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Abstract

The Capsule Network is widely believed to be more ro-

bust than Convolutional Networks. However, there are no

comprehensive comparisons between these two networks,

and it is also unknown which components in the CapsNet

affect its robustness. In this paper, we first carefully exam-

ine the special designs in CapsNet that differ from that of

a ConvNet commonly used for image classification. The

examination reveals five major new/different components

in CapsNet: a transformation process, a dynamic rout-

ing layer, a squashing function, a marginal loss other than

cross-entropy loss, and an additional class-conditional re-

construction loss for regularization. Along with these ma-

jor differences, we conduct comprehensive ablation studies

on three kinds of robustness, including affine transforma-

tion, overlapping digits, and semantic representation. The

study reveals that some designs, which are thought critical

to CapsNet, actually can harm its robustness, i.e., the dy-

namic routing layer and the transformation process, while

others are beneficial for the robustness. Based on these find-

ings, we propose enhanced ConvNets simply by introduc-

ing the essential components behind the CapsNet’s success.

The proposed simple ConvNets can achieve better robust-

ness than the CapsNet.

1. Introduction

The Capsule network (CapsNet) [24] was proposed to

address the intrinsic limitations of convolutional networks

(ConvNet) [14], such as the exponential inefficiency and

the lack of robustness to affine transformations. In recent

years, It has been sugested that CapsNets have the poten-

tial to surpass the dominant convolutional networks in these

aspects [24, 8, 21, 3, 2, 16]. However, there lack compre-

hensive comparisons to support this assumption, and even

for some reported improvements, there are no solid abla-

tion studies to figure out which ones of the components in

CapsNets are, in fact, effective.

In this paper, we first carefully examine the major dif-

ferences in design between the capsule networks and the

common convolutional networks adopted for image classi-

fication. A common convolutional network follows a simple

algorithm flow, using a backbone convolutional network to

extract image features, a global average pooling layer plus a

linear layer to produce the classification logits (or optionally

several fully connected layers [13]), and an N -way Soft-

Max loss to drive the learning. To be better aligned with

the capsule (vector) representations, the capsule networks

introduce several special components. These components

involve (see Fig. 1 for detailed architectures):

• a non-shared transformation module, in which the pri-

mary capsules are transformed to execute votes by

non-shared transformation matrices;

• a dynamic routing layer to automatically group input

capsules to produce output capsules with high agree-

ments in each output capsule;

• a squashing function, which is applied to squash the

capsule vectors such that their lengths distribute in the

range of [0, 1);

• a marginal classification loss to work together with the

squashed capsule representations;

• a class-conditional reconstruction sub-network with a

reconstruction loss, targeting at recovering the origi-

nal image from the capsule representations. This sub-

network acts as a regularization force, in complemen-

tary to the classification loss.

Unlike previous studies [24, 8] which usually takes Cap-

sNet as a whole to test its robustness, we instead try to study

the effects of each of the above components in their effec-

tiveness on robustness. We consider the three different as-

pects shown in [24]:

• the robustness to affine transformations,

• the ability to recognizing overlapping digits,

• the semantic representation compactness.
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Our investigations reveal that some widely believed ben-

efits of Capsule networks could be wrong:

1. The ConvNets baseline adopted in comparison with

CapsNets is weak [24]. Concretely, there is no global

average pooling layer before the classification head in

this baseline, which sacrifices the ability of spatial in-

variance to some extent and is harmful for generaliza-

tion to novel views. In fact, a ConvNet with an ad-

ditional global average pooling layer can outperform

CapsNet by a large margin in the robustness to affine

transformation;

2. The dynamic routing actually may harm the robustness

to input affine transformation, in contrast to the com-

mon belief;

3. The high performance of CapsNets to recognize over-

lapping digits can be mainly attributed to the extra

modeling capacity brought by the transformation ma-

trices.

4. Some components of CapsNets are indeed beneficial

for learning semantic representations, e.g., the condi-

tional reconstruction and the squashing function, but

they are mainly auxiliary components and can be ap-

plied beyond CapsNets.

In addition to these findings, we also enhance com-

mon ConvNets by the useful components of CapsNet, and

achieve greater robustness. The paper is organized as fol-

lows: Sec. 2 introduces the CapsNet and related work. In

Sec. 3, we examine the behavior of CapsNets and ConvNets

on three kinds of robustness, one by one, and component by

component. The last section concludes our work and dis-

cusses future work.

2. Background and Related Works

Capsule Network with Dynamic Routing [24]: The

CapsNet architecture is shown in Fig. 1. CapsNet first ex-

tracts feature maps of shape (C,H,W ) from pixel inten-

sities with two standard convolutional layers where C, H ,

W are the number of channels, the height, and the width of

the feature maps, respectively. The extracted feature maps

are reformulated as primary capsules (C/Din, H,W,Din)
where Din is the dimensions of the primary capsules. There

are M = C/Din ∗H ∗W primary capsules in total. Each

capsule uuui, a Din-dimensional vector, consists of Din units

across Din feature maps at the same location. Each primary

capsule is transformed to make a vote with a transformation

matrix WWW ij ∈ R
(Din×N∗Dout), where N is the number of

output classes and Dout is the dimensions of output cap-

sules. The vote is

û̂ûuj|i = uuuiWWW ij . (1)

The routing mechanism takes all votes into consideration

and identify a weight cij for each vote û̂ûuj|i. Concretely, the

routing process iterates over the following three steps

sss
(t)
j =

N∑

i

c
(t)
ij û̂ûuj|i,

vvv
(t)
j = g(sss

(t)
j ),

c
(t+1)
ij =

exp(bij +
∑t

r=1 vvv
(r)
j û̂ûuj|i)

∑
k
exp(bik +

∑t

r=1 vvv
(r)
k û̂ûuk|i)

,

(2)

where the superscript t is the index of an iteration starting

from 1 and g(·) is a squashing function that maps the length

of the vector sssj into the range of [0, 1). The bik is the log

prior probability. The squashing function is

vvvj = g(sssj) =
‖sssj‖

2

1 + ‖sssj‖
2

sssj
‖sssj‖

. (3)

The length of the final output capsule vvvj corresponds to the

output probability of the j-th class. The margin loss func-

tion is applied to compute the classification loss

Lk =Tk max(0,m+ − ‖vk‖)
2

+ λ(1− Tk)max(0, ‖vk‖ −m−)2
(4)

where Tk = 1 if the object of the k-th class is present in

the input. As in [24], the hyper-parameters are often empir-

ically set as m+ = 0.9, m− = 0.1 and λ = 0.5.

A reconstruction sub-network reconstructs the input im-

age from all N output capsules with a masking mechanism.

The ones corresponding to the non-ground-truth classes are

masked with zeros before being transfered to the recon-

struction sub-network. Due to the masking mechanism,

only the capsule of the ground-truth class is visible for the

reconstruction. Hence, the reconstruction process is called

class-conditional reconstruction. The reconstruction loss is

computed as a regularization term in the loss function.

Capsule Network Follow-Ups: Many routing mecha-

nisms have been proposed to improve the performance of

CapsNet, such as Expectation-Maximization Routing [8],

Self-Routing [6], Variational Bayes Routing [23], Straight-

Through Attentive Routing [1], and Inverted Dot-Product

Attention routing [25]. To reduce the parameters of Cap-

sNet, a matrix or a tensor has been used to represent an

entity instead of a vector [8, 21]. The size of the learnable

transformation matrix can be reduced by the matrix/tensor

representations. Another way to improve CapsNets is to in-

tegrate advanced modules of ConvNets into CapsNets, e.g.,

by skip connections [7, 21] and dense connections [11, 18].

Besides, the robustness of CapsNet has also been inten-

sively investigated. Both new routing mechanisms [8] and

new architectures [12] can improve the affine transforma-

tion robustness. The work [3] achieves the best performance
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Figure 1: The overview of ConvNet and CapsNet architectures: The ConvNet-FC is a naive ConvNet architecture, while

ConvNet-Avg is the one commonly used in image classifications. The CapsNet consists of primary capsule extraction, a

transformation process, a routing process, and a class-conditional reconstruction, which is far more complex than ConvNets.

on the transformation robustness benchmark by simply re-

moving the dynamic routing and by sharing the transforma-

tion matrix. The work also revealed that the high transfor-

mation robustness of CapsNets could not be attributed to

the dynamic routing mechanism. The work [4] replaces the

dynamic routing with a multi-head attention-based graph

pooling approach to achieve better interpretability. The re-

placement of the routing does not harm the robustness of

CapsNet, even though it is the fundamental part of Cap-

sNets. These claims further motivate us to investigate the

individual components of CapsNet.

Additionally, CapsNet with new routing mechanisms

can achieve high adversarial robustness [6]. However, the

work [17] shows CapsNet can be fooled as easily as Cov-

Net. Recent work shows that the class-conditional recon-

struction sub-network of CapsNet is useful to detect adver-

sarial examples [20, 19]. The work [5] designs the first at-

tack method specific for CapsNet, which reduces the robust

accuracy and increases the rate to pass the adversarial de-

tection. Due to the attack-defense arms race, it is difficult

to draw a solid conclusion on the adversarial robustness of

CapsNet. Hence, in this work, we mainly focus on the ad-

vantage of CapsNet demonstrated in [24].

3. Empirical Studies on Capsule Network

In this section, we conduct empirical studies on the ro-

bustness of CapsNets. Before we dive into the studies, we

first introduce the architectures of CapsNets and ConvNets.

The CapsNet we focus on in this work is Capsule Networks

with dynamic routing [24]. Since the research on CapsNets

is still at a primary stage, the work [24] compares their Cap-

sNet with a LeNet-type ConvNet [14], called ConvNet-FC.

The ConvNet-FC and CapsNet are illustrated in Fig. 1 on

28×28 MNIST images. The notation Conv(C, K, S) stands

for a convolutional layer where C, K, S are the number of

channels, the kernel size, and the stride size, respectively.

FC(N) is a fully connected layer where N is the number

of output units. All Conv and FC are followed by a ReLU

activation function.

ConvNet-FC: The simple ConvNet baseline used in [24]

is Conv(256, 5, 1) + Conv(256, 5, 1) + Conv(128, 5, 1) +

FC(328) + FC(192) + Softmax(10). The three standard con-

volutional layers and two fully connected layers are applied

to extract features from input images. An N -way Softmax

is applied to obtain the output distribution. During training,

cross-entropy loss is typically applied.

CapsNet: The CapsNet with Dynamic Routing in [24]

is Conv(256, 9, 1) + Conv(256, 9, 2) + Dynamic Rout-

ing, followed by a reconstruction sub-network, FC(512)

+ FC(1024) + FC(28×28). The feature maps are com-

puted with the two standard convolutional layers. The ex-

tracted feature maps (256, H, W) is reshaped into primary

capsules (32*H*W, 8) where H and W are the height and

width of feature maps. The primary capsules are squashed

by the squashing function in Equation (3) and then trans-

formed to make votes with the learned transformation ma-

trices (32*H*W, 8, 160). The vote of each primary capsule

is 160-dimensional. The dynamic routing in Equation (2) is

applied to the votes to identify their weights. The output of

the dynamic routing is 160-dimensional, i.e. representing

10 16-dimensional output capsules. The squashing function

in Equation (3) is applied to output capsules to map their
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(a) MNIST dataset (b) AffNIST dataset (c) MultiMNIST dataset

Figure 2: Visualization of datasets: While MNIST dataset corresponds to standard hand-written digits, AffNIST dataset

consists of affine-transformed MNIST images. MultiMNIST dataset consists of images with two overlapping digits. In the

figure, the two overlapping digits are marked with two different colors, i.e., yellow and magenta.

lengths into [0, 1). The length of an output capsule is inter-

preted as a class output probability. In the training process,

the margin loss in Equation (4) is applied as the classifica-

tion loss. In the class-conditional reconstruction process,

a masking mechanism is applied to output capsules, where

the capsules, corresponding to non-ground-truth classes, are

masked with zeros. The input image is reconstructed from

the masked output capsules. The reconstruction loss is used

to regularize the training process.

By comparing the two networks, we can summarize

5 major differences between ConvNets and CapsNets,

namely, a transformation process, a dynamic routing layer,

a squashing function, the use of a marginal loss instead

of a cross-entropy loss, and a class-conditional reconstruc-

tion regularization. With these differences, CapsNet outper-

forms ConvNet-FC in terms of robustness to affine trans-

formation and overlapping digits recognition as well as in

learning compact semantic representations. In this section,

we will investigate these advantages one by one. In each of

our studies, we attempt to answer the following questions:

1. Do ConvNet-FC and CapsNets perform differently?

2. Which components of CapsNets make the difference?

3. How bridge the gap between the two networks?

3.1. Robustness to Input Affine Transformation

Settings: To examine the transformation robustness of

both models, we use the popular benchmark [24, 3] where

models are trained on MNIST and tested on AffNIST. In

AffNIST [24], the original 28×28 MNIST images are first

padded with 6 pixels to 40×40 image and then affine trans-

formed, namely, rotation within 20 degrees, shearing within

45 degrees, scaling from 0.8 to 1.2 in both vertical and hori-

zontal directions, and translation within 8 pixels in each di-

rection. In the training dataset, the 28×28 MNIST images

are placed randomly on a black background of 40×40 pix-

els without further transformation. The image examples are

visualized in Fig. 2. The performance on both MNIST and

AffNIST test datasets is reported. All scores are averaged

over 5 runs across this paper.

Besides ConvNet-FC and CapsNet, we include the state-

of-the-art model on the benchmark in this experiment,

namely, Aff-CapsNet. It simplifies CapsNet by removing

dynamic routing and sharing the transformation matrix in

the transformation process.

Following [24, 3], the Adam optimizer is used to train

the models with an initial learning rate of 0.001 and a batch

size of 128. In CapsNet, the reconstruction loss is scaled

down by 0.0005 so that it does not dominate the margin loss

during training. It is hard to decide which model is more

robust to affine transformations when they achieved differ-

ent accuracy on untransformed examples. To eliminate this

confounding factor, we stopped training the models when

they achieve similar performance (i.e. about 99.22%), fol-

lowing [24].

Models #Para. MNIST AffNIST

GE-CapsNet [15] - 98.42 89.10

SPARSECAPS [22] - 99 90.12

SCAE [12] - 98.5 92.21

EM-CapsNet [8] - 99.2 93.1

ConvNet-FC [24] 35.4M 99.22 66

CapsNet [24] 13.5M 99.23 79

CapsNet-NoR [3] 13.5M 99.22 81.81

Aff-CapsNet-DR [3] 7.5M 99.22 89.03

Aff-CapsNet [3] 7.5M 99.23 93.21

ConvNet-Avg 5.3M 99.22 94.11

Table 1: Comparison on the transformation robustness

benchmark: The generalization performance to AffNIST

is reported when models achieve similar performance on

MNIST test dataset. Our simple ConvNet-Avg is more ro-

bust than CapsNet to input affine transformations.

Results and Analysis: The performance is reported in

Tab. 1. We can observe that there is a gap between ConvNet-

FC and CapsNet. As reported in [24, 3], the CapsNet out-

performs ConvNet-FC, and Aff-CapsNet outperforms Cap-

sNet. We take Aff-CapsNet (a simplified CapsNet) as a

baseline and conduct further ablation studies on the com-

ponents of CapsNet in Tab. 2. We report the model test per-

formance on both un-transformed MNIST test images and

novel affine-transformed ones. No early stopping is applied

in the ablation studies.
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Factors Routing Shared TransM Squash-fn Reconstion Loss Train-MNIST Test-MNIST Test-AffNIST

Routing
NoR X X X MarginLoss 100 99.29(± 0.13) 93.55(± 1.47)

DR - - - - 100 99.21(± 0.31) 90.07(± 0.98)

Shared TransM
NoR XXX X X MarginLoss 100 99.29(± 0.13) 93.55(± 1.47)

- ××× - - - 100 98.98(± 0.04) 80.49(± 0.34)

Squash-fn
NoR X XXX X MarginLoss 100 99.29(± 0.13) 93.55(± 1.47)

- - ××× - - 99.75 97.93(± 0.13) 80.42(± 0.39)

Reconstruction

NoR X X conditional MarginLoss 100 99.29(± 0.13) 93.55(± 1.47)

- - - normal - 100 99.43(± 0.28) 95.09(± 0.56)

- - - ××× - 100 99.39(± 0.26) 93.49(± 0.46)

Loss
NoR X X X MarginLoss 100 99.29(± 0.13) 93.55(± 1.47)

- - - - CE Loss 100 99.27(± 0.05) 94.67(± 0.43)

Table 2: The performance on MNIST training dataset, MNIST test dataset, and AffMNIST test dataset are reported, respec-

tively (in percentage %). Dynamic Routing (DR) and Margin loss are even harmful to the transformation robustness, while

the squashing function (Squash-fn) and the shared transformation matrix (Shared TransM) are beneficial.

The transformation process can be seen as a fully con-

nected (FC) layer since the transformation matrices therein

are equivalent to the parameters of an FC layer. Why is

Aff-CapsNet more robust than CapsNet? The transforma-

tion robustness of CapsNet can be improved by sharing the

transformation matrix. When the transformation matrix is

shared and no routing is applied in Aff-CapsNet, the trans-

formation process is essential to conduct group 1 × 1 con-

volutional operations, global average pooling operations,

and an average operation on the pooling results of dif-

ferent groups. A further study shows that the number of

groups has no effect on the robustness (see Supplement A).

Hence, we attribute the superior performance of the sharing

transformation matrix to the global average pooling opera-

tion. Why is CapsNet more robust than ConvNet-FC? The

ConvNet-FC has two fully connected layers, while CapsNet

has a functionally similar one. Another difference between

them is the kernel size. Our study shows that large ker-

nels are also beneficial to achieve transformation robustness

(see Tab. 3). This argument also echoes our claim above.

Namely, both global average pooling and large kernels im-

prove the robustness by increasing receptive fields.

In Tab. 2, the dynamic routing is even harmful to the

transformation robustness, which is also supported by the

Tab. 1. In addition, when no squashing function is applied,

CapsNet has to regress the capsule length to extreme values

(e.g., 0 or 1), which is a hard task and leads to unsatisfying

performance (even on the training dataset). The margin loss

can slightly weaken the transformation robustness of Cap-

sNet, while reconstruction makes no difference to it. The

non-conditional reconstruction slightly improves the perfor-

mance since it updates all capsules in each training iteration.

Based on our findings, we propose a new simple Con-

vNet baseline, called ConvNet-Avg. It starts with the two

convolutional layers and terminates with a global average

pooling and an output layer, which is also a common ar-

chitecture used in image classification. The cross-entropy

loss is applied to train the model. To make a fair compar-

ison, we use the same convolutional layers as in CapsNet

and Aff-CapsNet, namely, Conv(256, 9, 1) + Conv(256, 9,

2) + Global AvgPool + FC(10) (see Fig. 1). It is hard to de-

cide which model is better at generalizing to affine transfor-

mations when they achieved different accuracy on untrans-

formed examples. We follow previous work and stop train-

ing the models when they achieve similar test performance

(99.22%). As shown in Tab. 1, our simple ConvNet-Avg

achieves slightly better performance with fewer parameters.

Conclusions: 1) Compared to ConvNet-FC, CapsNet

achieves better test performance with fewer parameters on

AffNIST. We attribute the gap to the kernel size. 2) Dy-

namic routing can harm the transformation robustness of

CapsNet. When the routing is removed, the uniform av-

erage of votes (i.e., NoR) aggregates the global information

better. 3) Our baseline ConvNet-Avg outperforms CapsNets

significantly. It consists of only convolutional layers and a

global average pooling layer, and no advanced component

from SOTA ConvNets. The simplicity of ConvNet-Avg in-

dicates that CapsNets are even less robust to affine transfor-

mation than ConvNets in a fair comparison.

3.2. Recognizing overlappping digits

Settings: The work [24] shows that the CapsNet is able

to recognize overlapping digits by segmenting them. To

check this property, we use the MultiMNIST dataset, which

is generated by overlaying a digit on top of another digit but

from a different class. Specifically, a 28×28 MNIST image

with a digit is first shifted up to 4 pixels in each direction

resulting in a 36×36 image. The resulting image is over-

laid to another image from different classes but the same set

(training dataset or test dataset). For each image in MNIST,

we can create N (from 1 to 1K) images. See Fig. 2c for

some examples from data.
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Kernels K(3, 3) K(5, 5) K(7, 7) K(9, 9) K(11, 11)

Models #Para. Astd Aaff #Para. Astd Aaff #Para. Astd Aaff #Para. Astd Aaff #Para. Astd Aaff

CapsNet 16.1M 96.31 61.36 14.4M 98.18 70.34 13.5M 98.74 75.82 13.5M 99.26 79.12 14.3M 99.1 86.79

ConvNet-FC 49.5M 96.54 64.57 35.4M 99.23 66.08 25.2M 99.03 66.76 18.8M - - 16.19M - -

ConvNet-Avg 0.59M 97.14 86.58 1.70M 98.58 90.95 3.23M 99.1 92.31 5.30M 99.22 94.11 7.96M 99.34 90.58

Table 3: The effect of the kernel sizes on the transformation robustness of different models: Both standard accuracy (Astd)

and the generalization accuracy (Aaff ) on transformed data are reported. The large kernels make positive contributions to the

transformation robustness. When the same kernel size is applied, ConvNet-Avg outperforms both ConvNet-FC and CapsNet.

The classification of an image with overlapping digits is

correct if both digits are correctly classified (the top 2 output

classes match the ground truth). The margin loss can be

applied to compute the classification loss. In the ConvNet

baselines, the sigmoid function is applied to logits instead of

softmax to obtain output probabilities since this is a multi-

target classification task, and the binary cross-entropy loss

is applied to compute the classification loss.

In the training process, the CapsNet is first applied to

the overlapping digits to obtain output capsules. During re-

construction, a ground-truth class is picked at a time, and

the capsule corresponding to the class is kept for the re-

construction while others are masked with zeros. In other

words, we run the reconstruction sub-network twice, each

for one digit. The reconstruction loss can be computed sim-

ilarly since the images of individual digits are available.

Results and Analysis: The overlapping digit recogni-

tion performance is reported in Tab. 4 where the individual

components of CapsNets are ablated. The reconstruction

sub-network helps to improve the recognition performance.

However, it does not have to be class-conditional. The re-

construction loss regularizes the training process so that the

information about both digits is encoded in features and

high-level capsules. The margin loss can be directly applied

to a multi-target classification task, which outperforms the

standard binary cross-entropy loss. Both the reconstruction

and the margin loss can be applied to enhance a ConvNet.

When a vector representation is applied, the squash-

ing function plays an important role. When applying the

squashing function to the primary capsules, the feature

maps are group-wise normalized. The information is com-

municated across different channels, which can help to

better disentangle overlapping digits. Additionally, Cap-

sNet has to regress the non-squashed capsule length to cer-

tain values. Since the regression task is hard, CapsNets

achieve unsatisfying performance on both the training and

test dataset. The analysis echoes the one in Sec. 3.1.

The dynamic routing process identifies the weights for

votes, which results in a higher modeling capacity than the

uniform averaging operation on votes. Other components

that support the CapsNet’s modeling capacity are the trans-

formation matrices. When a shared transformation matrix

is applied, the model performance drops dramatically. We

check the ConvNet-Avg on this task and observe that Cap-

sNet outperforms ConvNet-Avg significantly. The reason

behind this is that the global pooling operation can be harm-

ful for recognizing overlapping digits since it aggregates a

feature map into a single unit. The convolutional layer it-

self is not able to disentangle the overlapping digits into

different feature maps. In CapsNet, the transformation pro-

cess acts as a fully connected layer, which avoids the global

average pooling. Hence, we argue that the high modeling

capacity is the essential reason why CapsNet performs well

on the overlapping digits recognition task.

×1 ×5 ×10 ×100 ×1000
Num. of Data Examples (× 60000 of MNIST)

80

90

A
cc

ur
ac

y 
(in

 \%
)

CapsNet
ConvNet-FC(LK)

Figure 3: ConvNet-FC(LK) outperforms CapsNet on Mul-

tiMNIST dataset with different data sizes.

FC layers in ConvNet-FC can maintain richer informa-

tion (features at all locations) for distinguishing overlapping

digits. Note that the baseline ConvNet-FC in [24] has a

smaller kernel size than in CapsNet. Hence, we propose to

apply ConvNet-FC with large kernels (ConvNet-FC(LK))

to this overlapping digits recognition task. In ConvNet-

FC(LK), we also reduce the units of fully connected lay-

ers to save parameters so that it can be compared to Cap-

sNets. When the same large kernel is applied, ConvNet-

FC(LK) outperforms the CapsNet and sets a new SOTA on

this benchmark (97.11% vs. 95.18%). When different train-

ing data sizes and different kernel sizes are applied in the

experiments, the simple ConvNet-FC(LK) outperforms the

CapsNet consistently (See Fig. 3 and Supplement B).

Conclusions: 1) All the components contribute to the

ability of CapsNet to recognize overlapping digits. 2) The

transformation process with a non-shared transformation

matrix and a dynamic routing to weight votes bring high

modeling capacity, which essentially supports the high per-

formance of CapsNet in this task. 3) The simple ConvNet-

FC(LK) with similar parameters performs better than Cap-

sNet on this benchmark, which indicates that CapsNet is not

more robust than ConvNet to recognize overlapping digits.
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Factors Routing Shared TransM Squash-fn Reconstion Loss Train-MultiMNIST Test-MultiMNIST

Routing
DR ××× X X MarginLoss 94.03 93.26(± 0.24)

NoR - - - - 90.28 90.07(± 0.29)

Shared TransM
DR ××× X X MarginLoss 94.03 93.26(± 0.24)

- XXX - - - 86.92 86.44(± 0.37)

Squash-fn
DR ××× XXX X MarginLoss 94.03 93.26(± 0.24)

- - ××× - - 87.71 87.24(± 0.53)

Reconstruction

DR ××× X conditional MarginLoss 94.03 93.26(± 0.24)

- - - normal - 93.83 93.19(± 0.30)

- - - ××× - 90.28 90.17(± 0.26)

Loss
DR ××× X X MarginLoss 94.03 93.26(± 0.24)

- - - - BCE Loss 91.64 91.19(± 0.35)

Table 4: The ablation study on components of CapsNet: The performance of models trained on 6M overlapping digits. All

individual components make positive contributions to the ability to recognize overlapping digits. The transformation matrices

contribute the most; the performance drops dramatically if a shared transformation matrix is applied.

3.3. Semantic Capsule Representations

Settings: In CapsNets, when a single element in a cap-

sule is perturbated, the reconstructed images are visually

changed correspondingly [24], see Fig. 4d. The visual

changes often correspond to human-understandable seman-

tic object variations. In this experiment, we investigate

which components support the semantic representations.

Since this property is mainly demonstrated by a reconstruc-

tion sub-network, we introduce three models below:

ConvNet-CR: This ConvNet baseline has the same num-

ber of parameters as in CapsNet and the same reconstruc-

tion sub-network. Its architecture is Conv(256, 9, 1) +

Conv(256, 9, 2) + FC(160), where 160 corresponds to

the dimensions of output capsules and the parameters in

FC(160) corresponds to the non-shared transformation ma-

trices of CapsNet. The 160 activations are grouped into 10

groups where each group corresponds to an output capsule.

The sum of 16 activations in each vector corresponds to a

logit. The sigmoid function is applied to each logit to obtain

the output probability. The reconstruction sub-network re-

constructs the input from (the 160 activations) with a mask-

ing mechanism, similar to that in CapsNet.

ConvNet-R: In this baseline, an output layer FC(10)

is built on the 160 activations of ConvNet-CR instead

of grouping them. The reconstruction sub-network of

ConvNet-CR reconstructs the input from the 160 activations

directly, without the masking mechanism.

ConvNet-CR-SF: This baseline equips ConvNet-CR

with the squashing function in Equation (3). The feature

maps from Conv(256, 9, 2) are mapped into vectors with

the same shape of primary capsules, and the vectors are

squashed. Each element of the vectors is fully connected to

160 units of the next layer. The 160 activations are grouped

to obtain the 10 output vectors. The vectors are similarly

squashed so that their lengths stand for the output probabil-

ity of the corresponding class. This baseline is equivalent to

CapsNet without a routing mechanism (CapsNet-NoR).

In CapsNet, several units can correspond to a similar se-

mantic concept. An interesting question to investigate is,

what percentage of neurons strongly react to changes of a

given latent factor. We propose a metric to evaluate such

compactness. Given a latent factor z (e.g. rotation) and an

image X, we compute the semantic compactness score with

the following steps:

1. Creating a list of images with different rotation degrees;

2. Obtaining their representation vectors via forward in-

ferences (the vectors of ground-truth classes are kept);

3. Computing the variance of the vectors in each dimen-

sion V arV arV ar and normalize them by their sum V arV arV arn;

4. Computing the KL divergence between the normalized

variance values V arV arV arn and a uniform prior.

The compactness score is averaged over the whole dataset.

The higher the score is, the more compact the semantic rep-

resentation becomes. The intuition behind the score is that,

if only one unit changes when images are rotated, the nor-

malized variance will be one-hot, and the relative entropy

to uniform prior is the maximum.

Results and Analysis: After training, we perform the

capsule perturbation experiments on the 160 activations, as

in [24]. In CapsNet, we tweak one dimension of capsule

representations by intervals of 0.05 in the range [-0.2, 0.2].

The reconstructed images are visualized in Fig. 4d. The se-

mantic changes of images can be observed, e.g., the rotation

and the stroke thickness. We find that the reconstructed im-

ages in ConvNets stay almost unchanged visually when per-

turbing the corresponding activation with the same range.

The observation can be caused by the too-small perturba-

tion range for the unit activations. Hence, we increase the

range gradually until the reconstructed image cannot be rec-

ognized where we reach the range of [-8, 8]. The recon-

structed images are shown in Fig. 4. In ConvNet-R, the
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Figure 4: The reconstructed images are shown when a single unit is perturbed. The reconstruction only helps when the

class-conditional masking mechanism is applied. The squashing function improves the visual response further.

(a) Reconstruction in ConvNet-R (b) Reconstruction in ConvNet-CR (c) Reconstruction in ConvNet-CR-SF

Figure 5: The reconstruction from feature space to the input space: In ConvNet-R, the capsule representations of different

classes are entangled in feature space; the ones in ConvNet-CR are clearly separated due to the class-conditional masking

mechanism. When a squashing function is applied to squash the vector, the representations live within a manifold. The

representation constraints improve the network’s ability to extrapolate object variations.

Datasets MNIST

Factors Rotation Trans-X Trans-Y Scale Shear-X Shear-Y

ConvNet-R 0.0003 0.0016 0.0009 0.0004 0.0003 0.0007

ConvNet-CR 0.0028 0.0038 0.0032 0.0052 0.0058 0.0022

ConvNet-CR-SF 0.0325 0.2010 0.3192 0.0146 0.0476 0.0506

CapsNet 0.0031 0.0107 0.0464 0.0026 0.0098 0.0021

Table 5: The representation compactness: The class-

conditional reconstruction and the squashing function im-

prove the compactness, while dynamic routing reduces it.

semantics of reconstructed images is not sensitive to all in-

dividual dimensions in Fig. 4a. In ConvNet-CR, where the

class-conditional reconstruction is applied, the changes of

representation unit also cause the semantic changes of re-

constructed images in Fig. 4b. When the squashing function

is applied, the representations in ConvNet-CR-CF strongly

react to the perturbations in Fig. 4c.

Both the class-conditional reconstruction mechanism

and the squashing function can help ConvNets to learn

meaningful semantic representations. The two components

characterize the function learned by the reconstruction sub-

network, which maps representations from feature space

back to input space. We illustrate the characteristics of

these functions in Fig. 5, using an example with a 2D in-

put space and 3 output classes. The ConvNet-R recon-

structs inputs from the features that are entangled to some

degree. In ConvNet-CR, the features of different classes are

perfectly separated since the features are class-conditional.

The ConvNet-CR-CF constrains the feature space further

by squashing the vectors so that they live inside a mani-

fold. We also report the compactness score of each model

in Tab. 5. We speculate that it is these constraints that im-

prove the representation’s compactness. More experiments

on the FMNIST dataset can be found in Supplement C.

Conclusions: Both the class-conditional reconstruction

and the squashing function help CapsNet learn meaning-

ful semantic representations, while dynamic routing is even

harmful. The two components can be integrated into Con-

vNets, where ConvNet-CR-SF learns better semantic com-

pact representations than CapsNets.

4. Conclusion

We reveal 5 major differences between CapsNets and

ConvNets and study 3 properties of CapsNets. We show

that dynamic routing is harmful to CapsNets in terms of

transformation robustness and semantic representations. In

each presented task, a simple ConvNet can be built to out-

perform the CapsNet significantly. We find that there is no

single ConvNet that can outperform CapsNet in all cases.

Hence, we conclude that CapsNets with dynamic routing

are not more robust than ConvNets. We leave further explo-

rations for future work, e.g., concerning different datasets,

and other properties of CapsNets, and other CapsNets.

The dynamic routing aggregates information from low-

level entities into high-level ones. The aggregation can be

also be done by a graph pooling operation [4]. In ConvNets,

the relationship between low-level entities is also explored

in aggregation [9, 10]. More aggregation approaches wil be

explored in future work.
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