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Abstract. The human brain can be considered to be a graphical structure com-
prising of tens of billions of biological neurons connected by synapses. It has
the remarkable ability to automatically re-route information flow through alter-
nate paths in case some neurons are damaged. Moreover, the brain is capable
of retaining information and applying it to similar but completely unseen sce-
narios. In this paper, we take inspiration from these attributes of the brain, to
develop a computational framework to find the optimal low cost path between
a source node and a destination node in a generalized graph. We show that our
framework is capable of handling unseen graphs at test time. Moreover, it can
find alternate optimal paths, when nodes are arbitrarily added or removed dur-
ing inference, while maintaining a fixed prediction time. Code is available here:
https://github.com/hangligit/pathfinding
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1 Introduction

We are inundated with graphical structures of various forms in this contemporary era
of digitization. This includes, for e.g., social networks [17] wherein the nodes represent
the individuals and the edges characterize the social connections between the individu-
als. Another popular form of network includes recommender systems [27] that can be
represented as bipartite graphs. The users/products represent the nodes, while the edges
depict the rating of likes/dislikes of a user for a certain product. Other graphs include
citation networks [24], molecular structures used in drug discovery [11] etc.

Although concurrent implementation of these graphical structures are computa-
tionally powerful in number-crunching, they lack the cognitive understanding to draw
meaningful conclusions that can readily be interpreted. On the other hand, one of the
most sophisticated and yet least understood graphical networks is the human brain [22].
Rather than consisting of computational nodes, it is comprised of tens of billions of
biological neurons both sending and receiving information to the neighbouring neurons
through the connecting synapses [2,3]. One amazing attribute of the human brain is its
ability to learn to automatically adapt and efficiently reroute information through alter-
nate neural paths, in case of certain damaged neurons [28]. Another important attribute
is the capability to interpret distinguishing patterns in data and retain this information
to be applied in similar circumstances in the future [16]. For e.g., a child touching a hot
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cup of coffee once or twice would feel a sensation of pain. The child’s brain will retain
this experience to avoid touching hot cups in the future even if the cups are of different
size/colour/shape etc. However, unlike computers whose computation power has been
exponentially rising over the past 4 decades, the capacity of the human brain to process
information is limited by biological constraints. Therefore, is it possible to combine
the benign attributes of the human brain with the processing power of computational
resources? In this work, we explore this possibility in the context of path optimization.

The ability to navigate through a network from a source to a destination node while
optimizing for the lowest cost is an important problem. It has a tremendous number of
diverse applications, for e.g., the ubiquitous vehicle/robot navigation. The cost could in-
volve minimizing either the distance travelled, time taken, or even the traffic congestion
encountered. Other less frequent, but critical, use cases are search and rescue operations
involving unmanned aerial vehicles. Here, minimizing the battery usage and the data
transmission are important factors to be optimized for. Traditionally, these problems can
either be solved heuristically using approaches such as A-star or by deploying "shortest
path" algorithms such as Depth First Search (DFS), Breadth-First Search (BFS), Djik-
stra, etc. These approaches tend to start with the source node and progressively traverse
the graph through the neighbouring nodes, then neighbours of the neighbours until the
destination node is found. Although accurate, their computational complexity rises with
the number of hops between the source and destination nodes. On the other hand, given
a visual map drawn to scale, humans are fairly good at quickly determining the approx-
imate optimal path[5], irrespective of the number of hops between the nodes. Is it also
possible to additionally emulate this one-shot prediction capability in a computational
setting? In this regard, we propose using Graphical Neural Networks (GNNs) to find
the path with the lowest cost. Our framework has the following attributes:

1. If a node(s) or edge(s) is arbitrarily removed from the graph structure, the optimal
path is automatically rerouted through the remaining nodes/edges to find the next
best solution.

2. The framework can generalize to find the optimal path even on unseen graphs.
3. The time taken to find the lowest cost path between the source and destination node

remains constant irrespective of the number of hops between them.

2 Related Work

Artificial Neural Networks, ANNs:
Over the last decade, the advent of data-driven, learning-based methods for training ar-
tificial neural networks has made tremendous strides in achieving unprecedented levels
of performance on various tasks such as natural language processing [23], computer
vision [15], medical diagnosis [21], etc. Such networks have the capability to extract
meaningful information from the training data and extrapolate this to completely un-
seen test data. In fact, they have achieved on par human performance [8] on tasks such
as classification, disease diagnosis, etc. We also deploy ANNs to achieve generalization
on unseen data (graphs).
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Graph Representation:
Among the various ANN paradigms, feed-forward architectures such as Convolutional
Neural Networks (CNNs), Multi-layer perceptrons etc. are ubiquitous. However, on
tasks such as path optimization, there is ambiguity on how the graph structure should
be represented when input through such architectures. One approach is to input the
graph as an adjacency matrix. [6] use the connectome [1] as input to a CNN to predict
autism in patients. The connectome is an adjacency matrix, encoding brain connectivity
as graphs between certain pre-selected regions in the brain. [14] used a pre-determined
number of regions in the connectome to train BrainNetCNN for predicting neurodevel-
opment. However, one major limitation of using adjacency matrices is that the number
of nodes forming the input to the network cannot change at inference time. Otherwise,
the network needs to be trained from scratch if the number of nodes is increased. Our
framework does not suffer from this limitation and the number of nodes forming the
input to the network can be changed without retraining the network. In fact, we show
in the experiments that our method is capable of automatically rerouting to an alternate
path, if some nodes/edges are removed at test time.

Reinforcement Learning (RL):
RL is an alternate strategy for determining the optimal path in a map/graph. Taking
inspiration from human psychology, a reward function is defined [18,19]. The agent ex-
plores the environment in a hit-and-trial manner incurring rewards along the way [25].
If the training parameters are carefully chosen, the agent converges to an optimal pol-
icy. [20] demonstrated path planning on small unseen maps. Instead of the adjacency
matrix, they directly used the map represented as a grid. While this can handle maps
with arbitrary structure and nodes, it is constrained to only planar graphs. In contrast,
our framework can additionally handle graphs with non-planar structure.

Shortest Path Algorithms:
Shortest path algorithms such as DFS, BFS, Djikstra & their modifications have been
used in a wide array of applications. These range from fast IP rerouting [4], to marine
navigation [7], software defined networking [13], maze solving [12] to even optimal
planning of sales persons [29]. The limitation of these methods is that the time to find
the optimal path is not constant. Rather it depends on the number of nodes & edges
in the graph. For dense graphs, the computational complexity can be of polynomial
order of the number of nodes. On the other hand, the computational complexity of
our method is constant. Irrespective of the number of hops between the source and
destination nodes, our framework takes the same time to find the optimal path.

3 Framework

The task tackled here is to find the lowest cost path between a source and a destination
node for an undirected graphical structure, G. The nodes are connected through edges
having arbitrary costs. The edge ei,j ∈ E connects node i (vi ∈ V ) to node j (vj ∈ V ).
Here V and E are the sets containing all nodes and edges respectively.
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In our framework, we use ANNs, as they are capable of learning patterns in the data
and robustly applying them to unseen data. However, in the context of optimal path
finding on graphs, we would like our framework to possess two additional properties:

1. It should be invariant to the permutations/ordering of the nodes.
2. Addition/removal of nodes should not render the training of the ANN useless.

Rather it should be capable of being trained & tested on any number of nodes.

Traditional feedforward networks such as MLPs do not possess these two important
attributes. They are susceptible to node ordering and cannot easily handle addition of
new nodes. Figure 1 depicts the implications on the adjacency matrix, when the node
order is changed and when a new node is added. In the node permutation case, the
adjacency matrix is completely different, despite the graphs being isomorphic. In the
scenario of node addition, the adjacency matrix is extended. To accommodate this ex-
tension, the architecture of the MLP would also need to be changed; thereby requiring
re-training.

Fig. 1: Shows the implications of permuting the node order and adding an additional
node on the adjacency matrix of a graph.

To circumvent these issues, we also use MLPs, but in the paradigm of a Graphical
Neural Network. Let the input features for a node i be represented by z(0)i . These in-
put features for each node are passed through a series of graphical layers to produce
latent embeddings (z(l)i , for node i at layer l). Figure 2 depicts a high level overview of
the constituents of layer l. For simplicity, we demonstrate the information flow for the
first graph shown in Figure 1. Note that the layer l takes the embeddings (z(l−1)) for
each node from the previous layer l−1 as input to produce corresponding embeddings
z(l) as output. The inputs are first passed through a neural network (M) comprised of
fully connected layer(s) followed by a non-linearity. An important characteristic of this
neural network is that the weights are shared between all nodes. Hence, nodes can con-
veniently be added or removed from a graph without re-training the network. This is
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because the added node can simply use the same weights as those of the other nodes.
The output of the neural network is then passed through an aggregation function. For
each node, the input to the aggregation function depends on which are its neighbours.
For e.g., the neighbours of v1 are v2 and v3. Hence, information from M(z(l−1)

2 ) and
M(z(l−1)

3 ) is aggregated to produce z(l)1 . The aggregation function is chosen so that its
output is invariant to the order of the input. Hence, even if the ordering of nodes in a
graph is changed, the output remains the same. Some examples of order invariant ag-
gregation functions include summation, mean, taking the maximum/minimum etc. for
each scalar value of the input vectors. Note that in the first layer, each node would incor-
porate information from its immediate neighbours, the next layer will implicitly draw
information from the neighbours of its neighbours. The deeper we go into the network,
each node will retrieve information from nodes farther away from it in the graph.

The output embedding of the last graph layer is then passed through to a classifier
which predicts whether or not the corresponding node falls within the optimal path.
Next, we describe the mathematical details of the graph layers, the input node features,
the loss function to train the weights and how the edge weights are incorporated into
the graph based upon a modification of [26].
The embedding z(l)i ∈ Rdl of a node i at the l-th layer is updated as:

z(l)i = D(σ(ẑ(l)i )). (1)

Here, σ is the non-linearity (we use LeakyReLU). D is the dropout layer. Note that ẑ is
obtained from the input node features of the previous layer, i.e., z(l−1)

i (∈ Rdl−1 ) in the
following manner:

ẑ(l)i = ∑
j∈N (i)∪{i}

αi j

(
W(l)z(l−1)

j

)
(2)

where W (l) ∈Rd(l)×d(l−1) are the trainable parameters of the neural network. Meanwhile,
N (i)∈V is the set of neighboring nodes of i across which aggregation is done through
summation. The scalar weights αi j incorporate the edge cost between nodes i and j by
way of this equation:

αi j =
exp(a>σ([W(l)zi||W(l)z j||Weei j]))

∑ j′∈N (i)∪{i} exp(a>σ(W(l)zi||W(l)z j′ ||Weei j′ )).
(3)

The edge weights ei j are first mapped to a d(l) dimensional hidden feature representation
hi j = Weei j where We ∈ Rd(l) . The || symbol represents a concatenation of vectors.
a ∈ R3d(l) and We are trainable parameters.

Note z(0)i ∈ R3 are the one-hot encoded input features representing whether a node
in the graph is either the source, the destination or otherwise.

The output from the final graph layer L is the node embedding z(L)i . In the final layer,
we also determine the edge embedding (ui j) for each edge . It is the element-wise sum
of embeddings of nodes that it connects to, i.e., ui j = z(L)i + z(L)j

These edge embeddings and final layer node embeddings are passed through their
respective MLP classification layers. It predicts the probabilities of them being in the
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Fig. 2: Gives the high-level overview of graphical layer l, for the first graph shown in
Figure 1. Node embeddings (z(l−1)) from the previous l−1 layer are taken as input to
produce node embeddings z(l) which can then be fed to the next l +1 layer to produce
embedding z(l+1) and so on.

optimal path. This probability for the node i and edge i j are respectively given by the
following equations:

p̂i = σ2(Wn
2(σ(Wn

1z(L)i +bn
1)+bn

2)) (4)

p̂i j = σ2(We
2(σ(We

1ui j +be
1)+be

2)). (5)

Wn
1,W

e
1(∈ Rm×d(L)), Wn

2,W
e
2(∈ R1×m), be

1, bn
1(∈ Rm), be

2, bn
2(∈ R) are also the traini-

able parameters of the model. m is a hyper-parameter. σ2 is the sigmoid non-linearity.
One may ask why we need separate weights for the node & edge classifications. Or
even why is the edge classification needed at all? This is because two nodes being in
the optimal path does not imply that the edge connecting them will necessarily be in
the optimal path. Figure 4 describes a simple example demonstrating the importance of
additionally predicting the probability of the edge being in the optimal path. Although,
nodes 3 & 4 are in the optimal path, but the edge connecting them (cost=8) is not. We
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also empirically found that predicting the probability for both edges & nodes is better
than predicting for only the nodes or only the edges.

The loss function is the binary cross entropy between the predicted probability and
the ground truth over all training samples

min
W,b,a

EG,y∼Data− [y log p̂+(1− y) log(1− p̂)].

The ground truth can be obtained directly while constructing a random graph structure
of larger cost around the optimal path. Or using shortest-path algorithms on known
graphs.

4 Experiments

Our model is trained with a learning rate of 1e-4 with the Adam optimizer used for
updating the weights. The data comprises of a total 10000 different arbitrarily cre-
ated graphical structures with up to 30 nodes. The training, validation and test split is
[0.7:0.15:0.15]. The test set is comprised of graphs with an arbitrary number of nodes.
This serves to analyze if the model can handle different number of nodes in the infer-
ence graph. The test set also contains graph samples wherein some nodes/edges have
been arbitrarily removed. This is to see if the model can determine alternate paths in
case of such removal. Also, note that each of the 10000 structures is comprised of 10
different edge weight combinations for a total of 100000 samples. The ground truth
labels for the loss function are obtained using [9].

Evaluation Metric:
The metric we use for quantitative evaluation is the Path Accuracy. It is the ratio of the
number of graph samples in the unseen test set, wherein the class of every node/edge
in the graph is correctly predicted. Hence, not only every node/edge in the optimal
path must be classified as such but the nodes/edges not in the optimal path should also
be correctly classified as not belonging to the optimal trajectory. Table 1 reports the
Path Accuracy metric on both the training and unseen test set for our method and its
variations. This is further elaborated in the next Section 5.

Ours
Fixed

Structure
Fixed
Nodes

Nodes
Only

Edge
Only

Training
Data 98.01 99.26 99.41 97.75 97.43
Test

Data (Unseen) 98.02 68.41 72.18 97.62 97.41

Table 1: Reports the Path Accuracy metric for our method and its variations for both the
training and test set. (Higher is better)

5 Discussion

We now give a more detailed analysis of the results from our experimental evaluation.
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Unseen test data:
From Table 1 it can be seen that our model is capable of maintaining good Path Accu-
racy performance even on unseen test data. Note that the test data comprises of graph
samples with an arbitrary number of nodes between 3 and 50. In addition, it also con-
tains graph samples wherein the edges/nodes are arbitrarily removed. Our model is ca-
pable of robustly handling both scenarios. Figure 3 shows a plot of the accuracy as the
number of nodes is changed. Note that as the number of nodes in the graph is changed,
the accuracy as depicted by the green curve remains fairly consistent. This is because
our model is trained to handle such instance with variable number of nodes in the graph.

Fig. 3: The left plot shows that, as the number of nodes is changed, the path accuracy
metric of our model (in green) remains constant. It is interesting to note that even though
the model was trained with up to a maximum of 30 nodes, it still maintains good per-
formance beyond this number. The red curve on the plot shows the performance for a
model trained with a fixed number of nodes. Its performance deteriorates when evalu-
ated on a smaller number of nodes.

Meanwhile, Figure 4 demonstrates a simple example of finding an optimal alternate
path in the case of a removed edge. Note that initially in the original graph, the optimal
path between nodes 2 and 4 is the direct edge connecting the two nodes having a cost
of 1. However, when this removed is removed the alternate lowest cost path between
the nodes is 2-0-1-3-5-4. This alternate has a cost of 7 which is the lowest in the graph
after the edge removal.
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Fig. 4: The Figure shows that if the shortest path between nodes 2-4 is removed, the
network is capable of automatically finding the alternate shortest path through nodes 2-
0-1-3-5-4. The cost via this alternate path is the lowest in the modified graph resulting
from the edge removal

Fixed structure, fixed number of nodes:
Note that in our framework not only the number of nodes can change, but also the
structure of the graph constituted by the same nodes can vary. To demonstrate this, we
train another model wherein both the structure and the number of nodes (30) are kept
constant. Only the edge weights are changed. Consider the 2nd column of Table 1 for
the results. While the model performs well on the training samples containing graphs of
the same structure & nodes, its performance on the unseen test data drops dramatically.
This is because when training the model, it is not accustomed to handling variable nodes
& structures of the test data.
Variable structure, fixed number of nodes:
To compensate for this, we train another model, with the same number of nodes, but
for which the structure of the graph can change. Note that the performance of this
model is good even when the structure is changed at test time. This is because the
training incorporated changing structure into the model. However, because the number
of nodes is fixed, its performance drastically starts to drops when additonal nodes are
added/removed to the graph as can be seen in the red curve in Figure 3. In contrast our
approach can not only accomdate addition of new nodes but also changing structure of
the graph while maintaining a stable performance.
Comparision with BrainNetCNN approach:
Note that the BrainNetCNN approach uses adjacency matrices, which requires filter
sizes in the CNN to be fixed. Hence, graphs with an arbitrary number of nodes cannot
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readily be handled. The original BrainNetCNN was meant for classifying neurodevelop-
ment in patients. Therefore, we slightly modify the deeper layers to classify nodes/edges
in the optimal path instead. To further elaborate this, Figure 5 shows a 3x3 grid struc-
ture depicting the accuracy distribution for 3 different models evaluated on 3 different
datasets. Each column in the grid represents a different dataset and is described as fol-
lows:

1. Variable Weights: All graphs in this dataset have the same structure but have differ-
ent edge weights

2. Node Permutations: All graphs in this dataset have the same structure but have the
nodes permuted and also different edge weights.

3. Variable Structures: The graphs in this dataset can have not have different structure,
different edge weights. However, the number of nodes still remain the same.

Each row represent a different model, training of which is described as follows:

1. Variable Weights: This model was trained with graphs with on graphs having same
structure but different edge weights. This model has good performance on the Vari-
able Weights dataset but performs poorly when evaluated on the datasets wherein
the nodes are permuted or where the structure is different. This is understandable
because this model is not accustomed handling such graphs during training.

2. Node Permutations: This model was trained on graphs having the same structure
but with the nodes permuted and also different edge weights. Here this model per-
forms well on both the Variable Weights and Node Permutations dataset. However,
the performance of this model drops when evaluated on graphs with variable struc-
tures.

3. Variable Structures: This model was trained on graphs having different structures
and has a good, stable performance across all the 3 datasets.

However, note that all these models could only be trained and evaluated on graphs
with the same number of nodes. Our framework on the other hand does not suffer from
this problem and can additionally be trained and evaluated on grpahs with a variable
number of nodes as already depicted in Figure 4.
Relative Prediction time:
Figure 6 reports the relative time to find the optimal path as the number of hops be-
tween the source and destination nodes is increased. It is normalized by the time taken
to find the optimal path between nodes one hop away. As can be seen, this number re-
mains stable for our approach. Hence, irrespective of the number of hops we have in
the graph, the prediction time remains the same. This is because a forward pass of our
model always involves the same number of graph conventional layers. Compare this
with Djikstra’s algorithm wherein the relative time increases with the number of hops.
Loss functions:
In addition to classifying the nodes in the optimal path, our loss function also incorpo-
rates classifying the edges connecting the nodes in the path. The last 2 columns in Table
1 shows the implications of training with the binary cross entropy function only for the
nodes and only for the edges. As can be seen, the performance of our model, which
combines both loss functions, is superior to the models trained with only the individual
loss functions.
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Fig. 5: The first row shows the test performance of a BrainNetCNN trained with fixed
structue and fixed number of nodes. Each coloumn from left to right denotes graphs
with fixed structure, node permutations, and variable structures. The second row shows
model trained with node permutations. The model trained with different structures (the
third row) generalizes well across all the 3 datasets. It is important to mention that all
datasets contained a fixed number of nodes and all models were also trained with a fixed
number of nodes.

Evaluation on a real world dataset:
We also evaluated our approach of optimal path finding on maps of the real-world
KITTI [10] dataset and found that it achieved a perfect score on the Path Accuracy met-
ric. One plausible explanation for this is that the maps of the road structure in KITTI are
on a plane. Our model, in contrast, was trained with non-planar graphs which tend to
be more challenging to handle and hence do not achieve a perfect score when evaluated
on a test set comprising non-planar graphs.
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Fig. 6: The plot shows the relative prediction time as a function of the number of hops
between the source and destination nodes.

6 Conclusion

In this paper we demonstrated how our biologically inspired computational framework
is capable of optimal path finding. It mimics the behaviour of the brain to find alter-
nate shortest paths on unseen data even when nodes/edges are removed. This is unlike
adjacency-matrix based conventional feedforward approaches which cannot be trained
with varying numbers of nodes. As we developed our framework for generalized graph
structures, it can be extended to various applications.
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