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Abstract

In 2011, an average of three million tweets per day was posted in Seoul. Hundreds of thousands of tweets carry the live opinion
of some tens of thousands of users about restaurants, bars, coffees and many other semi-public points of interest (POIs) in the city.
Trusting this collective opinion to be a solid base for novel commercial and social services, we conceived BOTTARI: an augmented
reality application that offers personalized and localized recommendation of POIs based on the temporally-weighted opinions of
the social media community.

In this paper, we present the design of BOTTARI, the potentialities of semantic technologies like inductive and deductive stream
reasoning and the lesson learnt in experimentally deploying BOTTARI in Insadong – a popular tourist area in Seoul – for which we
have been collecting tweets for three years to rate the few hundreds of restaurants in the district. The results of our study show to
demonstrate the feasibility of BOTTARI and encourage its commercial spreading.
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1. Introduction

Imagine you are a tourist in Seoul. You would like to dine
out. You prefer to avoid the tourist’s traps and dine where the
locals do. You have been told that Insadong district would be
the perfect place; it offers a choice of more than a hundred
restaurants in two square kilometres and most of the district
is reserved for pedestrians.

When you reach Insadong-gil (the main street of the dis-
trict), you find yourself surrounded by hundreds of restaurant
advertisements (see Figure 1). You know you can still open the
guide book and choose one of the few restaurants listed there,
but you definitely want a place where the locals go. You take
out your mobile and check various apps that recommend restau-
rants based on users’ reviews. The number of user rated restau-
rants is smaller than you expected: only ten restaurants where
rated more than ten times. This is probably because you are in
Seoul, one of the cities world wide where people tweets more1.
You wish a service exists that continuously analyses the social
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1An average of 3 million tweets were posted each day in Seoul in 2011

media streams and that can recommend you how the locals have
been rating Insadong’s restaurants for the last months.

This is exactly what we designed BOTTARI for. BOTTARI
is an augmented reality application for personalized and local-
ized restaurant recommendations, experimentally deployed in
the Insadong district of Seoul. At a first look, it may appear like
other mobile apps that recommend restaurants, but BOTTARI
is different: BOTTARI uses inductive and deductive stream rea-
soning [1] to continuously analyse social media streams (specif-
ically Twitter) to understand how the social media users collec-
tively perceive the points of interest (POIs) in a given area, e.g.,
Insadong’s restaurants.

In this paper, we describe the choices we made in design-
ing BOTTARI and the lessons we learned by experimentally
deploying it in Insadong. The paper is organized as follows.
Section 2 introduces relevant background. Section 3 illustrates
BOTTARI mobile app from the user’s point of view, i.e., the
main task being pursued. Section 4 allow to understand the
data used in experimentally deploying BOTTARI in Insadong
district. Section 5 briefly illustrates the ontology at the core
of BOTTARI that was used to integrate the available informa-
tion. Section 6 presents BOTTARI back-end. Sections 7 and
8 report our evaluation results both in terms of quality of rec-
ommendations and scalability of BOTTARI back-end. Finally,
Section 9 concludes the paper discussing the lessons we learnt
and sketches our future works.
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Figure 1: A picture of Insadong district: the density of restaurants is very high
(cf. also Section 4).

2. Background Work

In this section, we briefly illustrate the context in which
BOTTARI idea was conceived and the technological ingredi-
ents we used in implementing it.

2.1. How Tourists Locate Points of Interest in the 2010s

In the first half of the 2000s, the popularity of tourist guide
books faded out. The rise of Web 2.0 impacted the tourist mar-
ket: like virtual travel agencies replaced physical ones, so col-
laborative tourist guides such as TripAdvisor2, Yelp3 or Qype4

eroded the market of guide books. Today tourists commonly
refer to those web sites when planning a travel.

In the second half of the 2000s, the search engine industry
intercepted this trend by introducing local search: search facili-
ties to find POIs described on the Web while on the go [2, 3, 4].
In local searches, users’ preferred POIs are shown: those lo-
cated close to the user current position [5, 6, 7], those for which
ratings are available [8, 7] and those that match their prefer-
ences [9, 10]. Nowadays, a large number of tourists searches
the Web for POIs while on the go.

In the 2010s, the increasing availability of GPS-enabled
smart phones allowed the wide-spread of Location-based Ser-
vices (LBSs), i.e., mobile and Web applications that ask users to
check-in and, in response, provide context-dependent informa-
tion and services. Examples of LBSs are foursquare5, Gowalla6

and Facebook Places7. LBSs can almost listen to the pulse of
the city, therefore many tourists, when choosing which museum
to visit or where to dine out, look up the POIs with the highest
amount of check-ins on LBSs.

2Cf. http://www.tripadvisor.com/
3Cf. http://www.yelp.com/
4Cf. http://www.qype.com/
5Cf. http://foursquare.com/
6Cf. http://gowalla.com/
7Cf. http://www.facebook.com/about/location

2.2. Stream Reasoning

In 2008, Della Valle et al. in [11] called the Semantic Web
community for techniques able to reason upon rapidly chang-
ing information. When reasoning on massive data streams, such
as those characterizing BOTTARI, well known artificial intelli-
gence techniques have the right level of expressivity, but their
throughput is not high enough to keep pace with the stream
(e.g., belief revision [12]). The only technological solutions
with the right throughput are Data Stream Management Sys-
tems (DSMS) [13] and Complex Event Processing [14], but, on
the other hand, they are not expressive enough. A new type of
inference engines is thus needed to reason on streams. Della
Valle et al. named them stream reasoners.

In the following years, a number of stream reasoning ap-
proaches have been developed ([15, 16, 17, 18]). They share
three main concepts: a) they logically model the information
flow as an RDF stream, i.e. a sequence of RDF triples anno-
tated with one or more non-decreasing timestamps, b) they pro-
cess the RDF streams “on the fly”, often by re-writing queries
to the raw data streams, and c) they exploit the temporal order
of the streaming data to optimize the computation.

BOTTARI uses both a deductive and an inductive stream
reasoner. The deductive stream reasoner is based on Contin-
uous SPARQL (C-SPARQL) [15] – an extension of SPARQL
that continuously processes RDF streams observed through win-
dows (as done in DSMS). The syntax and semantics of C-SPARQL
were described in [19]. The C-SPARQL execution engine and
its optimization techniques were illustrated in [20]. The op-
timization needed for high-throughput RDFS++ reasoning are
described in [21]. The approach to publish RDF stream as
Linked Data (namely Streaming Linked Data) is based on [22].

The inductive stream reasoner is based on SUNS (Statis-
tical Unit Node Set) approach [23, 24] – a scalable machine
learning framework for predicting unknown but potentially true
statements by exploiting the regularities in structured data. SUNS
employs a modular regularized multivariate learning approach
able to deal with very high-dimensional data [25] and to inte-
grate temporal information using a Markov decomposition [26].

2.3. The LarKC platform

The Large Knowledge Collider (LarKC) is an EU FP7 Inte-
grated Project [27] that aimed at massive distributed incomplete
reasoning. The LarKC platform [28] is one of the main results
of the project. It is a pluggable Semantic Web framework that
can be deployed on a high-performance computing cluster. It
allows for orchestrating multiple heterogeneous units for data
processing and reasoning (named plug-ins), and for exposing
their aggregated capabilities as a SPARQL endpoint.

3. The BOTTARI Mobile App

As shown in Figure 2, BOTTARI is an Android application
(for smart phones and tablets) in augmented reality (AR) that
directs the users’ attention to restaurants and dining places in
the neighbourhood of their position.

2



Figure 2: Some screenshots of the BOTTARI Android application.

In Korean language, “bottari” is a cloth bundle that carries
a person’s belongings while travelling. BOTTARI carries the
collective perceptions of social media users about POIs in an
area and uses them to recommend POIs. As shown in the upper
left corner of the screenshot in Figure 2(a), BOTTARI users can
search POIs in their proximity using four buttons:

1. For me that emphasises the personalization of POI sug-
gestions as in local search studies like [9, 10];

2. Popular that emphasises the presence of positive ratings
of social media users as in local search studies like [8, 7];

3. Emerging that focuses on the most recent ratings posted
on social media that capture the seasonal effects (e.g., In-
sadong people seems to prefer meat restaurants in winter
rather than in summer) or the POIs “on fashion” only for
a limited period; and

4. Interesting that returns the POIs described with a cate-
gory of interest for the user.

By pointing the device to frame the surrounding environment,
the users see in AR the recommended POIs, as shown in Figure
2(a). In this view, the POIs are indicated with different icons
(e.g., restaurants with or snack bars with ) and their

reputation is indicated by thumb-up and thumb-down i-
cons, which means that the POI is collectively perceived posi-
tively or negatively.

Moreover, given the importance of the distance between the
user and the recommended POIs [5, 6, 7], BOTTARI offers a
functionality for distance-based filtering of the recommended
POIs; see the circles in the right-upper side of Figure 2(a).

The user can learn more about a POI by touching its icon.
As shown in Figure 2(b) and 2(c), BOTTARI can display the
POI’s details. Figure 2(d) shows a peculiar feature of BOT-
TARI: the trend over time of the POI reputation as collectively
perceived on social media.

A video displaying BOTTARI at work, on a mobile phone
and on a tablet, is available on YouTube at http://www.youtube.
com/watch?v=c1FmZUz5BOo.

4. Datasets Used in BOTTARI

BOTTARI is built on two types of data: the static descrip-
tions of the POIs and the social media streams.

4.1. Static Descriptions of the POIs
Insadong is a 2 km2 district with a high density of restau-

rants. For BOTTARI, the information about the 319 restaurant
of Insadong was collected with a considerable manual effort
from Yelp8, PoiFriend9, Yahoo! Local10, TrueLocal11, several

8Cf. http://www.yelp.com/
9Cf. http://www.poifriend.com/

10Cf. http://local.yahoo.com/
11Cf. http://www.truelocal.com.au/
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Figure 3: Dataset statistics: (a) positive ratings for POIs, (b) positive ratings by users and (c) tweet distribution over time.

Korean restaurant Web sites and a few Korean portals. The re-
sult is a manually curated high quality geo-referenced knowl-
edge base where each restaurant is described by 44 attributes
(e.g., name, images, position, address, ambiance, specialities,
categories, etc.).

4.2. Social Media Streams
The social media streams are gathered from the Web (in par-

ticular from Twitter) and converted into an RDF stream using
the proprietary crawling and sentiment mining infrastructure of
Saltlux. The data used for the experiments (cf. also Section 8)
were collected in 3 years, from February 4th, 2008 to Novem-
ber 23rd, 2010 (1,023 days). 200 million tweets were analysed
and, as a result, 109,390 tweets posted by more than 31,369
users were discovered to positively, neutrally or negatively talk
about 245 restaurants.

Tweet POI User Sparsity

Ratings Positive 19,045 213 12,863 99.30%

Negative 14,404 181 10,448 99.24%

Neutral 75,941 245 28,056 98.90%

Total 109,390 245 31,369 98.58%

Table 1: Statistics of the data set

Table 1 illustrates some statistics of the collected data set:

• high sparsity – defining sparsity as 1 − #Ratings
#POIs×#Users ,

for instance, the sparsity of the positive ratings is 99.3%;

• incompleteness – only 41% of users positively rated at
least one POI (see also Figure 3(a) and (b));

• inconsistencies – the same user can rate a particular POI
several times expressing different opinions;

• exponential growth of micro-posts in time – Figure 3(c)
shows the exponential growth in the usage of Twitter in
Korea starting from 200912; and

• long-tail distribution – Figures 3(a) and 3(b) show the
long-tail distribution of positive ratings over POIs and
users respectively.

12The peak in winter 2010 and the missing data in spring 2010 are due to
changes and improvements on the crawling algorithm.

4.3. Comparison with Traditional Channels
BOTTARI information is very rich if compared to what a

tourist can obtain from tourist guides and Web 2.0 sites.
Guide books in average list ten restaurants in Insadong and

they provide a professional review. For instance, the popular
RoughGuides series13, which has an edition dedicated to South
Korea, lists only 8 restaurants and one of them is even outside
the Insadong district. BOTTARI knowledge base contains all
of them; they are classical tourist places with a medium-low
number of positive ratings.

Web 2.0 sites in average list twenty restaurants reviewed by
3-4 users. For instance, TripAdvisor has information about 13
restaurants in Insadog district reviewed on average by 3 users
and maximum by 12 users. BOTTARI knowledge base contains
12 restaurant present in TripAdvisor; on average they have been
rated positively by tens of users, only one received a hundred
positive ratings.

5. Ontology Used in BOTTARI

We designed BOTTARI following an ontology-based infor-
mation access architecture [29]. BOTTARI ontology is repre-
sented in Figure 4. It extends the SIOC vocabulary [30] defin-
ing TwitterUser as a special case of UserAccont and the
concept of Tweet as being equivalent to Post. It models the
notion of POI as NamedPlace extending SpatialThing
from the W3C WGS-84 vocabulary14. A NamedPlace is en-
riched with a categorization (e.g., the ambience describing the
atmosphere of a restaurant) and the count of positive/negative/
neutral ratings. The most distinctive feature of BOTTARI on-
tology is the object property talksAbout – and its sub-prop-
erties for positive, negative and neutral opinions – that allows
to state that a Tweet (positively, negatively or neutrally) talks
about a NamedPlace.

6. Architecture and Components

BOTTARI architecture is illustrated in Figure 5. It consists
of three parts: a) a client (described in Section 3) that inter-
acts with the user and communicates to the back-end sending

13Cf. http://www.roughguides.com/
14Cf. http://www.w3.org/2003/01/geo/
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Figure 4: Ontology modelling of BOTTARI data.

SPARQL queries, b) a data initiated segment (PUSH) that con-
tinuously analyses the social media streams, and c) a query ini-
tiated segment (PULL) that uses the LarKC platform to answer
the SPARQL queries of the client by combining several forms
of reasoning.

Figure 5: Architecture of BOTTARI back-end. A data initiate (i.e., PUSH)
part of the system continuously analyse microposts, while BOTTARI client can
issue SPARQL queries to the query initiated (i.e., PULL) part of the system.
The plug-able Semantic Web platform LarKC couples the PULL part of the
system with the PUSH one.

6.1. The PUSH segment

The PUSH segment continuously analyses the social me-
dia streams crawled from the Web. The SEMANTIC MEDIA
CRAWLER AND OPINION MINER crawl 3.4 million tweets/day
related to Seoul, identifies the subset related to the Insadong
restaurants (thousands per day) and extracts the users’ opin-

ions15. The result is an RDF stream of positive, negative and
neutral ratings of the restaurants of Insadong. Listing 1 shows
a segment of this RDF stream: two tweets are represented by
four triples using the vocabulary of Section 5.

(<:Alice :posts _:t1 >, 2011-10-12T13:34:41)
(<_:t1 :talksPositivelyAbout :TheVolga >, 2011-10-12T13:34:41)
(<:Bob :posts _:t2 >, 2011-10-12T13:35:07)
(<_:t2 :talksNegativelyAbout :TheVolga >, 2011-10-12T13:35:07)

Listing 1: Social media RDF stream

The RDF stream flows at an average rate of a hundred tweets/-
day, peaking at tens of tweets/minute. The RDF stream is pro-
cessed in real-time by the STREAMING LINKED DATA SERVER
(SLD SERVER) by means of the network of C-SPARQL queries
illustrated in Figure 6.

Figure 6: The network of C-SPARQL that continuously analyses the RDF
stream produced by the SOCIAL MEDIA CRAWLER AND OPINION MINER and
keeps up to date the data used for the Emerging and Polular recommendations

In particular, the query COUNT +1 FOR POI IN [1 DAY]
counts the positive ratings for each POI in one day. The query

15The OPINION MINER is configured so to boost precision, which is 90%, at
the expense of recall.
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SUM +1 FOR POI IN [7 DAYS] aggregates the result of the
previous one over a week and, similarly, the query SUM +1 FOR
POI IN [4 WEEKS] computes this aggregation over a month.

The results of each query are published as linked data by the
WINDOWERs. These counts will be used in the PULL segment
to answer the SPARQL queries for the Emerging recommenda-
tions and to display the trend lines illustrated in Figure 2(d).

Moreover, the SUM +1 FOR POI IN [1 YEAR] query further
aggregates the results of the queries upstream over one year. Its
results, made available as linked data by another windower, are
used to compute the Popular recommendations in the PULL
segment.

The last component of the PUSH segment is BOTTARI in-
ductive stream reasoner SUNS. The RDF2MATRIX PLUG-IN
daily takes the results of the COUNT +1 FOR POI IN [1 DAY]
query and updates the inductive materialization used for the For
me recommendations.

6.2. The PULL segment
The PULL segment is based on the LarKC platform, which

acts as an ontology-based information-integration platform [29]:
BOTTARI ontology logically integrates the data models of the
different plug-ins involved in computing a given type of rec-
ommendations. Whenever a user presses one of the four rec-
ommendation buttons in BOTTARI interface, the client issues
a query using the BOTTARI ontology. When the QUERY RE-
WRITER receives the query, it decomposes it into a set of queries,
one for each plug-in. The plug-ins are executed in parallel.
Each plug-in receives its re-written query and sends its partial
results to the QUERY EVALUATOR. This plug-in joins the par-
tial results and returns the complete answer to the client, as if
the query had been evaluated on a single integrated knowledge
base. Caching of entire queries and intermediate results is ap-
plied in order to minimize query latency.

The plug-ins involved in computing BOTTARI recommen-
dations are three:

• Given a location, a spatial orientation and a POI category,
the SOR PLUG-IN returns a list of POIs ordered by dis-
tance from the location. It delegates the query execution
to SOR, the spatial-aware RDF store by Saltlux.

• Given a user, the SUNS PLUG-IN returns a list of POIs
ordered by the estimated probability that the user will like
them. It uses the inductive materialization maintained up-
to-date by the RDF2MATRIX PLUG-IN.

• Given a period (i.e., a day, a week, a month, or two years),
the SLD PLUG-IN returns a list of POIs ordered by the
number of tweets that talk positively about the POI in that
period. It uses the linked data published in SLD window-
ers (see Figure 6).

To better clarify how we configured the LarKC platform to eval-
uate the BOTTARI client requests, let us consider the query in
Listing 2 that represent a mix of the queries the client sends for
Interesting (lines 3-7), For me (lines 8-11) and Emerging (line
12) recommendations.

1. SELECT ?poi ?name ?lat ?long
2. WHERE {
3. ?poi a ns:NamedPlace ; ns:name ?name ;
4. geo:lat ?lat ; geo:long ?long ;
5. ns:category :InterestingForForeigners .
6. FILTER(:within_distance(37.5,126.9,?lat,?long,200))
7. FILTER(:dest_point_viewing(37.5,126.9,?lat,?long,90,200))
8. { :Alice sioc:creator_of ?tweet
9. ?tweet twd:talksAboutPositively ?poi .
10. WITH PROBABILITY ?prob
11. ENSURE PROBABILITY [0.5..1) }
12. ?poi twd:numberOfPositiveTweetsInTheMonth ?numPos .
13. }
14. ORDER BY DESC(?numPos * ?prob * distance(37.5,126.9,

?lat,?long,200))
15. LIMIT 10

Listing 2: Sample BOTTARI client query in SPARQL.

Lines 3-7 ask for POIs that may be of interest for foreigners
(line 5), located within 200 meters from the user position (line
6), when looking east (line 7). This is the portion of query
that the SOR PLUG-IN can evaluate. The QUERY REWRITER
knows this: when rewriting the query, it extracts lines 3-7 and
sends them to the SOR PLUG-IN. We do not show the rewritten
query, because it is simply a subset of the query in Listing 2.

Lines 8-11 add the additional constraint that the requesting
user has not yet talked positively about these POIs, but may
do it in future (i.e., it is probable that the user will like them).
Lines 10-11 makes use of SPARQL with probability [24]. The
triple pattern at lines 8-9 matches triples in the inductive mate-
rialization asserting that a user will likely positively talk about
a POI. The WITH PROBABILITY clause at line 10 extends
SPARQL with the probability values associated to each triple in
the inductive materialization. The variable ?prob may assume
values between 0 and 1, where 1 means that the user has al-
ready positively rated the POI. The ENSURE PROBABILITY
clause at line 11 accepts a pattern solution to lines 8-9 only if its
estimated probability is greater or equal to 0.5 but strictly less
than 1. The QUERY REWRITER extracts lines 8-11 from the
query in Listing 2 and rewrites them in a query for the SUNS
PLUG-IN, as illustrated in Listing 3.

1. CONSTRUCT {
2. :Alice twd:talksAboutPositively
3. [ ns:about ?poi ; ns:withProbability ?prob ] }
4. WHERE {
5. :Alice sioc:creator_of ?tweet
6. ?tweet twd:talksAboutPositively ?poi .
7. WITH PROBABILITY ?prob
8. ENSURE PROBABILITY [0.5..1) }
9. ORDER BY DESC(?prob)

Listing 3: The query in Listing 2 as rewritten for the SUNS PLUG-IN.

Notably, in Listing 3 the WHERE clause (lines 5-8) corresponds
to lines 8-11 in Listing 2. The peculiarity of the query in Listing
3 is the CONSTRUCT clause. It allows to embed the probability
values in the query results of the SUNS PLUG-IN without using
annotations or reification. An example of this query results is
illustrated in Listing 4.
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:Alice ns:talksAboutPositively
[ ns:about :TheBanqueting ; ns:withProbability "0.8" ] ,
[ ns:about :JoteunSeed ; ns:withProbability "0.6" ] .

Listing 4: Sample results to the query in Listing 3.

The query in Listing 2 also contains a triple pattern that the
QUERY REWRITER will use to prepare the rewritten query for
the SLD PLUG-IN. Line 12 adds the additional requirement that
a number of tweets in the last month must have talked positively
about the POIs.

The three plug-ins are executed in parallel and produce a
list of POIs each. The QUERY EVALUATOR takes care of com-
puting the global answer to the original query by evaluating the
query in Listing 5 on the combined results of the three rewrit-
ten queries. Notably, at lines 6-8, the QUERY EVALUATOR as-
sumes the existence of the triples generated by the SUNS PLUG-
IN with Listing 3.

1. SELECT ?poi ?name ?lat ?long
2. WHERE {
3. ?poi a ns:NamedPlace ; ns:name ?name ;
4. geo:lat ?lat ; geo:long ?long ; ns:distance ?distance .
5. :Alice twd:talksAboutPositively
6. [ ns:about ?poi ; ns:withProbability ?prob ]
7. ORDER BY DESC(?numPos * ?prob / distance(37.5,126.9,

?lat,?long,200))
8. LIMIT 10

Listing 5: The query in Listing 2 as rewritten for the QUERY EVALUATOR.

A final remark on lines 14-15 in Listing 2 (reported in List-
ing 5 as lines 7-8). Line 14 asks for the POIs to be ordered: the
first result must be the POI with the highest number of positive
tweets, with the highest estimated probability for the user to
talk positively about it and the closest one to the user position.
Finally, line 15 limits the returned results to the first 10. The
ORDER BY and LIMIT clauses qualify the query in Listing 2
as a top-k query. This type of queries is subject to optimiza-
tions [31] typically unavailable in SPARQL [32].

7. Evaluation

The quality and the efficacy of BOTTARI recommendations
was comparatively evaluated using the data set described in
Section 4.

7.1. Methodology

We decided to measure normalized discounted cumulative
gain (NDCG) and accuracy at top 10 (ACC@N) averaged among
all users. The For me, Popular and Interesting recommenda-
tions were compared with two baselines: random guess (Ran-
dom) and k-nearest neighbour (KNNItem)16. The combination

16Let P be the number of POIs and U be the number of users. For the base-
line KNNItem, we used the cosine as the similarity measure of POIs defined as
similarity(pi, pj) =

<pi,pj>

‖pi‖∗‖pj‖
, where pi and pj represent the vectors of

ratings of the i-th and the j-th POI given by all users for i, j ∈ {1, . . . , P},
and where <·, ·> is the scalar product of two vectors and ‖ · ‖ is the 2-norm of
a vector. We set k to the total number of the POIs.

of For me and Popular recommendations was also considered.
For all recommendations, the distance filter was not applied, be-
cause our data set does not contain the user position at twitting
time.

Two types of ground truths were prepared for the evalua-
tion. They correspond to two experimental settings:

• Setting 1: the standard method of splitting the data into a
training set and a test set was used. In this case, a ground
truth contains one positive rating for each user randomly
withheld from the data set. We repeated this data split
five times.

• Setting 2: specifically for the Emerging recommenda-
tions, which uses a time window, a set of ground truths
was created by withholding the newest rating for each
user. Different time frames were considered: 1 day, 2
days, 7 days, 30 days, 90 days and 180 days. Table 2
shows the number of ratings considered for the Emerging
recommendations.

Nr. of ratings %

Last day 188 0.17

Last 2 days 703 0.64

Last 7 days 5,057 4.62

Last 30 days 27,049 24.73

Last 90 days 65,600 70.01

Last 180 days 93,696 85.65

Total 109,389 100.00

Table 2: Number of ratings with different time frames

7.2. Results

Figure 7 shows the results we obtained in the two settings.
In Figure 7(a), the NDCG of the tested methods are plotted
against the number of latent variables (an input of the learn-
ing model). Since the two baselines (Random and KNNItem)
and the Popular recommendations are independent of this num-
ber, they produce three horizontal lines. We evaluated For me
recommendations produced bySUNS with 20, 50, 100, 150 and
200 latent variables. As expected, Random was the worst. The
Popular recommendations were slightly better than KNNItem.
This might be due to the “bandwagon effect” that exists in many
social communities. The For me recommendations significantly
outperformed all the others after the number of the latent vari-
ables reached 100. The best ranking ever was produced by
the combination of both For me and Popular recommendations.
These results confirm the idea presented in [1] that a combined
approach of deductive and inductive stream reasoning works
best.

Figure 7(b) shows the accuracy of the top N (ACC@N) rec-
ommended POIs for N = {5, 10, 15, 20, 25, 30}. The quality
of the For me recommendations was much higher than that of
all other methods and, once again, the combination of For me
and Popular recommendations is the best option overall.
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(a) (b)

(c) (d)

(e)

Figure 7: The figure shows the BOTTARI evaluation results. Sub-figures (a) and (b) respectively show the NDCG scores and the accuracy values at top N for all
types of recommendation (except Emerging) in Setting 1. The combination of For me and Popular recommendations produces the best ranking. Sub-figures (c)
and (d) focus on Setting 2, where a special emphasis is put on the dependency of Emerging recommendations on the window size (i.e., 1, 7, 30, 90 and 180 days).
The nDCG scores and the accuracy values at top 10 shows that the Emerging recommendations can be nearly as effective as the Popular recommendations, keeping
only a small fraction of the full history. Finally, sub-figure (e) shows the results of the scalability test on the PUSH segment of BOTTARI back-end, which is able
to handle up to 15,000 tweets/second.
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A key aspect of BOTTARI is the adoption of stream reason-
ing techniques that build on the hypothesis that a long enough
window can capture all the information needed for a given task,
while the rest can be forgotten. In Setting 2, we compared the
Emerging recommendations, which use a time window, against
the other approaches. We varied the size of the time window
from 1 day to 180 days. Figures 7(c) and (d) plot the NDCG
scores and the accuracy at top 10 (ACC@10) as a function of
the length of the window. The Emerging recommendations, the
only curve in the figure, catches the NDCG of Popular recom-
mendations (which consider years of data) when using the last
30 days of ratings, and was very close to the accuracy at top-10
of the Popular recommendations when using the last 90 days of
ratings.

This fact tells us that, in this setting, the Emerging recom-
mendations with a 90 days window are nearly as effective as
the Popular recommendations that keep the full history (i.e.,
two years of data).

8. Scalability

The SOCIAL MEDIA CRAWLER (cf. Figure 5) probes hun-
dreds of thousand tweets/day, but the RDF stream produced by
the OPINION MINER contains an average of 150 RDF triples/-
day (corresponding to 75 tweets). The large majority of the
crawled tweets are not related to Insadong’s restaurants. The
flow rate of this RDF stream does not stress the PUSH segment
of BOTTARI back-end that runs on a laptop with CPU 2.8 GHz
Intel Core i7 and 8 GB RAM DDR3, which corresponds to a
150 e/month share in a cloud environment17.

8.1. SUNS Scalability

On the deployment machine, the training of SUNS on the
whole dataset takes approximately 86 seconds with 200 latent
variables and the recommendation of POIs for a user costs on
average less than 5 milliseconds. Internal studies have con-
firmed that, by exploiting sparsity, SUNS computational require-
ments scales linearly with the number of known ratings. In ad-
dition, we observed that SUNS is very robust and insensitive to
the number of latent variables. This can be explained by the
fact that SUNS, in contrast to other matrix factorization meth-
ods such as Singular Value Decomposition (SVD), is regular-
ized. This property can simplify the use of SUNS, in particular
for people without machine learning expertise.

8.2. SLD Scalability

To evaluate the scalability of SLD SERVER, we adopted a
technique used in publish-subscribe systems [33]. We mea-
sured the input throughput, i.e. the ability to consume the stream
inputs, computed as:

input throughput =
size input

time to process the input

17The calculation of the cost per month was done using https://www.

gandi.net/hosting/vps.

We measure the input throughput by sending a recorded
portion of the RDF stream to the SLD SERVER and by mea-
suring the time required to process it. We used seven portions
of the recorded RDF stream of growing length: the shortest one
contains 50 tweets recorded between May 1st and May 2nd,
2010; the longest one contains 1,085 tweets recorded between
May 1st and June 3th, 2010. To improve the confidence, we
repeated each experiment for 500 times and we measured aver-
age, minimum and maximum time required to process the RDF
stream portion.

The results of these scalability tests on the deployment ma-
chine are illustrated in Figure 7(e). Initially, when the SLD
SERVER is able to keep the pace of the growing rate of tweet-
s/second in input, the input throughput increases with the num-
ber of tweets in the recorded segment. When the input through-
put reaches 15,000 tweets/second, the SLD SERVER saturates
the available computational resources and is no longer able to
handle the whole input. This is a common behaviour in DSMSs,
where this kind of tests allows to dimension the input queue to
handle pick rates exceeding this saturation point.

9. Conclusions and Future Work

BOTTARI is a sophisticated application of semantic tech-
nologies that makes use of the rich and collective knowledge
obtained by continuously analysing social media streams. We
believe it was important to hide this complexity from the user
using an intuitive and easy to use interface. The preliminary
experiments we conducted show that BOTTARI can be more
effective than guide books and Web 2.0 travel review sites.

Inspired by the literature on ontology-based information ac-
cess, we design BOTTARI ontology as driver of both data and
service integration. It allows for combining real data sources
at real scale, i.e. location-specific static information about hun-
dreds of POIs with the results of continuous analysis of dy-
namic social media streams. However, we believe that the BOT-
TARI ontology was also crucial in handling the heterogeneous
data models of the plug-ins. For instance, the inductive reasoner
annotates triples in the inductive materialization with their prob-
ability to be true, but the other plug-ins cannot understand these
annotations, unless they are transformed into commonly de-
scribed data (see Listings 3).

BOTTARI is engineered for scalability. Both SUNS and
SLD show a scalability that goes largely beyond the actual needs
of the BOTTARI deployment in Insadong. Training SUNS over
two years of data takes 1.5 minutes. SLD can handle a flow of
15,000 tweets/second when the actual rate is tens of tweets/day.
These results convinced Saltlux to start a large-scale deploy-
ment of BOTTARI in Korea.

Our future work will be devoted to extend BOTTARI func-
tionalities, to reduce its production costs and to further improve
the technological solution.

We intend to extend BOTTARI by identifying and recom-
mending the “mavens of a POI” (i.e., social media users that
post a large number of micro-posts related to that POI and are
known to influence the opinion of other social media users) as
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described in [34] and to cope with an evolving world (e.g., new
restaurants open, some restaurants close, etc.). We would like
to reduce the production costs of BOTTARI, in particular those
associated to the manual creation of the spatial-aware knowl-
edge base of the POIs. To this end, we look forward to inte-
grating BOTTARI with LOD sources. We are aware that pub-
lished data sets may not have sufficient quality, so a first step is
to consider the LOD data available for Insadong and to check
the differences on the metric results compared to the manually
curated KB used for BOTTARI. If this step turns out to be suc-
cessful, extending BOTTARI to bigger area, e.g., such as the
full Seoul, is the necessary step to assess the feasibility of com-
mercial spreading of BOTTARI.

Finally, we intend to improve BOTTARI back-end by study-
ing different strategies to deal with the inconsistent ratings and
opinion changes about a POI and by applying to SPARQL some
optimizations studied for top-k queries in relational databases.
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