a

significant financial burden for the healthcare system. The
aim of this work is to systematically investigate drug-drug
interaction (DDI) and adverse drug reactions (ADR) in patients
after renal transplantation and to realize an integrated decision
support system. The use case is particularly interesting since
longitudinal data covering several decades are available and
since outcome information is available.

First ILDS results are reported in [44], [46].
The second use case concerns breast cancer, the most

common malignancy in women. Relevant events are screening,
diagnosis, therapy and follow-up care. Of special interest here
is the determination of risk factors, the evaluation of the therapy
and the prediction of side effects.

F. Related Initiatives and Projects
In the U.S. and in other countries many similar initiatives

have been started or are in preparation phase.
The Dartmouth Institute, Dartmouth-Hitchcock, Denver

Health, Intermountain Healthcare, and the Mayo Clinic are the
founding members of the “High Value Healthcare Collaborative

2Deep Learning is one of the most exciting developments in machine learning
in recent years. It is a field that attracts amazing talents with stunning successes
in a number of applications. One of the driving forces in Deep Learning is
DeepMind, a London based company owned by Google. DeepMind Health
is a project in which U.K. NHS’s medical data are analyzed. The agreement
gives DeepMind access to healthcare data of more than a million patients [45].
A first outcome is the mobile app Streams, which presents timely information
that helps nurses and doctors detect cases of acute kidney injury. Other notable
commercial Deep Learning efforts with relevance to healthcare are Deep
Genomics3, Entlitic 4 and Atomwise5.

(HVHC)”, which is a collective of close to 100,000 physicians
and close to 10 million patients across the U.S. In an early
project, HVHC found strikingly different costs and processes
for total knee replacements among four hospital sites, with
one site performing significantly better than the others [47].
Subsequently, this site’s best practices were shared with the
other three and all four could reduce their lengths of stay for
knee-replacement procedures by a full day [48].

The University of Michigan has announced a large Big
Data Science Initiative targeting health issues in the context of
mobility and wearable devices [49].

The University of Washington Tacoma has developed the
“RiskO-Meter” using data analytics. It provides a risk score
to clinicians and patients to predict the return of congestive
heart failure patients to the hospital within the critical 30 day
readmissions window [50].

Penn Medicine, part of the University of Pennsylvania Health
System, is working on a Big Data project to develop predictive
analytics to diagnose deadly illnesses. The backbone is a
homegrown enterprise data warehouse, called Penn Data Store.
An example is the prediction of the danger of severe sepsis,
which relies on an analysis of six vital sign measurements and
lab values. The model takes into account more than 200 clinical
variables and enables Penn Medicine to detect 80 percent of
severe sepsis cases as much as 30 hours before onset of septic
shock (as opposed to just two hours prior, using traditional
identification methods) [51].

G. Comments on the Value of Big Data Studies
Often the goal of Big Data studies is to draw causal

conclusions, e.g., on the effectiveness of a drug or on a
possible disease cause, and one needs to consider the value of
an observational Big Data study versus classical randomized
controlled trials (RCT).

Prospective RCTs are often cited as the gold standard for
evidence since by a careful study design, effects of hidden
confounders can be minimized. But RTCs also have their
shortcomings, in particular due to the way patients are selected
for a study and due to the small sample size. RCTs are often
done in relatively healthy homogeneous groups of patients,
which are healthy except for the condition of interest, free of
common diseases like diabetes or high blood pressure, and are
neither extremely young or old [52]. If patients have several
problems, treating them as if they were mutually independent
might be bad in general, and information on treatment-treatment
interactions are not be easily assessable through RCTs. Also,
interplay between diseases like hypertension, high cholesterol
and depression might not become apparent in RCTs. Since
patients are difficult to recruit in general and the management
of clinical studies is costly, sample size is often small. For the
same reasons, findings need to be general and not personalized
and there are long delays until a result is certain and can become
clinical practice. It has been suggested that patient-reported
outcome measures are often better predictors of long term
prognosis [53]. Non-randomized, quasi-experimental studies are
sometimes employed but provide less evidence than RCTs [54].

Big Data analyses, in contrast, consider data from a large
variety of patients and potentially can draw conclusions from a
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much larger sample. Data are based on the natural population
of patients, and conclusions can be personalized. For instance,
with depressed diabetic patients, one would want to compare
hospitalization rates between those taking antidepressants and
those who were not, to determine if more patients should
receive psychiatric treatment to help them manage their health.
Currently such studies involve great efforts. In a future Big
Data healthcare these questions could be answered by a simple
database query [55].

Big Data analysis mostly concerns observational studies
whose conclusions are considered by some to be statistically
less reliable. The main reason is that hidden confounders
might produce correlations, independent of a causal effect.
Confounders are variables that both influence clinical decisions
and, at the same time, outcome. One solution to minimize the
effects of confounders are multivariate models where predictive
models contain all those variables as inputs that were used
in the decision making by the caregiver. Unfortunately, some
of these variables might not be available for analysis, such as
patient symptoms and patient complains, which both are often
not well documented.

Data collection might introduce various forms of biases.
Examples are batch effects, which might occur in the merging
of data from different institutions; batch effects can be addressed
by a careful statistical analysis [56], [57].

It is still unclear if physicians are ready to use evidence
from Big Data. Generally accepted is the generation of novel
hypotheses by Big Data studies, which are then clinically
validated, although clinicians are critical towards hypothesis
fishing [58]. Of course clinical studies are very expensive and
would only be initiated with significant evidence from data and
with the prospect of large benefits.

A desired and well accepted outcome is the discovery of
novel patient subgroups based on risk of disease, or response
to therapy, using diagnostic tests. These subgroups can then
be the basis for a targeted therapy in precision medicine (see
Section VII). For example, asthma is largely regarded as a
single disease and current treatment options tend to address its
symptoms rather than its underlying cause. It is now accepted
that asthma patients can be grouped according to patterns of
differential gene expression and clinical phenotype with group
specific therapies [53].

A predictive or prescriptive analysis might output a prediction
(e.g., prediction of some clinical end point), or a ranking or
prioritization of treatments. Here the output might have been
calculated based on many patient dimensions and this process
might be difficult to interpret. Prioritization is currently still
contrary to medical tradition and it remains to be seen if the
medical profession will accept this aspect of a Big Data decision
support system.

It is important to understand why machine learning solutions
typically work with many inputs. In a perfect situation a
diagnostic test can reveal the cause of a problem and the
subsequent therapies solve or at least alleviate the problem.
In reality, even with all advances in diagnostics, we are
often still very far from being able to completely describe
the health status of an individual. Technically, the health
status of a patient consists of may aspects and only some

of these (i.e., some infections, some cancer types) can be
inferred by specific diagnostic tests. In Big Data analysis one
is partially doing “new medicine”, i.e., one might address
problems from novel disease subgroups or syndromes that
cannot be detected unambiguously with existing diagnostic
tests. Since the statistical model then implicitly needs to infer
the latent causes from observed surrogates, the models often
become high-dimensional, and their predictions become difficult
to interpret by humans, although predictive performance might
be excellent. This is an effect observed in a multitude of
predictive machine learning applications in and outside of
healthcare. The Big Data perspective is: If there are latent
diseases, disease subgroups or syndromes, they leave traces in
a large number of observable dimensions.

IV. OUT WITH THE DATA

A. Introduction
In this section we focus on data that are leaving the clinic

systems, i.e., data that are accessible to the payers, data that are
collected in registries and data that are reported to healthcare
agencies. Payers have a unique longitudinal view on patients
and can perform statistical analysis on treatment efficiencies
and outcome — for the optimization of their offerings, but also
for the detection of fraud. Registries are valuable sources for
epidemiological research. We will discuss Health information
exchange (HIE), which refers to various activities around the
mobilization of healthcare information electronically across
organizations [5]. Data reported to healthcare agencies can
be used for quality control and for policy optimization. As
an example of the latter, we discuss the HITECH act, which
is an attempt to improve the clinical system in the U.S. by
encouraging an adoption of the EHR and its meaningful use
via incentive programs. Finally, we discuss privacy and data
safety.

B. Data Accessible to Payers: Billing Data
The most common situation where data are leaving the clinic

is when claims are filed with a payer, e.g., a health insurer or
a health plan. Depending on the particular reimbursement rules
in place, payers see data of varying levels of detail, quality
and biases. Unfortunately, claims data may not fully reflect a
patient’s burden of illness [59], [60]. While the appropriateness
of billing data to clinical research is often debated, many, many
studies have used these data to guide clinical care, policy and
reimbursement.

Claims data deliver a holistic view of patients across
providers for a specific period of time, and it permits a patient
centric view on health. Claims data also deliver direct and
indirect evidence of outcome, e.g., by analyzing readmissions,
and inform on cost efficiencies and treatment quality across
providers. Payer organizations are increasingly interested in
better understanding their customers, in this case their patients.
Surveys, questionnaires, call center data, and increasingly social
media including tweets and blogs are analyzed for gaining
insights to improve quality of services and to optimize offerings.

A major concern is the detection and prevention of abuse
and fraud. Healthcare fraud in the U.S. alone involves tens
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of billions of dollars of damages each year [61] and fighting
fraud is one of the obvious activities to immediately reducing
healthcare costs. Note that some forms of fraud actually do not
only harm the payer but directly the patient (e.g., by unnecessary
surgery) [62], [63]. Naturally there is a grey zone between
charging for justified claims on the one side and abuse and
fraud on the other side. Certainly, billing for services never
provided, e.g., for fictitious patients or deceased patients, is
clearly fraud, but if an expensive treatment is necessary or not
in a case might be debatable. A 2011 McKinsey report stated
that fighting healthcare fraud with Big Data analytics can be
quite effective [2].

Technical solutions focus on the detection of known fraud
patterns, the prioritization of suspicious cases and the identifi-
cation of new forms of fraud. More sophisticated approaches
use statistical models of clinical pathways and best practices to
detect abnormal claims (against the population) and analyzes
suspicious temporal changes in charging patterns within the
same provider. In addition one can analyze different kinds
of provider networks, where nodes are the providers and the
links are common patients, analyzing homophily or “guilt by
association” patterns. Another measure is the black listing of
providers.

Most commercial systems use a combination of different
strategies [61]. Despite all these efforts, and mostly due to
the fragmentation in the system and a huge grey zone, it is
estimated that only a few percentage of the fraud actually
occurring is currently being detected.

C. Registries

Disease or patient registries are collections of secondary
data related to patients with a specific diagnosis, condition, or
procedure.

There exist registries for dozens of problems6; the best known
ones are cancer registries, which have become an invaluable
tool for understanding and detecting cancer within the U.S. but
also in many other countries.

Population-based cancer registries regularly monitor the
frequency of new cancer cases (so called incident cases) in
well-defined populations. The basis are case reports collected
from different sources, e.g., treatment facilities, clinicians and
pathologists, and death certificates. If an unexpected increase of
cases can be observed in registries, hypotheses about possible
causes are generated. These are then investigated in a second
step by collecting more detailed data and performing further
analysis. Registry data are critical to determining geographic
and temporal cancer clusters and they can be used for the
development and tracking of the most effective therapies and
treatments. Population based registries can also monitor the
effects of preventive measures. Public health officials use the
data to make decisions on research funding and educational
and screening programs [64].

In contrast to population registries, hospital registries are
traditional means for research within a clinic or a clinic system
using more detailed data about diagnosis, therapy and outcome.

6http://www.nih.gov/health/clinicaltrials/registries.htm

The quality of the conclusions that can be drawn from cancer
registries critically depends on the completeness and the quality
of data. Both might improve through the adoption of the EHR:
Stage 2 of the HITECH act calls EHR reporting to cancer
registries to support comparative effectiveness research. In
October 2012, the University of Kentucky launched a first U.S.
working model for EHR reporting of cancer cases to a state’s
cancer registry [64].

An important aspect is to guarantee that the electronic data
transfer is safe and that proper precautions and safeguards have
been implemented. If only summaries are reported, HIPAA
violations (see Section IV-G) can be avoided. Note that with
registries one obtains in-use data and one needs to be aware
of possible confounders distorting the analysis (see discussion
in Subsection III-G).

D. HIE
Health information exchange (HIE) refers to various ac-

tivities around the mobilization of healthcare information in
digital form and across organizations [5]. It is intended to
regulate the electronic transfer of clinical and administrative
information across diverse and often competing healthcare or-
ganizations [65]. HIE is also useful for public health authorities
to assist in analyses of the health of the population

Several organizations have emerged to support the health
information exchange efforts, both on independent and govern-
mental/regional levels. These organizations develop and manage
a set of contractual conventions and terms and develop and
maintain HIE standards.

There are two main models for HIE data architectures.
In a centralized HIE there is a central (or master) database
which holds a complete copy of all of the records of every
involved patient. In a federated HIE each healthcare provider
is responsible for maintaining the records of their individual
patients, as well as for data availability and common data
standards.

Patient consent can be managed by an opt-in approach or
an opt-out approach. In opt-in, a patient is not automatically
enrolled into the HIE by default and generally must submit
written permission for their data to be exchanged.

In opt-out, patients give implicit consent when they agree
to use the services of a healthcare provider who is submitting
data into an HIE. In this latter model a patient can request to
opt-out of the HIE, generally with a written form.

A major goal is a nationwide health information network that
will allow physicians quick access to their patients’ complete
medical histories without compromising their privacy. Another
benefit is that the data can be used to support the learning
healthcare system [6], [66].

E. Care.Data
The U.K. has a national health service (NHS), which attempts

to address many of the problems associated with the fragmented
systems in the U.S. and in many other countries. A program
called care.data was announced by the Health and Social Care
Information Centre (HSCIC) in Spring 2013. The care.data
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program was advertised to integrate health and social care
information from different sources to analyze benefits and
potential shortcomings of the NHS [67]. The data could be
used in anonymized form by healthcare researchers, managers
and planners, but also by parties from outside the NHS such
as academic institutions or commercial organizations.

Stated goals of the project were
• to better understand diseases and treatments,
• to understand patterns and trends in public health and

disease to ensure better quality care,
• to plan services that make the best of limited NHS

budgets,
• to monitor the safety of drugs and treatments,
• and to compare the quality of care providers in different

areas of the country.
Regardless of the question if the program was managed

well or not, the experience shows which type of acceptance
problems projects like these can encounter. An opt-out model
was implemented where individuals were being informed that
data on their health may be uploaded to HSCIC unless they
objected, but the opt-out option was unclear. It was seen as a
major problem that it was impossible for a patient to determine
what the data will be used for, i.e., it was impossible to limit the
use only for medical research by excluding insurance companies
and pharmaceutical industry. Another issue was that the data
was pseudomyzed, i.e., a unique patient identifier was used,
and critics argued that this would not be a major hurdle for
re-identification. People were worried that data were made
accessible to consulting companies like McKinsey or PWC
as well as pharmaceutical companies, like AstraZeneca. There
was also concern that the police could access the data.

In October 2014 the program was reviewed by the Cabinet
Office Major Projects Authority and it was concluded that it
had “major issues with project definition, schedule, budget,
quality and/or benefits delivery, which at this stage do not
appear to be manageable or resolvable”.

F. Incentive Programs
The wording is dramatic: Some argue that healthcare is

undergoing the most significant changes in its history, driven
by the spiraling cost of care, shifting reimbursement models,
and changing expectations of the consumer. Reforming the
healthcare system to reduce the rate at which costs have been
increasing while sustaining its current quality might be critical
to many industrialized countries. An aging population and the
emergence of new, more expensive treatments will accelerate
this trend.

It has been argued that by far the greatest savings could be
achieved by population wide healthier lifestyles, which would
largely prevent cardiovascular diseases and chronic conditions
like diabetes. Chronic conditions account for an astounding
75% of healthcare costs in the U.S. [68], [69]. There is some
hope that the proliferation of fitness and health apps might be
greatly beneficial to population health (see Section VI).

Population health management tries to improve the situation
by different measures such as a value-based reimbursement
system causing providers to change the way they bill for care.

The goal is to align incentives with quality and value. Instead of
providers being paid by the number of visits and tests they order
(fee-for-service), their payments are increasingly based on the
value of care they deliver (value-based care). For those providers
and healthcare systems that cannot achieve the required scores,
the financial penalties and lower reimbursements will create a
significant financial burden.

An important instrument in the U.S. is the Health Information
Technology for Economic and Clinical Health Act, abbreviated
HITECH Act. It was enacted under the American Recovery and
Reinvestment Act (ARRA) of 2009. Under the HITECH Act,
the United States Department of Health and Human Services
(HHS) is spending several tens of billions of U.S.-dollars
to promote and expand the adoption of health information
technology to enable a nationwide network of electronic health
records (EHRs). This network can then be the basis for informed
population health management and for improving healthcare
quality, safety, and efficiency, in general.

The general goals are to improve care coordination, reduce
healthcare disparities, engage patients and their families, and
improve population and public health, by, at the same time,
ensuring adequate privacy and security.

The implementation is in three stages. An organization must
prove to have successfully implemented and used a stage for
a minimum of time before being able to move to a higher
stage. If stages are successfully reached, financial incentives in
Medicaid and Medicare are being paid. If stages are not reached,
financial penalties can be implemented by both systems.

In Stage 1, the participating institutions do not only need to
introduce an EHR but also need to demonstrate their meaningful
use. The core set of requirements include the use computerized
order entry for medication orders, the implementation of drug-
drug, and drug-allergy checks, and the implementation of
one clinical decision support rule. Also the protection of the
electronic health information (privacy & security) needs to be
demonstrated.

Stage 2 introduces new requirements, such as demonstrating
the ability to electronically exchange key clinical information
between providers of care and patient-authorized entities. Health
information exchange (HIE) (see Subsection IV-D) has emerged
as a core capability for hospitals for Stage 2.

Stage 3 of meaningful use is shaping up to be the most
challenging and detailed level yet for healthcare providers.
Among the elements are additional quality reporting, clinical
decision support and security risk analysis. The Stage 3 rule
lists clinical decision support as one of the eight key objectives.
Unlike the Stage 1 which required one clinical decision support
rule, Stages 2 and 3 specifically require the use of five clinical
decision support interventions.

Although welcomed by many, there also has been criticism
of HITECH related to the increased reporting burden and the
focus on reporting requirements and not on outcomes.

The HITECH act provides many opportunities for analytics,
for example in the development of certified tools which provide
evidence that a provider is fulfilling the various meaningful
use criteria.

Other incentive programs have been put in place as well. For
example the Centers for Medicare & Medicaid Services (CMS)



11

provide incentives via the Hospital Readmission Reduction
Program (HRRP). Incentives are paid if patients are not admitted
to the same clinic within 30 days of release for the same
problem.

The New York State Department of Health has instituted the
Delivery System Reform Incentive Payment Program with the
goal of transforming NY Medicaid healthcare delivery to reduce
avoidable hospitalizations by 25%.7 More than $8 billion will be
paid out in incentive and infrastructure payments to 25 Preferred
Provider Systems (PPSs) provided they meet this ambitious goal
in 5 years. The 25 PPSs are each geographically local networks
of varying size (from 100+ to near 500+) including hospitals,
physician practices, imaging centers, rehab, and hospice, who
would normally compete for patients, but have voluntarily come
together to form trusted health networks (i.e., a PPS). They
have agreed to share patient data and coordinate patient care
to improve patient experience through a more efficient, patient-
centered, and coordinated system. The PPSs have “signed up”
for different targeted programs (e.g., targeting mental health,
fetal-maternal heath, diabetes, pediatric asthma, etc.) depending
on community health assessments they performed in their area.

Although population health management might seem to
be slow moving and bland if compared to the more visible
precision medicine initiatives, it has recently be argued, that the
impact of the former might be dramatically greater, if one looks
at the current state of the art [70], [71]. “Looking at diabetes,
precision medicine may help a few scattered patients in the
right clinical trials to tackle their Type 1 diabetes, but it may
not prevent the 28 percent of undiagnosed Type 2 diabetics
from experiencing adverse effects from a lack of treatment the
way a robust risk stratification and predictive analytics program
might,” Bayer and Galea write [70].

G. Data Privacy, De-identification and HIPAA

Data breaches in the medical industry happen more often
than expected [11]. A wake-up call was the February 2015
cyber attack on Anthem Health, which affected the personal
information of 78.8 million people. Healthcare information has
considerable value in the black market. Since, in general, even
a major data breach does not affect revenue, organizations have
few incentives to invest in digital security; thus, regulations
are introduced to encourage security measures.

The storage, access and sharing of medical and personal
information of any individual is addressed in the HIPAA Privacy
Rule. The HIPAA Security Rule outlines national security
standards to protect health data created, received, maintained
or transmitted electronically. The latter is also known as ePHI
(electronic protected health information) [72].

The HITECH Act supports the enforcement of HIPAA
requirements by introducing penalties for health organizations
that violate HIPAA Privacy and Security Rules. Any company
that deals with protected health information must ensure that all
the required physical, network, and process security measures
are in place and followed.

7DSRIP: http://www.health.ny.gov/health_care/medicaid/redesign/docs/dsrip
_project_toolkit.pdf)

V. THE PATIENT IN CHARGE

Patients become more active in taking charge of their own
health and their health data (patient empowerment) and leave
traces that can be analyzed to better understand population
health and health concerns. On the down side, public traces
can also be used to the patients’ disadvantage and there is an
increasing worry about bullying and social scoring.

A. Leaving Traces
Web-based search is part of nearly everyone’s life and is

also the preferred venue to find out about one’s health issues.
Health related research often starts with Wikipedia, which is
frequently consulted on health issues by both patients and
health professionals. Wikipedia is undoubtedly an important
source of information although quality issues have been
raised [73]. There are a number of health specific portals (e.g.,
netdoctor, healthline, Yahoo Health, WebMD, whatnext.co and
RevolutionHealth), some of which are managed by leading
healthcare providers such as the Mayo Clinic and the Cleveland
Clinic.

Other web services help patients find the right provider for
their problems. Among them are commercial resources like
Healthgrades and ZocDoc as well as government resources
such as Medicare’s Hospital Compare site. One can observe
an increasing willingness to “shop for health” leading to the
question of which company would become the “Amazon of
healthcare” [74].

Similar to the general population, patients are increasingly
active in social networks like Facebook and various blogs. There
are also a number of social network services addressing specific
health issues [75]. The motivation is obvious: Patients with the
same problems want to communicate and exchange information.
Problem-specific communities are organized by commercial
and noncommercial web portals and special services can be
provided to these groups by third parties.

Not just patients might want to organize themselves, but also
clinics and healthcare professionals, and collaboration tools
appear on the market.8

B. Analyzing Traces
Statistics on anonymized search query logs and traces

in social media can be analyzed to inform public health,
epidemiologists and policy makers. Infodemiology is a new
term standing for the large-scale analyses of anonymized
traces, which can potentially yield valuable results and insights.
Infodemiology can support the early detection of epidemics,
the analysis and modeling of the flow of illness and other
purposes [76]. It can address public health challenges and can
provide new avenues for scientific discovery [76].

A widely discussed example is the analysis of search query
logs as indicators for disease outbreaks. The idea is that
social media and search logs might indicate an outbreak of
an infectious disease like a flu immediately, including detailed
temporal-spatial information of its spread. Previously, such

8https://bps-healthcare.siemens.com/teamplay/, http://www.cmtcorp.com/
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outbreaks might go unnoticed for days of even weeks. But
models have proven difficult. Google Flu Trends for example,
predicted well initially but the fit was very poor later [77], [78].

Another application is the detection of adverse drug reactions,
which could be improved by jointly analyzing data from the
U.S. Food and Drug Administration’s Adverse Event Reporting
System, anonymized search logs and social media data [76].
The analysis of patients’ traces has increasing importance in
pharmacovigilance, which concerns the collection, detection,
assessment, monitoring, and prevention of adverse effects with
pharmaceutical products. Still there is little experience yet in
the quality, reliability and biases in data generated from Web
query logs and social network sites and conclusions should be
drawn with great caution [79], [80].

There is also a danger in patients leaving traces in social
media: When re-identified, traces can be aimed at making
inferences about unique individuals that could be used to
infer their health status. Many problems are associated, e.g.,
with social scoring in healthcare. [76] reports on a Twitter
suicide prevention application called Good Samaritan that
monitored individuals’ tweets for words and phrases indicating
a potential mental health crisis. The service was removed after
increasing complaints about violations of privacy and imminent
dangers of stalking and bullying. As pointed out by [76], health
issues can also be inferred from seemingly unrelated traces.
Simply changing communication patterns on social networks
and internet search might indicate a new mother at risk for
postpartum depression.

Another issue is that some companies are working together
with analytic experts to track employees’ search queries, medi-
cal claims, prescriptions and even voting habits to get insight
into their personal lives [81]. Although HIPAA legislation
forbids employers to view their employees’ health information,
this does not apply to third parties. A company which received
public attention is Castlight, which gathers data on workers’
medical information, such as who is considering pregnancy
or who may need back surgery.9 Castlight’s policy is to only
inform and advice the individuals directly and only report
statistics to employers.

Patient privacy issues are increasingly addressed by regula-
tors, e.g., in the U.S. by the Americans with Disabilities Act
(ADA) and the Genetic Information Non-Discrimination Act
(GINA).

[76] points out the technical difficulties in protecting the
citizens against violations, in the face of powerful machine
learning algorithms which can “jump categories”: Machine
learning can enable inferences about health conditions from
nonmedical data generated far outside the medical context [76].

C. PatientsLikeMe

An openly commercial social network initiative is Patients-
LikeMe [82], [83] with several hundred thousands of patients
using the platform and addressing more than a thousand
diseases. The majority of users have neurological diseases such
as ALS, multiple sclerosis and Parkinson’s, but PatientsLikeMe

9http://www.castlighthealth.com/

is also increasingly addressing AIDS and mood disorders [84],
[85].

PatientsLikeMe is not merely a chat board with self-help
news but also collects quantitative data. It has designed several
detailed questionnaires which are circulated regularly to its
members. For example, epileptics can enter their seizure
information into a seizure monitor. It has a survey tool to
measure how closely patients adhere to their treatment regimen,
but also scans language in the chat boards for alarming words
and expressions. PatientsLikeMe offers a number of services.
Together with the Massachusetts Eye and Ear Hospital it created
a contrast sensitivity test for people with Parkinson’s and
hallucinations.

The business model of PatientsLikeMe is not based on
advertising. Instead, the company has based its business
model on aligning patient interests with industry interests,
i.e., accelerated clinical research, improved treatments and
better patient care. To achieve these goals, PatientsLikeMe
sells aggregated, de-identified data to its partners, including
pharmaceutical companies and medical device makers. In this
way, PatientsLikeMe aims to help partners in the healthcare
industry better understand the real-world experiences of patients
as well as the real-world course of disease. Some of Patients-
LikeMe’s past and present partners include UCB, Novartis,
Sanofi, Avanir Pharmaceuticals and Acorda Therapeutics.

D. Managing Your Own Data
Consumers might not only want to research their health

issues and communicate with others, but also possibly manage
their own data.

If patients take responsibility for their own data, they must
be able to store, manage and control the access to these data.
By nature, this would overwhelm the patients’ capabilities and
commercial and noncommercial services realize some of the
necessary functions [86]. The core is a personal health record
(PHR) which is a patient centered assembly of all personal
health information.

Among the earliest offerings is the Microsoft HealthVault,
which addresses individuals who want to manage their own or
their family’s health. The HealthVault permits the storage and
consolidation of a patient’s life health information and enables
the patient to give access to this information to selected parties.
For example, the HealthVault keeps digital records of children’s
immunization records or an individual’s medical imaging results
and displays them to authorized parties whenever wanted.
Doctors can send data and files right into an individual’s
HealthVault account. The site lets the users generate letters
that can be sent to their healthcare professionals, outlining
instructions, and security and encryption details. As discussed
in the next section, a lot of healthcare and fitness related data are
produced by mobile devices, and services like HealthVault offer
convenient functionalities for managing, storing and analyzing
those data. The World Medical Card and WebMD offer related
services.

Naturally, due to privacy issues and their distributed nature,
PHRs are difficult to use as part of an analytics project;
nevertheless the rich information in a PHR can be used in
a personalized advisory and alarming system.
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VI. CONTINUOUS HEALTHCARE

With the tremendous technological progress and prevalence
of mobile devices, the disruptive potential of mobile health
(mHealth), and also, more general, technology-enabled care,
is frequently being discussed [87], [88]. A new generation
of affordable sensors is able to collect health data outside
of the clinic in an unprecedented quality and quantity. This
enables the transition from episodic healthcare, dominated by
occasional encounters with healthcare providers, to continuous
healthcare, i.e., health monitoring and care, potentially anytime
and anywhere! Continuous healthcare certainly has the potential
to create a shift in the current care continuum from a treatment-
based healthcare to a more prevention-based system: Many
health problems can be prevented by a healthy life style and
the early detection of disease onset, in combination with early
intervention. However, the full potential remains to be unlocked
as a 2012 Pew Research Center study about mobile health
reveals [89]: While about half of smartphone owners use their
phone to look up health information, only 1 in 5 smartphone
users own a health app. Currently this exciting field is in a
flux and opportunities, challenges and crucial factors for its
widespread adoption are discussed in current research [90],
[91], [92], [93].

A. Technological Basis
The technological basis of mHealth includes smart sensors,

smart apps and devices, advanced telemedicine networks such as
the optimized care network10 and supporting software platforms.
There is a broad range of new devices that have entered the
market: smartphones, smart watches, smart wrist bands, smart
head sets and Google Glass, among others. In the future,
patient-consumers might use a number of different devices
that measure a multitude of different signals: "headsets that
measure brain activity, chest bands for cardiac monitoring,
motion sensors for seniors living alone, remote glucose monitors
for diabetes patients, and smart diapers to detect urinary tract
infections" [11].

A Body Area Networks (BAN) is another form of a
technological enabler with sensors that measure physiological
signals, physical activities, or environmental parameters and it
comes along with an internet-like infrastructure. BANs are, for
example, being used to monitor cardiac patients and help to
diagnose cardiac arrhythmias [94].

Add-ons to mobile devices such as lab-on-a-chip technologies
are particular interesting technologies and might represent a
new form of point-of-care devices. [95] presents a laboratory-
quality immunoassay that can be run on a smartphone accessory
and [96] present a 3D printed attachment for a smartphone for
the detection of sickle cell disease.

Especially for developing countries with a limited infrastruc-
ture the potential of such technologies is tremendous.

From an engineering perspective, continuous healthcare is
related to condition monitoring and predictive maintenance,
enabled by smart sensors, connectivity and analytics — a
combination often referred to as the internet of things (IOT).

10http://www.optimizedcare.net/

By measuring and aggregating the signals from many different
persons, machine learning algorithms can be trained to detect,
e.g., anomalies and unexpected correlations that might gen-
erate new insights. Open source initiatives such as the Open
mHealth11 initiative are important enablers that could pave the
way to overcome the data integration challenges.

B. Use Case Types

1) Disease prevention: Smartphones are increasingly being
used for measuring, managing and displaying lifestyle and
health parameters, related, e.g., to weight, physical activity,
smoking, and diabetes. Improving lifestyle and fitness of
the general population has the potential to reduce healthcare
costs dramatically and thus fitness and health monitoring
might have dramatic positive impact on both population health
and healthcare cost. In a recent statement, the American
Heart Association (AHA) reviews the current use of mobile
technologies to reduce cardiovascular disease (CVD) risk
behavior [97]. CVD continues to be the leading cause of death,
disability and high healthcare costs [97] and is thus a prime
example for investigating the potential of mHealth technologies.
The work investigates different tools available to consumers
to prevent CVD, ranging from text messages (e.g. smoking
cessation support), wearable sensors, and other smartphone
applications. While more evidence and studies are needed, it
appears that mHealth in CVD prevention is promising. The
AHA strongly encourages more research.

2) Early detection: Many diseases can be treated best
when discovered early and before they cause serious health
consequences. Early detection can happen at the population
level or at the individual level. [87] highlights an early
warning system for disease outbreaks caused by illness related
parameters such as environmental exposure or infectious agents.
On the individual level, the previously mentioned Body Area
Network is a major enabler for early detection of abnormalities.
So-called smart alarms can be understood as another form of
early detection on the individual level.

Smart alarms cover a range of applications, such as the
monitoring of heart activity, breathing, and potential falls, and
are especially relevant to the elderly [94].

The company AliveCor12 is offering a mobile ECG that is
attached to a mobile device (either smartphone or tablet). The
attached device creates an ECG that is then recorded via an app.
The mobile ECG is cleared by the FDA and can also detect
atrial fibrillation, a leading cause of mortality and morbidity.
AliveCor states that the device has been used to record over
five million ECGs, and that these data are then the basis for
training an anomaly detection algorithm.

3) Disease management: Healthcare costs can be reduced
when the patient is monitored at home instead of in the clinic
and if physicians can optimize care without the need to call
in the patients for a medical visit. Some hospitals and clinics
collect continuous data on various health parameters as part of
research studies [11]. Especially the management of chronic

11http://www.openmhealth.org/
12http://www.alivecor.com/
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diseases can benefit from continuous healthcare. In a recent
review [98], the authors screen systematically for randomized
clinical trials that give evidence about better treatment ad-
herence when using mHealth technologies. Applications range
from simple SMS services to video messaging with smartphones
and other wireless devices. They conclude that there is, without
doubt, high potential for these technologies but, as the evidence
in the trials was mixed, further research is needed to improve
usability, feasibility, and acceptability.

4) Support of translational research: With hundreds of
millions of smartphones in use around the world, the way
patients are recruited to participate in clinical studies might
change dramatically. In the future patients might be able to
decide themselves if they want to participate in a medical study
and they might be able to specify how their data will be used
and shared with others.

Major research institutions have already developed apps for
studies involving asthma, breast cancer, cardiovascular disease,
diabetes and Parkinson’s disease. One interesting use case is
the control of disease endpoints in clinical trials with mHealth
technologies. As a concrete example, Roche developed an app to
control or measure the clinical endpoints of Parkinson disease.13

The app, which complements the traditional physician-led
assessment, is currently used in a Phase I trial to measure
in a continuous way disease and symptom severity. The app
is based on the Unified Parkinson’s Disease Rating Scale
(UPDRS), which is the traditional measurement for the disease
and symptom severity. The test, which takes about 30 seconds,
investigates six endpoint-relevant parameters and involves a
voice test, balance test, gain test, dexterity test, rest tremor
tests and postural tremor.

The Clinical Trials Transformation Initiative14, an association
representing diverse stakeholders along the clinical trial space,
is envisioning the next generation of clinical trials. Recently,
the initiative has launched a mobile clinical trials program to
investigate how mobile technologies and other off-site remote
technologies can further facilitate clinical trials.

C. Selected Projects
Many different projects have begun involving clinics, research

institutes and technology providers. In a recently started
pilot between the MD Anderson Cancer Center and Polaris
Health, Apple Watches are collecting data from breast cancer
patients [99]. According to a Polaris statement, data to be
collected include treatment side effects, information about
sleep behavior, levels of physical activity, and patient mood.
Researchers will combine this information with EHR data from
the patients and health data of other breast cancer patients to
create new insights.

Another example demonstrates the great potential for de-
veloping countries. Medic Mobile, 15 a non-profit technology
company, has developed a software platform that is used in
23 countries in Africa, Latin America, and Asia to improve

13http://www.roche.com/media/store/roche_stories/roche-stories-2015-08-
10.htm

14http://www.ctti-clinicaltrials.org/
15https://medicmobile.org/

care in rural areas. The use cases of the platform range from
antenatal care, childhood immunization, disease surveillance,
and drug stock monitoring. For antenatal care, the organization
reports on their homepage that approximately 500.000 people
have been covered in the countries Bangladesh, Kenya, and
Nepal. Over 1.800 community health workers are using their
smartphones to register women in a central database once they
are pregnant. Automated text messages are then sent to organize
appointments, and health workers can register any potential
danger signs.

Japan Post, one of Japan’s largest insurers, joins forces with
IBM and Apple to address issues of an aging generation [100].
They will be designing app analytics and cloud services around
the smartphone to help to connect millions of seniors with
their families but also to healthcare services. The project
will help Japan Post to both know more about its customers
and to improve the health and wellness of its seniors, thus
allowing individuals to live potentially longer, healthier and
more independently.

The Quantified Self movement [101] uses sensors to put a
person’s daily life into data by self-tracking biological, physical,
behavioral or environmental signals [101]. The community is
supported by a company of the same name.16

D. Implications for the Clinical Setting and the Doctor’s Office

Some hospitals and insurers have already recognized the
willingness of patients to use telemedicine services [102] and
are offering video consultations —a contemporary “house call”—
to patients via Skype and other internet conferencing systems.
“In the way that video calls and instant messaging revolutionized
the way people communicate with others, now health systems
are exploring how e-health consultations for routine ailments
can relieve the pressure on primary care systems that are
functioning beyond capacity,” Blumenthal writes [11]. Some
patients find these e-visits to be cheaper and more convenient
than visits to their doctor’s office. About 55% of patients
recently asked in a survey would send a photo of their skin to a
dermatologist for consultation.17 Researchers say more evidence
is needed to understand if virtual medical visits will actually
reduce costs or improve health outcomes. But the demand
among patient-consumers is there and some large insurers have
begun to pay for these virtual consultations [11].

E. Regulatory Implications

The continuous healthcare ecosystem has brought together
stakeholders that were previously more or less unconnected
and now have to interact. For instance in the U.S., certain app
developers suddenly have to deal with premarket notification
or so-called 510(k) clearance processes from the FDA. The
driving question here is which type of mHealth applications
fall under FDA’s jurisdiction over medical devices. Indeed,
different classifications of “mobile medical applications” and

16http://quantifiedself.com/
17http://www.pwc.com/us/en/health-industries/healthcare-new-

entrants/assets/pwc-hri-new-entrant-chart-pack-v3.pdf
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according FDA guidances now exist, but they do not appear to
be finalized yet.

While it is the traditional responsibility of the FDA to
oversee the safety and effectiveness of medical devices (also
including certain types of mobile apps), some politicians and
industry representatives are afraid that innovation is hampered
by regulatory oversight. However, first warning letters to
doctor’s had to be sent out where mobile medical apps showed
unexpected behavior; another case revealed that about 52
adverse event reports in the FDA’s reporting database were
generated for one specific diabetes app within two years [103].
Clearly, further intensive dialogue between stakeholders is
needed. [103] describes in detail the challenges that come
along with the regulation of mHealth technologies, together
with potential alternative regulatory scenarios.

F. Conclusion
In conclusion, the potential benefits of continuous healthcare

are tremendous. Of course many challenges remain: will it
be possible to solve major issues with data privacy? Will it
be possible to maintain population interest in the long run
or are health apps just a temporary phenomenon? Will there
be sustainable business models? Will it be possible to find
technical solutions for the data integration challenges? What
will be the eventual clinical impact of digital mHealth?

VII. GETTING PERSONAL

A. Precision Medicine is Changing Healthcare
Maximizing the positive effect of a healthcare intervention by

concurrently minimizing adverse side effects has always been
the dream of individualized healthcare. Over the last decades
it became clear that this goal cannot be achieved with insights
from conventional studies alone, which have been focusing
on empirical intervention efficacy and side effects in large
patient study groups. The reason is that, due to the biological
diversity of individuals, environment and pathogenesis, any
incident of a complex disease is like no other. Precision
medicine, personalized medicine, individualized medicine and
stratified medicine —terms we will use interchangeably— all
refer to the grouping of patients based on risk of disease, or
response to therapy, using diagnostic tests. Precision medicine
thus refers to the idea to customize healthcare, with medical
decisions, practices, and procedures being tailored to a patient
group. In its most extreme interpretation, this leads to the
“n=1” principle, meaning that therapy should be tailored to the
patient’s individual characteristics, sometimes referred to as
the “unique disease principle” [104].

Without question, the most important milestone for the
realization of a personalized medicine was the publication
of the reference sequence of the human genome about 15 years
ago [105], [106]. In the following years, the patient’s genomic
profile, supplemented with other molecular and cellular data,
became the basis for a dramatic progress in the understanding
of the molecular basis of disease. The impact of this knowledge
is not limited to research: As new analytical methods like next
generation sequencing (NGS) and new proteomic platforms

bring cost down, molecular data will increasingly become part
of clinical practice.

With growing data sets, increasingly complex phenomena,
even with weak associations, can be discovered and validated.
Genome-wide association studies (GWAS), with more than
a million attributes collected from up to several thousands
individuals, are good examples. The main goal is to link the
generated data to clinically actionable information. The vision
of a real-time personalized healthcare is the rapid and real-
time analysis of biomaterials obtained from the patients based
on newest research results in a network of research labs and
clinics. Research and clinical applications go along with a huge
increase in volume and variety of data available to characterize
the physiology and pathophysiology.

The insights in the biological causes of disease might lead
to a more meaningful categorization of disease, at some point
in the future replacing medical codes, which were mostly
developed based on clinical phenotyping [53].

By far the greatest efforts in precision medicine have
been devoted to cancer (oncology), but precision medicine
becomes increasingly relevant to other medical domains, e.g.,
the central nervous system (e.g., Alzheimer’s and depression),
immunology/transplant, pre-natal medicine, pediatrics, asthma,
infectious diseases and cardiovascular [107].

B. Understanding Disease on a Molecular Level
In the last decades, a lot of attention has been focusing on

understanding the genetic causes of disease.
Monogenetic disorders with a high penetrance have been

linked to mutations of single inherited genes. The causative
genes of most monogenic genetic disorders have now been
identified [108].

Monogenetic diseases are relatively rare and attention has
shifted largely to complex diseases: Most common diseases,
including most forms of cancer, are based on an interaction
of several factors including a number of inherited genetic
variations, one or several mutations acquired during cell life
time, as well environmental factors. Consider, for example,
that worldwide approximately 18% of cancers are related to
infectious diseases [109]. Due to the complex interplay of
several factors, these diseases show, what has been termed,
“missing heritability”.

Insights into inherited genetic cell disorders are obtained from
germline DNA, typically obtained from blood cells. Genome
wide association studies (GWAS) examine the correlation
between germline genetic variations and common phenotypic
characteristics, such as breast cancer [110]. The likelihood of a
person developing a disease in their lifetime can sometimes be
predicted according to germline DNA profiles, permitting early
intervention and possibly preventing an outbreak of the disease.
With the establishment of next generation sequencing (NGS),
in the future the whole genome might be decoded for costs
in the order of a few hundred U.S. dollars and this will make
clinical genome analysis much more common. Eventually, the
increasing use of genome sequencing will lead to better insights
into which diseases can be explained by genetic variance and
could revolutionize molecular medicine for some diseases.
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Additional genetic variations of interest are those acquired
during the lifetime of somatic cells, which comprise all
cells that form an organism’s body, excluding the germ cells.
As genetic alterations accumulate, the somatic cell can turn
into a malignant cell and form a cancerous tumor. Genetic
profiles (mutations and amplifications) of somatic cancer
cells are obtained from analyses of tumor biopsies. Distinct
mutations and gene amplification patterns can be linked to
clinically relevant characteristics, such as prognosis or therapy
response [111]. In some cases the tumor is easily accessible,
however in other cases, as for tumors or metastases of certain
organs (e.g. brain, liver, lung), a biopsy is not standard of care.
In those cancer patients, the access to the material from which
the genomic information could be obtained is difficult. Recently,
novel methods have been developed that permit the analysis
of alternative sources of tumor material, such as circulating
tumor cells (CTCs). These are cancer cells that have shed into
the blood stream from a primary tumor. CTCs can constitute
seeds for subsequent growth of additional tumors (metastasis)
in distant organs, triggering a mechanism that is responsible
for the vast majority of cancer-related deaths. The analysis of
CTCs has been called a “liquid biopsy”. Also circulating tumor
DNA (ctDNA) was found to resemble the tumors genomic
profile, being useful for cancer detection and prediction of
therapy efficacy [112].

So far we have been focusing on DNA. The transcription of
RNA from DNA is called gene expression. This step plays a
crucial functional role, because RNA is translated directly into
functional proteins. Furthermore RNA has regulatory functions,
of which many are not yet fully understood. Transcriptomics is
the study of transcriptomes (RNA molecules, including mRNA,
miRNA, rRNA, tRNA, and other non-coding RNA), their
structures and functions. DNA microarrays (which, despite their
name, really test for RNA) and RNA-seq (RNA sequencing)
can reveal a snapshot of RNA presence and quantify cellular
activities at a given moment in time. In some cancers, such
as breast cancer, the expression of some genes has already
been proven to be of great clinical relevance. Increasingly,
genomewide gene expression analyses are becoming available
to characterize cancer diseases [113].

Whereas the genome contains the code, the proteins are
the body’s functional worker molecules. Several methods
like immunohistochemistry and enzyme-linked immunosorbent
assays (ELISA) are used in clinical practice for protein
analysis.18 In research, and recently also in clinical tests,
mass spectroscopy is used to determine many proteins in a
tissue, opening this field for high throughput and big data
approaches [114]. Increasingly, protein microarrays are used as
a high-throughput method to track the interactions and activities
of many proteins at a time.

While the transformation of genetic information into func-
tional proteins is recognized as being clinically highly relevant,
the clinical relevance of other “omics” fields is still under
investigation. Epigenomics, metabolomics and lipidomics are
three further levels of systems biology which might be unraveled
by big data analyses. Epigenetic changes modify genes on a

18This is a test that uses antibodies and color change to identify a substance.

molecular level, such that expression is altered; the analysis of
the effects of these modifications is part of current research.
Metabolomics concerns chemical fingerprints that specific
cellular processes leave behind, in particular, the study of
their small-molecule metabolite. Lipidomics focuses on cellular
lipids, including the modifications made to a particular set of
lipids, produced by an organism or system.

The environment is increasing the number of possible
interactions that play a role in the etiology (i.e., disease cause)
and pathogenesis of a disease19. The exposome encompasses
the totality of human environmental (i.e. non-genetic) exposures
from conception onwards, complementing the genome. Disease
often involves several factors. For example, scientists believe
that, for most people, Alzheimer’s disease results from a
combination of genetic, lifestyle and environmental factors
that affect the brain over time.20 Only in less than 5 percent of
cases, Alzheimer’s is caused by specific genetic changes that,
by themselves, virtually guarantee a person will develop the
disease.21

As a medical field, molecular medicine is concerned with the
molecular and genetic problems that lead to diseases and with
the development of molecular interventions to correct them. A
better understanding of the underlying molecular mechanisms
of diseases can lead to great advances in diagnostics and therapy.
In particular, cancer subgroups can be determined by omics
profiles and the most effective treatment with smallest adverse
effects can be determined for each subgroup. This concept is
at the center of precision medicine.

To give insight in what is clinically relevant today, consider
the concrete example of breast cancer. Molecular techniques
have changed our understanding of the basic biology of
breast cancer and provide the foundation for new methods
of “personalized” prognostic and predictive testing. Several
molecular markers are already established in clinical practice
such as high penetrance breast cancer causing genes (BRCA1
and BRCA2) [116], [117]. Also the characterization of the
tumor is driven by molecular markers such as estrogen receptor,
progesterone receptor and a genetic alteration, the HER2
amplification [118]. Since the biological signals of those
markers are quite strong, they were discovered already in the
90’s of the last century, even before high throughput molecular
analysis became a reality. Now, more than 15 years after
the primary publication of the human genome, many levels
of biology (DNA, RNA, Protein, Epigenetics, miRNA, . . . )
can be analyzed at relatively low cost, revealing detailed and
comprehensive insight into the biology of a cell.

19http://www.genome.gov/27541319
20http://www.mayoclinic.org/diseases-conditions/alzheimers-

disease/basics/causes/con-20023871
21Reality is even more complex: there is also heterogeneity within a particular

tumor. The hypothesized cancer stem cell model asserts that within a population
of tumor cells, there is only a small subset of cells that are tumourigenic (able
to form tumours). These cells are termed cancer stem cells (CSCs), and are
marked by their ability to both self-renew and differentiate. One assumes a
process of natural selection within a given tumor which also would explain
why cancer is so difficult to fight: a treatment might eliminate one strain giving
room for another strain to develop. It has been argued that this could be a
major problem for the vision on a personalized medicine [115]. An alternative
but related explanation is the clonal evolution model.
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A particular role for understanding breast cancer on the
molecular level play the efforts around “The Cancer Genome
Atlas” (TCGA). It was one of the first Big Data efforts that
compared the genetic information of the tumor with the genetic
information of the blood on a large scale for each single of the
three billion base pairs. See also Section VII-E. This project
could, for the first time, describe systematically, which genes
will mutate in the course of the pathogenesis of a healthy
mammary cell to a breast cancer cell [111].

C. Molecular Diagnostics and Drug Therapy
The need for a precision medicine is quite apparent when

looking at the limited drug response rates, as published research
from the early 2000s reveals [119]. Thus alternatives to the
traditional “blockbuster” models are needed [53].

The diagnostic part of precision medicine heavily relies
on biomarkers. In molecular diagnostics, the term biomarker
refers to any of a patient’s molecules that can be measured to
assess health and that can be obtained from blood, body fluids,
or tissue. Biomarker testing is at the center of personalized
medicine and tests are specific, e.g., to DNA, RNA or protein
variations. Biomarkers may test if certain proteins are overactive,
in particular if they help to promote cancer growth and therapy,
and may be based on the identification of a molecule (a drug
target), often a protein, whose activity needs to be modified
by a drug.

Pharmaceutical research tries to find drugs, so called targeted
drugs, that bind the drug target with the goal to influence
underlying disease mechanisms. Targeted therapy uses a number
of different strategies to fight tumors. Some targeted drugs
block (inhibit) proteins that are signals for cancer cells to
grow. Drugs called angiogenesis inhibitors stop tumors from
making new blood vessels, which greatly limits their growth.
Immunotherapy is a treatment that uses the body’s own immune
system to help fight cancer, e.g., uses the patient’s immune
system to attack tumor cells. A strategy is to generate antibodies
(e.g., monoclonal antibodies) which are man-made versions of
large immune system proteins that bind to very specific target
proteins on cancer cell membranes. To give an example, the
protein HER2 is a member of the human epidermal growth
factor receptor family and its overexpression plays an important
role in certain forms of breast cancer; HER2 is the target of
the monoclonal antibody trastuzumab.

Biomarkers are relevant in companion diagnostics, which are
diagnostic tests used as companions to a therapeutic drug to
determine its applicability, e.g., efficacy and safety, to a specific
patient.22 Companion diagnostics are co-developed with drugs
to aid in selecting or excluding patient groups for treatment.

While most drugs have been approved for very specific
diseases, they might also sometimes be effective in other
diseases. One reason is that the targets in both diseases might
have the same alterations. The application of known drugs and
compounds to treat new indications is called drug repurposing.
Analytics can play a role in finding good candidates [120], [121].
A well known case is the pain medicine Aspirin, which was

22http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/ InVit-
roDiagnostics/ucm407297.htm

found to be effective in treating and preventing heart disease.
In cancer, as another example, it could be shown that a drug
that works against a mutated gene in melanoma is also active in
other cancers if the respective mutation in BRAF is found [122].
The main advantage of drug repositioning over traditional drug
development is that —since the repositioned drug has already
passed a significant number of toxicity and other tests— the
drug’s safety is known and the risk of failure for reasons of
adverse toxicology is reduced. Thus, the introduction of a
specific drug for a new disease is greatly simplified.

D. Implementing Precision Medicine
As a major milestone, a first insurer has begun to cover

the cost of the sequencing of the full germline and tumor
genomes of cancer patients23. Despite the great perspectives
of precision medicine, it still faces many challenges. The
implementation will require changes and improvements on
many levels, reaching from technology developments (one
genome can comprise up to 400GB of data) over social
and ethical challenges to legal implications and the need
for large scale educational programs for patients, physicians,
researchers, healthcare providers, insurance companies and even
politicians [123].

The abundance of data and possibilities to join information
sources raises the question, whether current rules for intellectual
property, reimbursement and personal privacy have to be
adapted to personalized medicine.

Regulatory authorities have already acknowledged those
challenges and released a report: “Paving the Way for Per-
sonalized Medicine: FDA’s role in a New Era of Medical
Product Development” [124]. In this report the FDA describes
a framework of how to integrate genomic medicine into clinical
practice and drug development. Steps to implement precision
medicine include the development of regulatory scientific
standards, research methods, and reference material [124].
Implementing and commercializing precision medicine will
demand new standards with regard to the protection of patients’
privacy and that of their families. Data protection issues
arise especially for healthy individuals who have genetic
predisposition for a disease or patients who have a genetic
alteration (either germline or somatic) and who are thought
to be non-responsive to standard treatments: In some cases
the person, for which the molecular data were created, might
not want to know the complete interpretation of those results.
An important milestone regarding privacy issues in the U.S.
was the Genetic Information Nondiscrimination Act (GINA) in
2008 that protects American citizens from being discriminated
based on their genetic information with respect to employment
and health insurance.

E. Big Data in Molecular Research
The aim is to use the newly gained insight into etiology,

pathogenesis and progression of diseases for novel treatments
and prevention. Large international consortia were formed

23http://www.reuters.com/article/ca-nanthealth-
idUSnBw116104a+100+BSW20160111
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over the last years integrating data from not seldom several
hundreds of thousands of individuals to compare genetic and
environmental information of healthy individuals with diseased
patients. Several of those consortia have built super-consortia
merging data and biomaterials of several large scale consortia.
One example is the OncoArray Network24 GWAS study, in
which more than 400,000 individuals are genotyped for more
than 570,000 genetic variants. Diseases included in this effort
are breast cancer, ovarian cancer, colon cancer, lung cancer and
prostate cancer. GWAS studies examine the correlation between
germline gene variations and phenotypic characteristics and
explain a certain amount of attributable risk for a disease within
a population. For the case of breast cancer, GWAS led to the
discovery of around 100 risk genes [125]. For the individual
the statistical effects are rather small and implementation
into healthcare is highly dependent on programmes which
would utilize this information in an epidemiological way, i.e.
by selecting patients for individualized prevention or early
detection of a disease. This strategy requires tens if not hundreds
of thousands or millions individual decisions in a population,
which will require highly scalable Big Data technology.

The 1000 Genomes Project [126], launched in 2008, was
an effort to sequence the genomes of at least one thousand
anonymous participants. Many rare variations were identified,
and eight structural-variation classes were analyzed. It is
followed by the 100,000 Genomes project, which was launched
in 2013. It aims to sequence 100,000 genomes from UK’s
NHS patients by 2017 and it is focusing on patients with
rare diseases and more common cancers.25. An interesting and
less costly alternative is the distributed collection of genomic
data from patients who donate their decentrally analyzed
genome to central projects.26,27,28. From a data management
perspective, these decentralized approaches require innovative
ways of storing and analyzing huge amounts of data employing
distributed computing29.

Biobanks are great sources for molecular research. Biobanks
store biological samples (often cancerous tissue) for use in
research like genomics and personalized medicine [127].

As stated before, complex diseases involve a number of
causes. Unfortunately, to study the interaction of disease causes
involving, for example, several gene variations requires even
larger sample sizes. Similarly, the study of complex patterns
behind the spatio-temporal disease progression requires the
acquisition and management of huge data samples [128].

F. Digitization Challenges in Precision Medicine
Recent publications [129], [130] estimate that storage needs

for molecular data will exceed by far those of Twitter or
YouTube, which is of great concern to researchers and health-
care professionals alike.

24http://epi.grants.cancer.gov/oncoarray/
25https://www.theguardian.com/politics/2013/jul/05/health-jeremy-hunt
26http://datascience.columbia.edu/donate-your-genome-science-learn-more-

about-your-ancestry-health
27http://www.personalgenomes.org/
28https://dna.land/
29https://arvados.org/

This perception is supported by the many large scale
population-based initiatives (e.g. the aforementioned Genomics
England 100K project or the NIH precision medicine initiative)
that will collect genomic and other biomedical data from
individuals for the next 5-10 years. A comprehensive and recent
overview of these cohort studies from publicly or private funded
entities can be found in [56]. The experiences gained from these
initiatives will reveal interesting insights and lessons learned
about data management of genomic and other “omics” data
(e.g. transcrpitomics, proteomics, metabolomoics, epigenomics),
emerging standards, and data privacy topics such as informed
consent.

To consistently improve patient outcome and medical value,
it will become very important to bridge the gap between all
the previously mentioned “omics” data and clinical outcome.
Indeed clinical sequencing for advanced patient diagnosis is
becoming more and more common, but many questions still
remain, e.g., what parts of the genomic data should become
part of the EHR records? Here, important consortia such as
emerge (Electronic Medical Records and Genomics) and CSER
(Clinical Sequencing Exploratory Research) will hopefully
pave the way towards a more integrated view of genomics
in the clinic [131]. Structuring, organizing, synchronizing
different terminologies across clinical data repositories is the
prerequisite to make clinical data meaningful. In that context
companies such as Flatiron Health have developed powerful
tools and processes to tackle data integration challenges and
offer structured knowledge bases that can yield new insights.30

In many current efforts, data are aggregated across many
patients with the goal of developing Clinical Decision Support
(CDS) systems. The American Society of Clinical Oncology
(ASCO) launched a program named CancerLinQ that envisions
to learn not only from trial data but also from the mass
of EHR records. A goal is that doctors get support in their
decision making by matching their patients’ data with outcomes
of patients across the U.S. Patients gain confidence if their
treatment decisions are based on their personal profile and
on the shared experiences of similar cancer cases across the
U.S. Finally, researchers can access this massive amount of
de-identified health information to generate new hypotheses
for research. To make CancerLinQ’s vision happen, several
different data types and technologies have to be orchestrated
ranging from longitudinal patient records, cohort analyses,
quality metrics, to interactive reporting and text analytics [132].
Interoperability between different EHR systems will be another
crucial success factor for the CancerLinQ initiative.

G. Traditional IT Players are Entering Precision Medicine

The outlined data management and analytics challenges
in precision medicine are being addressed by a number of
established IT companies. Here are some examples.

SAP has teamed up with American Society of Clinical
Oncology (ASCO) to implement CancerLinQ [133], [132].
SAP’s in-memory technology platform SAP HANA will play
a crucial role in providing the infrastructure and algorithms to

30http://fortune.com/2014/07/24/can-big-data-cure-cancer/
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analyze the vast amounts of diverse data to provide clinical
decision support.31

IBM with its Watson technology [134], [135] has recently
started a collaboration with the New York Genome Center
(NYGC) to generate and analyze the exome, complete genome
data, and epigenetic data linked to clinical outcomes from
participating patients. The partners plan to generate an open
knowledge base using the generated data32.

Dell is partnering with the Translational Genomics Research
Institute (TGen) to tackle pediatric cancer in Europe and in the
Middle East. In addition, Dell recently announced that its Cloud
Clinical Archive —currently storing over 11 billion medical
images and around 159 million clinical studies from multiple
healthcare providers— will support storage and management of
genomic data. The long term goal will be to combine medical
imaging diagnosis with advanced genomics to impact patient
care.

Intel is also looking into the precision medicine space.
Saffron, a cognitive computing company that Intel acquired in
2015, is studying how users can gain additional insights from
above mentioned Dell’s Cloud Clinical Archive. The company is
also offering Natural Language Processing capabilities and the
platform can be compared to IBM Watson’s offering. In addition,
within the context of Barack Obama’s Precision Medicine
Initiative, Intel launched a Precision Medicine Acceleration
Program33.

Microsoft also supports the U.S. government’s Precision
Medicine Initiative by hosting genomic data sets in Microsoft’s
Azure cloud platform by end of 2016 free of charge. 34

Amazon Web Services (AWS) is offering HIPAA-compliant
cloud storage and data security. Therefore AWS often functions
as a backbone of genomics data management platforms and
several companies such as Seven Bridges or DNAnexus rely
on the AWS technology. As a concrete example, the Cancer
Genomics Cloud (CGC), which includes the well-known “The
Cancer Genome Atlas” (TCGA), is operated by Seven Bridges
and runs on the AWS cloud.

Alphabet Inc. is investing heavily in precision medicine. This
happens mainly either through the many investments taken by
Google Ventures or by own research and development activities
from subsidiaries such as Verily or Calico. Investments in
companies related to precision medicine from Google Ventures
include Flatiron Health, Foundation Medicine, and DNAnexus
among others. Among Google’s initiatives are, e.g., Google
Genomics or the Google Baseline Study. Google Genomics
is Google’s HIPAA-compliant cloud platform for storing and
managing genomic data; besides offering access to publicly
available data sets such as the TCGA, customers can load their
own genomic data sets and run analyses on the data through
the offered API. The Google baseline study aims to collect

31https://connection.asco.org/magazine/features/cancerlinq%E2%84%A2-
takes-big-leap-forward

32https://www.genomeweb.com/informatics/ibm-nygc-expand-partnership-
new-pilot-cancer-study

33https://www.whitehouse.gov/the-press-office/2016/02/25/fact-sheet-
obama-administration-announces-key-actions-accelerate

34https://www.whitehouse.gov/the-press-office/2016/02/25/fact-sheet-
obama-administration-announces-key-actions-accelerate

different types of data such as molecular, imaging, clinical and
data related to patient engagement to understand patterns that
are typical for healthy individuals.

All these efforts illustrate that information technology is
moving quickly into personalized healthcare and therefore will
be a main enabler to realize the goals of precision medicine.

H. A View to the Future: a Truly “n=1”-Medicine
Dramatic improvements in the quality and speed of genomic

sequencing and analysis as clinical diagnostic tools for in-
dividual patients, combined with the innovations propelling
immuno-oncology, are paving a new era of truly personalizing
the treatment of cancer. At the heart of these prospects are the
newfound abilities to rapidly identify and target tumor cells
with specific DNA mutations unique to each cancer patient.
The products of mutated genes, encoding altered proteins, are
so-called “neoepitopes” and serve as the molecular address to
direct and redirect immune cells for killing the tumor cells and
for procuring long term immunity. Neoepitopes are defined as
unique genetic alterations that result in unique novel proteins.
They are found specifically in a patient’s tumor (but not in
normal tissue) and can be targeted by the immune system to
attack the tumor with minimal off target toxicity.

It is highly unlikely that the same neoepitopes occur in
other patients, and if so only in small groups of patients. The
generation of drugs to specific neoepitopes in real-time is a
vision of a real-life “n=1” medicine [136], [137].

Identifying neoepitopes for each patient is made possible
by high-throughput whole genome or exome sequencing and
by the direct comparison of abnormal tumor DNA with each
patient’s own normal DNA. This widens the search for drugable
targets (neoepitopes) in the >99% of the genome deemed
untargetable or unimportant by panel sequencing and reduces
the significantly high false positive error rates associated
with tumor-only sequencing techniques [138]. To increase the
precision in individualizing treatments, which are targeting
neoepitopes, further requires a confirmation of the expression
of the mutated genes, thus avoiding another potential pitfall of
false positive errors and the potential for the altered protein to
induce immunogenicity.

If a tumor is found to express unique neoepitopes, they
can serve as a “molecular address” for the immune system.
Therefore there is a good rationale that the neoepitope can be
delivered to the immune system by an immunogenic vehicle
like a vaccinating virus. One such vehicle is the adenovirus
which may be engineered to express within its DNA many
neoepitopes, and, upon injection, can locally infect dendritic
cells of the immune system which then present an identified
neoepitope to the immune effector cells and trigger an immune
response against the tumor cells. Despite great promise, the use
of adenovirus or any other foreign delivery vehicles remains
hindered due to the pre-existence or the induction of neutralizing
antibodies against them by the patient’s immune system. This
limitation has been overcome by engineered adenoviruses which
are capable of safely vaccinating and re-vaccinating against
hundreds of neoepitopes and tumor associated antigens despite
pre-existing immunity against adenoviruses [139]. Remarkable
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results have thus far been published demonstrating the delivery
of tumor-associated antigens by engineered adenoviruses in a
cohort of late-stage colorectal cancer patients [140].

A more recent development has been the engineering and
application of immune cells (T-cells and NK-cells) that express
antibodies on their surface as part of a “chimeric antigen
receptor” (CAR) for direct targeting of tumor cells expressing
their cognate antigens. One particular approach, an off-the-shelf
human NK cell line dubbed NK-92, is engineerable to produce
innumerable CARs. These cells are now being engineered to
produce CARs targeting neoepitopes discovered to be expressed
by individual cancer patients’ tumor cells, thus enabling a novel,
truly personalized immunotherapeutic approach to fight cancer.
For this and many other reasons, the discovery of neoepitopes
has the potential to be a watershed moment in the war against
cancer. These examples show that the utilization of the immune
system to fight cancer requires yet another layer of data, leading
to a true “n=1” medicine.

One of the challenges with neoepitope discovery and tar-
geting will be the management of Big Data: teraFLOPS of
compute resources in a cloud environment are required to
generate, manage and analyze terabytes of sequencing data,
including whole genome and/or whole exome sequencing, RNA
sequencing and molecular modeling of immune presentation of
neoepitopes. These activities require compute and storage under
HIPAA, as well as high-speed and large-bandwidth connectivity
for rapidly transiting sequence data from sequencing labs to
supercompute/cloud environments, such that derivation and
delivery of neoepitope targeting platforms are enabled in
actionable time for each patient. Long term storage of data
from multiple biopsies for each patient also needs to be
provided. These challenges require significant infrastructure
and resources, which are already realized by some private, Big
Data supercompute clouds interconnected by dedicated fiber
infrastructure capable of transporting terabytes of data at terabits
per second. Such infrastructures had originally been developed
for financial trading markets, but are now retrofitted to meet
the needs of sequencing analysis and neoepitope discovery.

I. Outlook
Realizing personalized medicine for every patient around the

world would result in Big Data challenges of unprecedented
scale. Large investments in computing and storage facilities
are required and all stakeholders, including patients, doctors,
nurses, insurers, lawmakers and the public, need to get involved,
educated and trained. Privacy and safety concerns need to
be addressed and the general public needs to understand the
eventual benefits of a personalized medicine involving Big Data
technologies and patient profiling.

Many efforts are underway to strengthen the role of person-
alized medicine. Among them is President Obama’s “Precision
Medicine Initiative” (PMI) [141].

VIII. ASSESSMENTS AND CONCLUSIONS

It is unquestionable that healthcare will experience dramatic
changes in the coming years and that digitalization and large-
scale data analytics will be among the key technologies.

Precision healthcare —with enormous potential for a better,
more effective, and personalized treatment of cancer and
other diseases— will require the acquisition, exchange, storage
and analysis of huge amounts of data generated in research
and clinical practice. Molecular patient data will bring new
richness to patient profiles, including genome profiles and
expression profiles. The EHR has the potential to become
the central digital fingerprint of a patient and it will be the
basis for optimal personalized treatment decisions. It will
provide valuable information for a learning healthcare system.
Completeness and accuracy of information is a precondition
that interventional causal conclusions can be derived. A tight
and timely integration of EHR information, i.e. real-world data,
will ensure that newest findings can immediately be transported
into clinical practice. With readily available population data
and well-defined outcome measures, the effectiveness of a new
treatment or a new drug can be evaluated rapidly and caregivers
can be advised to adapt accordingly.

High volumes of data will be generated by continuous
healthcare which will permit the monitoring of patients with
chronic problems and will generate data streams to be managed
and analyzed in real time, enabling continuous screening
and early intervention. Trusted data centers might become
an individual’s health memory and support the management of
the health of individuals and their families. They will enable
functionalities such as reminders, alarming, health advice and
the initiation of preventive measures.

Despite clear benefits, it is still largely unclear how exactly
and when exactly the impact will be realized. There is a
lot of excitement and activity in continuous healthcare and
personalized medicine but, in general, we are currently still
far from generally accepted solutions. Data privacy, liability
and other legal concerns, as well as viable data-driven business
models, are unsolved issues. Despite these uncertainties, we
already see a lot of public and private investments.

A challenging question is how an intelligent learning health-
care system should interact with the individual to achieve
engagement and provide best user experience. When and how
should such a system interfere with the individual’s life? Should
the individual be informed on a likely positive finding? A
commonly discussed example is Huntington’s disease for which
genetic tests exist but currently no cure. Less dramatic but still
potentially bothersome are health concerns such as overweight:
How often should an individual be reminded that weight loss
and exercise would increase longevity? What is just the right
level of decision support and interference in an individual’s
life? Maybe be an individual does not want to know about a
condition or a problem? Maybe the individual does not want
anybody to know? Patient engagement and user experience is
increasingly getting in focus.35

There is also the question in which way a learning healthcare
system should support treatment decisions. Supplying newest
research results on a patient’s problems might obviously be
a good idea, but it is largely an open question how decision
support can be integrated into the workflow of the caregivers.
Can a caregiver accept results from a machine learning system

35https://www.dartmouth-hitchcock.org/stories/article/40037
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that uses high dimensional patient information but where it
is difficult or impossible to explain the reasoning behind its
predictions and recommendations?

In this paper we have described the state of the healthcare
systems and various attempts to improve it via more effective
processes, standardized data formats, data exchange in trusted
networks, and improvements in policies and reimbursement
rules. It is important that all involved stake holders, but in
particular caregivers and patients, personally experience the
benefits of the new developments and not just suffer from the
additional bureaucratic burden of, for example, reporting and
maintaining a high-quality EHR: Trust must be generated and
benefits must readily be apparent since the vision of a better
and more efficient future healthcare only works with support
from all groups.

Greatest concerns are clearly associated with data privacy
and data security and generally acceptable solutions are not
yet available. The Genetic Information Non-Discrimination Act
in the U.S. is partially addressing data protection for genetic
information. In general, one might want to distinguish between
the privacy concerns of patients with severe health issues,
who might see clearer benefits from sharing their data, and
individuals without major health problems, who might not
see immediate benefits in data sharing. Privacy protection is
a very serious issue: Imagine a hack which gives access to
your complete (in the future more rich and meaningful) health
record to un-authorized parties, which would open the door to
discrimination and black mail!

Currently, sustainable data-driven business models are still
unclear and new reimbursement models must be developed that
are tailored towards a data-driven medicine. The legal situation
of what is allowed and what is not allowed must be clear and
unambiguous, which is not the case in many countries: Viable
business models require a solid legal basis.

Notwithstanding the indicated challenges: we hope that we
could convey in this paper the great potential of digitalization
and large scale data analytics for a better and more effective
patient care.
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