
Deductive and Inductive Stream Reasoning
for Semantic Social Media Analytics

Davide Barbieri1, Daniele Braga1, Stefano Ceri1, Emanuele Della Valle1, Yi Huang2, Volker Tresp2,
Achim Rettinger3, and Hendrik Wermser4

1Dip. di Elettronica e Informazione, Politecnico di Milano, Milano, Italy
2 Siemens AG, Corporate Technology, Munich, Germany
3 Karlsruhe Institute of Technology, Karlsruhe, Germany

4 Technical University of Munich, Munich, Germany

Abstract. Knowledge evolution is a major challenge in knowledge management. When knowledge evolution
is conveyed in the form of data streams, a combined approach of deductive and inductive reasoning can
leverage the clear separation between the evolving (streaming) and the static parts of the knowledge at the
conceptual and technological level. In particular, the notion of RDF streams is the �“glue�” for the
interoperability of inductive and deductive reasoning techniques with methods and systems for processing
data streams. In this paper, we show our combined approach applied to social network analysis, we give
experimental evidence of good performances, and demonstrate the effectiveness of the approach for
extracting trends from micro blogs and feeds.

Keywords: stream reasoning, online learning, social media analytics, deductive reasoning, inductive
reasoning, RDF streams, SPARQL, C SPARQL

1 Introduction
What are the hottest topics under discussion on Twitter? Which topics have my close friends discussed in the
last hour? Which movie is my friend most likely to watch next? Which Tuscany red wine should I recommend
to them? The information required to answer these queries is becoming available on the Web, as many
popular social networks publish micro blogs and feeds. This trend is often referred to as the �“Twitter
phenomenon�”. These feeds are �“continuous�” flows of information where recent items are typically more
relevant than older ones, properly representing a stream. However, their interpretation requires rich
background knowledge to fulfill meaningful reasoning tasks, beyond standard stream processing
capabilities.

Stream processing has been studied by both, the database [dsmsbook] and data mining communities.
Specialized Data Stream Management Systems (DSMS) are available on the market and DSMS features are
appearing in major database products, such as Oracle and DB2. Online stream mining is applied in many
contexts, e.g. to computer network traffic for intrusion detection, to Web searches for online
recommendations [SuYYT10], and to sensor data for automated real time decision making. These
applications represent a paradigm change in information processing techniques, as data streams are
processed on the fly, without being stored, and processing units produce their results without explicit
invocation.

DSMS are designed to process real time parallel queries over possibly bursty data, but they cannot perform
reasoning tasks as complex as those required to answer the queries raised in the first paragraph.
Understanding and interpreting the Twitter phenomenon (and many other data streams) requires

Digital Object Indentifier 10.1109/MIS.2010.111 0885-9000/$26.00 2010 IEEE

This article has been accepted for publication in IEEE Intelligent Systems but has not yet been fully edited.
Some content may change prior to final publication.

connecting quick and concise streams, representing changes occurring in the real world, to rich background
knowledge bases. This �“join�” is crucial, for instance, for (1) understanding the topics discussed in the
streams with the help of topic taxonomies, (2) recommending most attractive movies to particular user
profiles and (3) predicting future behaviors based on the analysis of past behaviors (movie attendance).
These examples show the need for connecting data stream processing techniques with reasoning methods,
of both inductive and deductive nature, in order to support social media analytics. We believe that this is a
good example of how a novel and high impact research area, that we called Stream Reasoning [IEEE IS SR],
enables the merging of data streams and rich background knowledge.

Extending reasoning methods to support changing knowledge is a known challenge for the reasoning
community. In deductive reasoning, various methods exist to revise beliefs based on recent information. In
inductive reasoning, a body of research in data mining and machine learning already supports online data
analysis. However, little work has been done on the application of machine learning to streams as rich and
structured as those considered here. We believe that data streams are an ideal model for changes
occurring in the real world, as well as a suitable means to delimit the source and the nature of change,
clearly separating the static part of knowledge from that part of knowledge that changes in real time.

This separation is both conceptual and technological, and allows the use of existing systems for data stream
management on one hand and for inductive or deductive reasoning on the other. Also, data streams easily
allow a novel interconnection of deductive and inductive reasoning. In our approach, the �“glue�” for this
interconnection is the notion of RDF streams, together with an extension of the SPARQL language for
continuous queries.

The next section introduces the notion of stream reasoning and briefly describes our previous work on the
development of a stream reasoning platform. Section 3 describes the data streams generated by the social
network Glue1, used for our experiments. Section 4 shows examples of applications of stream reasoning to
the running example. An evaluation of our approach is presented in Section 5, while Section 6 draws some
conclusions and provides an outlook on future work.

2 Stream Reasoning
Deductive and inductive stream reasoning, described next in more detail, extend the following notion.

Stream Reasoning: reasoning in real time on huge and possibly noisy data streams, to support a
large number of concurrent decision processes.

We now characterize stream reasoning with respect to the notions of streams, windows, and continuous
processing, three key concepts in stream processing [babu01continuous].

Streams Data streams are unbounded sequences of time varying data elements that form a
�“continuous�” flow of information. Recent elements are more relevant as they describe the
current state of a dynamic system. Being RDF the data interchange format for reasoners, we
move from the notion of RDF streams as the fuel for stream reasoning. RDF streams are defined
as ordered sequences of pairs, made of RDF triples and their timestamps Ti:

(<subji , predi , obji>, Ti)
(<subji+1 , predi+1 , obji+1>, Ti+1)

1 http://www.getglue.com

Digital Object Indentifier 10.1109/MIS.2010.111 0885-9000/$26.00 2010 IEEE

This article has been accepted for publication in IEEE Intelligent Systems but has not yet been fully edited.
Some content may change prior to final publication.

Timestamps can be considered as annotations of RDF triples. They are monotonically non

decreasing in the stream (Ti Ti+1), and adjacent triples may have the same timestamp, if
�“occurring�” at the same time.

Windows Traditional reasoning problems assume that all the available information should be
considered for solving a problem. Stream reasoning, instead, restricts processing to a certain
window of concern, focusing on a subset of recent statements in the stream, while previous
statements are ignored. However, the cumulative effect of past windows (processed in the
past) and present windows can be taken into account.

Continuous Processing Traditional reasoning approaches have well defined beginnings and
ends for reasoning tasks, respectively when tasks are presented to the reasoner and when
results are delivered. Stream reasoning moves from this processing model to a continuous
model, where tasks are registered and continuously evaluated reasoner against flowing data.

We are pushing our Stream Reasoning vision within the LarKC2 project [ICSC08], whose main goal is to
develop a platform for reasoning on massive heterogeneous information such as social media data. The
platform has a pluggable architecture to exploit techniques and heuristics from diverse areas such as
databases, machine learning, and Semantic Web.

Deductive Stream Reasoning. In [EDBT2010, ESWC2010], we specified a general flexible architecture for
reasoning over data streams and rich background knowledge, within the LarKC conceptual architecture
[ICSC08], leveraging existing DSMS and SPARQL engines. We introduced C SPARQL (Continuous SPARQL) as
an extension to SPARQL to query RDF streams [WWW2009,EDBT2010], and in [ESWC2010] we elaborated
on the deductive reasoning support to C SPARQL, proposing an efficient incremental technique that
exploits the transient nature of streams for maintaining the materialization of their ontological entailments.

Inductive Stream Reasoning. The challenges here are, first, the large amount of information, that needs to
be processed in a given time window, second, the structured multi relational nature of the data, third, the
sparsity of the typically high dimensional data, and, fourth, the fact that the data is often incomplete. In
[IRMLeS2009] a machine learning approach has been described, that is suitable for this challenging data
situation and that has been termed the Statistical Unit Node Set (SUNS) learning approach. In [ILP2010], the
approach was extended for on line inductive reasoning.

Figure 1. Architecture of a simple Stream Reasoner applied to Social Media Analysis.

2 http://www.larkc.eu

Legend

data stream C SPARQL query

RDF stream SPARQLwith Probability

RDF graph

Selector
DSMS .

Abstracter
DSMS

Deductive
ReasonerWindow

Abstracter
Long Term
Matrix

Abstracter
Hype
Matrix

Inductive
Reasoner

Inductive
Reasoner

C

CC

C

P

P

P So
ci
al
M
ed
ia
A
na
ly
tic
s

Digital Object Indentifier 10.1109/MIS.2010.111 0885-9000/$26.00 2010 IEEE

This article has been accepted for publication in IEEE Intelligent Systems but has not yet been fully edited.
Some content may change prior to final publication.

Figure 1 shows the architecture of a simple Stream Reasoner consisting of streamlining within the LarKC
platform a set of specialized plug ins. A selection plug in extracts the relevant data in each input stream by
exploiting the window processing ability of a DSMS. The window content is fed into a second plug in that
abstracts from fine grain data streams into aggregated events and produces RDF streams as output. A
SPARQL engine able to operate under different entailment regimes constitutes the deductive reasoner plug
in. C SPARQL queries are directly registered in the deductive reasoner. The results can be of immediate use
or used by two more sub workflows, both constituted by an abstracter and an inductive reasoner. As
explained in Section 4.3, the inferences of the two inductive reasoners can be queried using an extended
version of SPARQL which supports probabilities [IRMLeS2009]. Note, that this simple setup can be extended
by arbitrarily combining and iterating the deductive and inductive reasoners. E.g., it might be helpful to
feed the findings of the inductive reasoner back to the deductive reasoner to deduce further knowledge.

3 Experimental Data
We have based our experiments on Glue3, a social network that allows users to connect to each other and
share Web navigation experiences. In addition, Glue uses semantic recognition techniques to identify
books, movies, and other similar topics, and publishes them in the form of data streams. Users can observe
the streams and receive recommendations on interesting findings by their friends.

Both the social network data and the real time streams are accessible via REST APIs. Our experiments build
on adapters [SDOW2009] that export Glue data as RDF streams. The entities and relationships considered
in the experiments are described in UML in Figure 2.

Users have names, and know and follow other users. Well known Semantic Web vocabularies
[BojarsBPTD08] are used: the Friend of a Friend vocabulary (FOAF) for the user names and the knows
relationship, and the Semantically Interlinked Online Communities (SIOC) for the follows relationship.
Objects represent entities of the real world (such as movies or books), with name and category. Resources
represent sources of information that describe the actual objects, such as Web pages about a particular
movie or book. As vocabularies, we used rdfs:label for the names and skos:subject to link an object to its
category, by means of the subject attribute. Moreover, categories identifiers are taken from YAGO.

Figure 2. Entities and relationships in our experiments.

3 http://getglue.com

URL
rdfs:label
skos:subject
owl:sameAs

ObjectResource links

describes

URL
foaf:name

User

sioc:follows

foaf:knows
accesses

likes

dislikes

data stream

background knowledge

URL
rdfs:label

Digital Object Indentifier 10.1109/MIS.2010.111 0885-9000/$26.00 2010 IEEE

This article has been accepted for publication in IEEE Intelligent Systems but has not yet been fully edited.
Some content may change prior to final publication.

The information described so far is static background knowledge, i.e., in the experiments we assumed that
it is stable in a period comparable with the size of a window. Of course updates of this information are also
allowed, but do not interfere with window processing. We also have streaming information, namely the
notifications of the behavior of users with respect to resources (and, transitively, to objects). The accesses,
likes, and dislikes relationships represent the events occurring when users access resources or express
opinions about them. In the rest of this paper, we refer to this vocabulary with the prefix sd. Quite
straightforwardly, all interaction of a generic users U with a resource R generates a triple of the form
<U, sd:accesses, R>, and selected interactions generate triples of the form <U, sd:likes, R> and <U,
sd:dislikes, R >. An example of possible triples in a stream is:

(<:Giulia, sd:accesses, :Avatar>, 2010-02-12T13:18:05)
(<:John, sd:accesses, :Twilight>, 2010-02-12T13:36:23)
(<:Giulia, sd:likes, :Avatar>, 2010-02-12T13:42:07)

4 Stream Reasoning at Work
In this section, we progressively apply the simple Stream Reasoner presented in Section 2 to the
experimental data described in Section 3. We start with an example of social media analysis performed by a
C SPARQL query under simple RDF entailment. Then, we explain how complex conditions can be expressed
using OWL RL and how our Deductive Stream Reasoner can efficiently answer C SPARQL queries under
OWL2 RL entailment. The last part of this section is dedicated to Inductive Stream Reasoning performed on
top of RDF streams generated by C SPARQL queries registered in the Deductive Stream Reasoner.

4.1 C SPARQL Under Simple RDF Entailment
C SPARQL [WWW2009,EDBT2010] is an extension of SPARQL for expressing continuous queries over RDF
graphs and RDF streams. Like SPARQL, it can be executed under multiple entailment regimes4.
C SPARQL under simple RDF entailment does not require reasoning, but it is already very useful. For
instance, it can be used to discover causal relationships between different users�’ actions in Glue. The
following query identifies users who are opinion makers, i.e., who are likely to influence the behavior of
their followers.

1. REGISTER STREAM OpinionMakers COMPUTED EVERY 5m AS
2. CONSTRUCT { ?opinionMaker sd:about ?resource }
3. FROM STREAM <http://streamingsocialdata.org/interactions> [RANGE 30m STEP 5m]
4. WHERE {
5. ?opinionMaker ?opinion ?resource .
6. ?follower sioc:follows ?opinionMaker.
7. ?follower ?opinion ?resource.
8. FILTER (cs:timestamp(?follower) > cs:timestamp(?opinionMaker)
9. && ?opinion != sd:accesses)
10. }
11. HAVING (COUNT(DISTINCT ?follower) > 3)

Lines 1 and 3 tell the C SPARQL engine to register the continuous query on the stream of interactions
generated by Glue considering a window of 30 minutes that slides every 5 minutes. Line 2 tells the engine
to generate an RDF stream as output. The basic triple pattern (BTP) at line 5 matches interactions of
potential opinion makers with the resources. Line 6 matches the followers of the opinion makers, and line 7
matches their interactions with the resources. The FILTER clause uses the custom value testing function

4 http://www.w3.org/TR/sparql11 entailment/

Digital Object Indentifier 10.1109/MIS.2010.111 0885-9000/$26.00 2010 IEEE

This article has been accepted for publication in IEEE Intelligent Systems but has not yet been fully edited.
Some content may change prior to final publication.

cs:timestamp that returns the timestamp of the RDF triple producing the binding5. It checks whether the
interactions of the followers occur on the same resource after those of the opinion maker. Note that
timestamps are taken from variables that occur only once in patterns applied to streaming triples, thus
avoiding ambiguity. Also, the query filters out actions of type �“accesses", that are normally required before
expressing an opinion such as �“like" or �“dislike". Finally, the HAVING clause distinguishes potential opinion
makers from actual opinion makers, checking that at least three followers imitated their behavior.

Two approaches, alternative to C SPARQL, exist: Streaming SPARQL [StreamingSPARQL] and Time
Annotated SPARQL [TA SPARQL]. Both languages introduce the concept of windows, but only
C SPARQL brings the notion of continuous processing, typical of stream processing, into the language. All
other proposals rely on permanent storing of the stream and process it by one shot queries. Moreover,
only C SPARQL proposes an extension to SPARQL to support aggregates. This extension permits
optimizations [EDBT2010] that push, whenever possible, aggregates computation as close as possible to the
raw data streams.

4.2 C SPARQL and Deductive Stream Reasoning
Running C SPARQL queries under expressive OWL reasoning regimes widens the spectrum of analysis that
the Stream Reasoner can perform. For instance, we may define a �“movie opinion maker�” as an opinion
maker who �“recently�” liked onlymovies. The definition in OWL of users who like only movies is

Class(sd:UserOnlyInterestInMovies complete
 intersectionOf(
 sd:User
 restriction(sd:likes allValuesFrom(yago:Movie))
)
)

This ontological definition can be used in the following C SPARQL query:

1. REGISTER STREAM MovieOpinionMakers COMPUTED EVERY 5m AS
2. CONSTRUCT { ?opinionMaker sd:about ?resource }
3. FROM STREAM <http://streamingsocialdata.org/interactions> [RANGE 30m STEP 5m]
4. WHERE {
5. ?opinionMaker a sd:UserOnlyInterestInMovies .
6. ?opinionMaker ?opinion ?resource .
7. ?follower sioc:follows ?opinionMaker.
8. ?follower ?opinion ?resource.
9. FILTER (cs:timestamp(?follower) > cs:timestamp(?opinionMaker)
10. && ?opinion != sd:accesses)
11. }
12. HAVING (COUNT(DISTINCT ?follower) > 3)

For instance, if a window contains the triples shown below, then Giulia is an instance of
UserOnlyInterestInMovies, while John is not (he also liked a book).

(<:Giulia, sd:likes, :Avatar>, 2010-02-12T13:18:05)
(<:John, sd:likes, :StarWars>, 2010-02-12T13:36:23)
(<:John, sd:likes, :WutheringHeights>, 2010-02-12T13:38:07)
(<:Giulia, sd:likes, :AliceInWonderland>, 2010-02-12T13:42:07)

5 If the variable gets bound multiple times, the function returns the most recent timestamp value relative to the query
evaluation time.

Digital Object Indentifier 10.1109/MIS.2010.111 0885-9000/$26.00 2010 IEEE

This article has been accepted for publication in IEEE Intelligent Systems but has not yet been fully edited.
Some content may change prior to final publication.

The evaluation of the query requires reasoning both on the triples in the window and on the background
knowledge about objects described in Glue. In particular, the reasoner must check if users match the
ontological definition before checking if they are opinion makers. Note that the Deductive Stream Reasoner
must know the ontological definition, but also has to combine the RDF stream with relevant background
knowledge about movies and books (i.e., it has to know that Wuthering Heights is a book while the other
items are movies).

Performing this reasoning task efficiently is not obvious. Possible existing techniques are: incremental
maintenance of materialized views in logic [VolzSM05], graph databases [CDE98], extensions of the RETE
algorithm for incremental rule based reasoning [VLDB93], recent attempts to incremental reasoning in
description logics [ISWC2007]. All these methods operate incrementally, but none of them is explicitly
dedicated to data stream. In [ESWC2010], we proposed a technique for efficiently computing this class of
C SPARQL queries, that incrementally maintains a materialization of ontological entailments exploiting the
transient nature of streaming data. By adding expiration time information to each RDF triple, we show that
it is possible to compute a new complete and correct materialization whenever the window slides, by
dropping explicit statements and entailments that are expired, and then only adding the deductions that
depend on the new triples that entered the window.

4.3 Inductive Stream Reasoning using C SPARQL
Still wondering about Giulia, we may query which movies Giulia will like the most, even if she has not seen
them yet. The answer is built for an ad hoc query; the system uses the last window in the stream in order
to determine such predicted probability.

1. SELECT ?movie ?prob
2. FROM STREAM <http://streamingsocialdata.org/interactions> [RANGE 30m STEP 5m]
3. WHERE { :Giulia sd:likes ?movie . WITH PROB ?prob
4. ?movie a yago_Movie .
5. FILTER (?prob > 0 && ?prob < 1)
6. } ORDER BY ?prob

At line 3 we highlighted in bold the construct WITH PROB which extends SPARQL with the ability to query an
inducted model. The variable ?prob assumes the value 1 for the movies she has watched and assumes the
estimated probabilities between zero and one for next movies she would like to watch. The clause ORDER

BY is used to return movies sorted with decreasing the probabilities. The query answer includes pairs of
movie title and predicted likelihood as follows:

(:WutheringHeightsTvMovie, 0.8347)
(:StarWars, 0.5693)

For running inductive reasoning on semantic data we use the SUNS learning approach mentioned in Section
2. In the approach, we first define the statistical unit, the population, the sampling procedure and the
features. A statistical unit is an object of a certain type, e.g., a user. The population is the set of statistical
units under consideration. For instance, in the experiments of described in this paper the population is
defined as the users of Glue social network. For training models we sample a subset from the population.
Then, based on the sample, the SUNS constructs data matrices by transforming the set of RDF triples
related to statistical units into matrices. The rows in the matrix stand for instances of a statistic unit and
columns represent their features derived from the associated RDF graph. The binary entries one and zero
represent the truth values �“true�” and �“unknown�” of the corresponding triples. Suppose that rows are users

Digital Object Indentifier 10.1109/MIS.2010.111 0885-9000/$26.00 2010 IEEE

This article has been accepted for publication in IEEE Intelligent Systems but has not yet been fully edited.
Some content may change prior to final publication.

and columns are movies. An one of the (i,j) entry in the matrix indicates that the i th user rates the j th
movie as liked; otherwise it is unknown whether or not that user likes that movie.

After the transformation a multivariate analysis of the data matrices is performed. Multivariate prediction
methods are especially suited for the challenging data situation: large scale, multi relational, high
dimensional and highly sparse. The multivariate modeling problem can be solved via singular value
decomposition (SVD), non negative matrix factorization (NNMF) [NNMF], and latent Dirichlet allocation
(LDA) [LDA]. All three approaches estimate unknown matrix entries via a low rank matrix approximation.
NNMF is a decomposition under the constraints that all terms in the factoring matrices are non negative,
while LDA is based on a Bayesian treatment of a generative topic model6. After matrix completion, the zero
entries are replaced with certainty values representing the likelihood that the corresponding triples are
true. In [ILP2010] we have investigated the performance of these methods in off line as well as in on line
settings, following different sampling strategies. In this context, on line setting means that the trained
model is applied to predict relationships between entities at query time, including the new entities unseen
in the training data set.

In our example user is the main entity of interest (and the reasoner�’s statistical unit). Each user is involved
in a number of relationships such as interests in movies, books and other items, the friendship relationships
and the follows relationship. All data is referred to users and is described by RDF triples, expressing that
users �“relate�” to �“objects�”. C SPARQL continuously delivers new windows of (aggregated) features to the
inductive reasoning and the results of C SPARQL are transformed into a data matrix, which becomes the
input for the inductive reasoner. At predefined time intervals, a learning module applies a multivariate
analysis to the data matrices. A second learning module, called hype model, monitors rapid changes (see
Section 5.2). The two data matrices contain, respectively, the long term information and the short term
trends or �“hypes�”. The �“hype matrix�” is simply populated with the current window content, whereas the
long term matrix is continuously updated and evolves over time.

5 Evaluation
As evaluation, we first present a stress test to show the scalability of our approach, and then evaluate the
application to a real case. We show that each architectural component separately applies orthogonal
optimizations, yielding to an efficient solution when one system�’s output is fed as input to the next system.

5.1 Performance and Scalability Evaluation
As in [SDOW2009], we compared the execution time of a C SPARQL query in our deductive stream reasoner
to the execution time of an equivalent SPARQL query on ARQ7 with inference support. We show the tests
for the query presented in Section 4.2, run on a Pentium Core 2 Quad 2.0GHz with a 2GB RAM.

6 Recently, we developed a regularized SVD which is insensitive on the rank used in the matrix factorization step.

7 http://jena.sourceforge.net/ARQ/

Digital Object Indentifier 10.1109/MIS.2010.111 0885-9000/$26.00 2010 IEEE

This article has been accepted for publication in IEEE Intelligent Systems but has not yet been fully edited.
Some content may change prior to final publication.

Figure 3. The window based selection of C SPARQL outperforms the FILTER based selection of SPARQL.

A little change to the schema to represent interactions allows writing an equivalent SPARQL query.

1. CONSTRUCT {?opinionMaker sd:about ?resource}
2. FROM <http://streamingsocialdata.org/interactions>
3. WHERE {?opinionMaker ?opinion [:about ?resource ;
4. dc:created ?dateOpinionM .]
5. ?opinionMaker a sd:UserOnlyInterestInMovies .
6. ?follower sioc:follows ?opinionMaker .
7. ?follower ?opinion [:about ?resource ;
8. dc:created ?dateOpinionF .]
9. FILTER (?opinion != sd:accesses) &&
10. ?dateOpinionM > "2010-02-12T13:00:00Z"^^xsd:dateTime &&
11. ?dateOpinionM < "2010-02-12T13:30:00Z"^^xsd:dateTime &&
12. ?dateOpinionF > "2010-02-12T13:00:00Z"^^xsd:dateTime &&
13. ?dateOpinionF < "2010-02-12T13:30:00Z"^^xsd:dateTime &&
14. ?dateOpinionF > ?dateOpinionM)
15. }
16. HAVING (COUNT(DISTINCT ?follower) > 3)

The code in bold adds (a) two BTP (lines 4 and 8) that match the creation date of the interaction, and (b)
four filter conditions (lines 10 13) that select the same time interval of the C SPARQL query. Notably, the C
SPARQL syntax is more handy and terse.

We registered the C SPARQL query in our engine, we fed RDF triples in our engine at a rate of 200 triple per
second (t/s) and we measured the time required to compute the answer. Using ARQ, we executed the
equivalent SPARQL query six times against repositories containing a growing number of triples and we
again measured the time required to compute each answer.

The results are shown in Figure 3. By comparing the linear regressions of the two experiments, named
Linear(SPARQL), and Linear(C SPARQL 200 t/s), we see that the C SPARQL window based selection always
performs significantly better than the FILTER based selection of SPARQL in Jena.

0

10

20

30

40

50

0 500 1000 1500 2000 2500

m
s.

number of triples in thewindow (C SPARQL) or in the repository (SPARQL)

ResponseTime C SPARQL vs. SPARQL

SPARQL C SPARQL 200 t/s

Linear (SPARQL) Linear (C SPARQL 200 t/s)

Digital Object Indentifier 10.1109/MIS.2010.111 0885-9000/$26.00 2010 IEEE

This article has been accepted for publication in IEEE Intelligent Systems but has not yet been fully edited.
Some content may change prior to final publication.

5.2 Evaluation on a Real Case Scenario
To prove the effectiveness of stream reasoning for social media analytics, we evaluated the accuracy of
top N movie recommendations. First, we compared diverse inductive reasoning approaches with common
recommendation methods, some of which were realized by deductive stream reasoning. Secondly, we
examined the performance of the combination of both inductive and deductive streaming reasoning.

To gather a data set for the evaluation, we used a predefined C SPARQL query and then transcoded and
stored the output RDF streams into a data matrix. The matrix was continuously updated from February 19
to April 22, 2010. Finally, we selected 245860 interactions made by 2457 users. In particular, we examined
the interactions of �“Liked movies�” relationship. The transformed data matrix (see Section 4.3) is extremely
sparse with only 0.002% nonzero elements. To make statistically significant evaluations we removed all
users with almost no interactions and items that were evaluated less than 5 times. After pruning, the
resulting subset consists of 1455 users and 7724 features with sparsity of 0.02%. The item most specified by
users is the "Liked movies" relation with around 2500 movies. "Liked music" and "Liked recording_artists"
was specified about 1300 times and "Liked movie stars", "Liked tv_shows" and "Liked video_games"
approximately 600 times. The remaining 18 features were mentioned less than 250 times.

Being most easily adaptable to the dynamic setting, we applied SVD and regularized SVD for movie
recommendations. As baseline methods we utilized, first, a global liked movie list carried out by a simple
registered C SPARQL query, shown below.

1. REGISTER STREAM MostLiked COMPUTED EVERY 1d AS
2. SELECT ?movie (SUM(?user) AS ?noOfUser)
3. FROM STREAM <http://streamingsocialdata.org/interactions> [RANGE XX STEP XX]
4. WHERE {?movie a yago_Movie .
5. ?user sd:likes ?movie .}
6. GROUP BY ?movie
7. ORDER BY DESC(?nrOfUser)

Second, we extracted the most liked movies of a person�’s friends, calculated also through a corresponding
registered C SPARQL query (not shown). Third, we applied the k nearest neighbour (kNN) regression, using
the same user based and movie based similarity measures defined in [IEEE IC2003]. By means of cross
validation we carefully tuned parameters of each method.

Figure 4. Accuracy of top N movie recommendations. Left: inductive stream reasoning and deductive stream
reasoning separately. Right: combination of inductive and deductive stream reasoning

Digital Object Indentifier 10.1109/MIS.2010.111 0885-9000/$26.00 2010 IEEE

This article has been accepted for publication in IEEE Intelligent Systems but has not yet been fully edited.
Some content may change prior to final publication.

Figure 4 left shows the evaluation results, i.e. the percentage of truly liked movies in the top N
recommendations where N = 10, 20, 30, 40 and 50. First, SVD and regularized SVD outperformed all
baseline methods. In particular, the regularized SVD performed much better than any other method and
was robust and insensitive on its parameters as expected. Secondly, both kNN lines are above the
baselines. This means that the users and the items collected share some common regularity. For example,
users who like the same actors are likely to watch movies in which those actors play. Taking such additional
features into account improves significantly the accuracy of movie recommendations. The data regularity is
exploited of course by SVD and regularized SVD as well. Thirdly, the two baseline methods almost
completely overlapped. The reason might be that the most users would like to watch movies from the same
gobal list of the most popular movies rather than considering the preferences of their friends.

As the second part of the empirical study, we experimented with combining the output of the deductive
and the inductive reasoning module. In this scenario the inductive module models the long term
preferences of users, which, in this experiment, is trained only on data that is older than 30 days. It is quite
reasonable to assume that the long term preference model is updated only at larger intervals since the
required computations can be quite costly, if one wants to avoid sub sampling. The deductive reasoning
module contributes predictions in the form of �“MostLiked�”, which simply aggregates recent
recommendations to capture the short term trends of �“hype�”. Strictly speaking, the latter is also an
inductive process, but aggregation is inherently supported by the deductive component as well.

Note that the short term trend could have been predicted by a multivariate analysis similar to the long
term module and combined in a comparable way to the output of the deductive module. However, Figure 4
right already shows clearly that the combination of the long term inductive model and the �“MostLiked�”
deductive model outperforms both separated methods. Experiments with more sophisticated �“hype
modules�” and the exploration of different combination schemes are part of future work.

6 Conclusion and Outlook
We have shown that RDF streams can serve as an interconnecting mechanism to support change
management within deductive and inductive reasoners. Suitable type extensions provide both timestamps
and probabilities to RDF triples, thereby injecting the required ingredients in the basic RDF model.
Extensions to the SPARQL language make RDF streams first class citizens, allowing static and streaming RDF
data to be used within queries and allowing several window definition options. C SPARQL embedded within
the entailment of a deductive reasoner can be used to generate an output stream, which can then feed an
inductive reasoner. Conversely, results of inductive reasoners, described by RDF triples tagged with
probabilities, can be inspected by SPARQL engines.

This paper has illustrated a sequential integration between two existing stream reasoning environments
within the LarKC platform. However, the pluggable architecture of LarKC allows also for other form of
integration with reasoners sharing the same RDF resources, freely reacting to RDF streams, and mutually
interacting.

Acknowledgements
This work was partially supported by the European project LarKC (FP7 215535).

Digital Object Indentifier 10.1109/MIS.2010.111 0885-9000/$26.00 2010 IEEE

This article has been accepted for publication in IEEE Intelligent Systems but has not yet been fully edited.
Some content may change prior to final publication.

References
[babu01continuous] S. Babu and J. Widom, �“Continuous Queries over Data Streams,�” SIGMOD Rec., 2001,
30(3):109 120.

[BojarsBPTD08] U. Boj rs, J.G. Breslin, V. Peristeras, G. Tummarello, S. Decker, "Interlinking the Social Web
with Semantics," IEEE Intelligent Systems, 23(3), 2008, pp. 29 40.

[CDE98] Y. Zhuge, and H. Garcia Molina, �“Graph structured views and their incremental maintenance,�”
Proc. of the 14th Int. Conf. on Data Engineering, 1998, pp. 116 125.

[dsmsbook] M. Garofalakis, , et al., �“Data Stream Management: Processing High Speed Data Streams (Data
Centric Systems and Applications),�” Springer Verlag New York, Inc., 2007.

[EDBT2010] D. Barbieri, et al., �“An Execution Environment for C SPARQL Queries�”, Proc. Intl. Conf. on
Extending Database Technology (EDBT 2010), 2010.

[ESWC2010] D. Barbieri, et al., �“Incremental reasoning on streams and rich background knowledge,�” Proc.
of the Extended Semantic Web Conf. (ESWC 2010), 2010.

[ICSC08] D. Fensel et al., �“Towards LarKC: A Platform for Web Scale Reasoning,�” Proc. IEEE Int�’l Conf.
Semantic Computing (ICSC 08), IEEE Press, 2008.

[IEEE IC2003] G. Linden, et al., �“Amazon.com Recommendations: Item to Item Collaborative Filtering,�” IEEE
Internet Computing, vol. 7, 2003, pp. 76�–80.

[IEEE IS SR] E. Della Valle, et al., �“It's a Streaming World! Reasoning upon Rapidly Changing Information,�”
IEEE Intelligent Systems, 24(6), 2009, pp. 83 89.

[ILP2010] Y. Huang, et al., "Multivariate Prediction for Learning on the Semantic Web," Proc. of the 20th Int.
Conf. on Inductive Logic Programming (ILP 2010), 2010.

[IRMLeS2009] V. Tresp, et al., "Materializing and querying learned knowledge," Proc. of the 1st ESWC
Workshop on Inductive Reasoning and Machine Learning on the Semantic Web (IRMLeS 2009), 2009.

[ISWC2007] B. Cuenca Grau, et al., �“History matters: Incremental ontology reasoning using modules,�” Proc.
of the 6th Int. Semantic Web Conf. (ISWC 2007), Springer, 2007, pp. 183 196.

[LDA] D.M. Blei, et al., �“Latent dirichlet allocation,�” J. Mach. Learn. Res., 3, 2003.

[NNMF] D. D. Lee and H. S. Seung, �“Learning the parts of objects by non negative matrix factorization,�”
Nature, 1999.

[SDOW2009] D.F. Barbieri, et al, "Continuous Queries and Real time Analysis of Social Semantic Data with
C SPARQL," Proc. of Social Data on the Web Workshop at ISWC 2009, 2009.

[StreamingSPARQL] A. Bolles, et al., �“Streaming SPARQL: Extending SPARQL to Process Data Streams,�” Proc.
of European Semantic Web Conf. (ESWC 2008), 2008, pp. 448 462.

[SuYYT10] J.H. Su, H.H. Yeh, P.S. Yu, V.S. Tseng, "Music Recommendation Using Content and Context
Information Mining," IEEE Intelligent Systems, 25(1), 2010, pp. 16 26.

Digital Object Indentifier 10.1109/MIS.2010.111 0885-9000/$26.00 2010 IEEE

This article has been accepted for publication in IEEE Intelligent Systems but has not yet been fully edited.
Some content may change prior to final publication.

[TA SPARQL] A. Rodriguez, et al., �“Semantic Management of Streaming Data,�” Proc. Intl. Workshop on
Semantic Sensor Networks (SSN), 2009.

[VLDB93] F. Fabret, et al., �“An adaptive algorithm for incremental evaluation of production rules in
databases,�” Proc. of the 19th Int. Conf. on Very Large Data Bases (VLDB 1993), 1993, pp. 455 466.

[VolzSM05] R. Volz, et al. �“Incrementally maintaining materializations of ontologies stored in logic
databases,�” J. Data Semantics, 2, 2005, pp. 1 34.

[WWW2009] D.F. Barbieri et al., �“C SPARQL: SPARQL for Continuous Querying,�” Proc. 18th Int�’l World Wide
Web Conf. (WWW 09), ACM Press, 2009, pp. 1061�–1062.

D i g i t a l O b j e c t I n d e n t i f i e r 1

T h i s a r t i c l e h a s b e e n a c c e p t e d
S o m e c o n t e n t m a y c h a n g e

Davide Barbieri Davide Francesco Barbieri is a PhD student at DEI, Politecnico di Milano, since 2008. His
research interests address several issues related to stream processing. C SPARQL will be the main topic of
his PhD dissertation.

Dip. di Elettronica e Informazione,
Politecnico di Milano,
P.za L. Da Vinci, 32,
20133 Milano, Italy

Tel.: +39 02 2399 3655
Fax: +39 02 2399 3411
Email: davide.barbieri@polimi.it

Daniele Braga is an Assistant Professor at DEI, Politecnico di Milano, since 2006. He also got his PhD in
Computer Science at Politecnico di Milano. His research interests address several issues related to the
manipulation of semi structured data (visual languages and advanced processing for XML data), service
integration (with specific reference to complex queries over heterogeneous Web data sources), and Stream
Reasoning (C SPARQL and reasoning over streaming data).

Dip. di Elettronica e Informazione,
Politecnico di Milano,
P.za L. Da Vinci, 32,
20133 Milano, Italy

Tel.: +39 02 2399 3661
Fax: +39 02 2399 3411
Email: daniele.braga@polimi.it

Stefano Ceri is professor of Database Systems at the Dipartimento di Elettronica e Informazione (DEI),
Politecnico di Milano. He was visiting professor at the Computer Science Department of Stanford University
(1983 1990). His research work covers over three decades (1976 2010) and has been generally concerned
with extending database technologies to incorporate new features: distribution, object orientation, rules,
streaming data; with the advent of the Web, research has been targeted towards the engineering of Web
based applications and complex search systems. He is editor in chief of the book series "Data Centric
Systems and Applications" (Springer Verlag), and author of about 250 articles on International Journals and
Conference Proceedings and of nine international books. He has been awarded an IDEAS Advanced Grant,
funded by the European Research Council (ERC), on Search Computing (2008 2013).

Dip. di Elettronica e Informazione,
Politecnico di Milano,
P.za L. Da Vinci, 32,
20133 Milano, Italy

Tel.: +390223954324
Fax: +390223954524
Email: stefano.ceri@polimi.it

Digital Object Indentifier 10.1109/MIS.2010.111 0885-9000/$26.00 2010 IEEE

This article has been accepted for publication in IEEE Intelligent Systems but has not yet been fully edited.
Some content may change prior to final publication.

Emanuele Della Valle is an Assistant Professor of "Software Project Management " at the Department of
Electronics and Information of the Politecnico di Milano since July 2008. He started CEFRIEL �’s Semantic
Web Activities in 2001 and he coordinated the Semantic Web group until June 2008. His current interest is
on scalable processing of information at semantic level. Currently he is focusing on stream reasoning.

Dip. di Elettronica e Informazione,
Politecnico di Milano,
P.za L. Da Vinci, 32,
20133 Milano, Italy

Tel.: +390223954324
Fax: +390223954524
Email: emanuele.dellavalle@polimi.it

Yi Huang is a stuff scientist in Siemens Corporate Technology since 2008 and he is finishing Ph.D. in Ludwig
Maximilian University of Munich, Germany, where he received his Diploma degree in Computer Science in
2005. His research interests focus on Statistical Machine Learning, Text Mining, Information Retrieval and
Semantic Web.

Siemens AG
Corporate Technology Corporate Research and Technologies
CT T DE TC3
Otto Hahn Ring 6
81739 Munich, Germany

Tel.: +49 (89) 636 47926
Fax: +49 (89) 636 49767
Email: yihuang@siemens.com

Volker Tresp received a Diploma degree from the University of Göttingen, Germany, in 1984, and a Ph.D.
from Yale University in 1989. Since 1989 he is the head of a research team in machine learning at Siemens,
Corporate Research and Technology. In 1994 he was a visiting scientist at the Massachusetts Institute of
Technology's Center for Biological and Computational Learning. Each summer (since 2003) he gives a
lecture on machine learning and data mining at the University of Munich. He has been involved in all
leading program committees in machine learning and is on the organizing committee of the annual
Learning Workshop. He has served on numerous industrial and academic advisory boards.

Siemens AG
Corporate Technology Corporate Research and Technologies
CT T DE TC3
Otto Hahn Ring 6
81739 Munich, Germany

Tel.: +49 (89) 636 49408
Fax: +49 (89) 636 49767
Email: volker.tresp@siemens.com

Digital Object Indentifier 10.1109/MIS.2010.111 0885-9000/$26.00 2010 IEEE

This article has been accepted for publication in IEEE Intelligent Systems but has not yet been fully edited.
Some content may change prior to final publication.

Achim Rettinger is a project manager and assistant professor at the Institute of Applied Informatics and
Formal Description Methods (AIFB) at the Karlsruhe Institute of Technology (KIT, Germany). His research
interests and publications are in combining machine learning, knowledge discovery and human computer
systems with semantic technologies. Achim Rettinger did his PhD studies at the Technische Universtät
München (TUM, Germany) and at the Siemens AG in Munich, Germany. He studied and worked on research
projects at the University of Koblenz Landau (Germany), Osaka University (Japan), University of Bath (UK),
University of Alberta (Canada) and University of Georgia (USA).

Institute AIFB Building 11.40
KIT Campus Süd
D 76128 Karlsruhe, Germany

Tel.: +49 721 608 7363
Fax: +49 721 608 6580
Email: rettinger@kit.edu

Hendrik Wermser did his Bachelor's thesis at Technische Universität München (TUM) and at Siemens AG,
Munich, Germany and is currently pursuing his Master's degree at TUM. His research interests are in
information retrieval, recommender systems and machine learning.

Technical University of Munich
Theresienstr. 106
D 80333 München, Germany

Phone: +49 171 4255513
Fax: +49 5331 900989 199
Email: wermser@cs.tum.edu

Digital Object Indentifier 10.1109/MIS.2010.111 0885-9000/$26.00 2010 IEEE

This article has been accepted for publication in IEEE Intelligent Systems but has not yet been fully edited.
Some content may change prior to final publication.

