
Discovery of New Multi-Level Features for Domain
Generalization via Knowledge Corruption

Ahmed Frikha
Siemens Technology

University of Munich (LMU)
ahmed.frikha@siemens.com

Denis Krompaß
Siemens Technology

denis.krompass@siemens.com

Volker Tresp
Siemens Technology

University of Munich (LMU)
volker.tresp@siemens.com

Abstract—Machine learning models that can generalize to
unseen domains are essential when applied in real-world scenar-
ios involving strong domain shifts. We address the challenging
domain generalization (DG) problem, where a model trained
on a set of source domains is expected to generalize well in
unseen domains without any exposure to their data. The main
challenge of DG is that the features learned from the source
domains are not necessarily present in the unseen target domains,
leading to performance deterioration. We assume that learning
a richer set of features is crucial to improve the transfer to
a wider set of unknown domains. For this reason, we propose
COLUMBUS, a method that enforces new feature discovery via
a targeted corruption of the most relevant input and multi-
level representations of the data. We conduct an extensive
empirical evaluation to demonstrate the effectiveness of the
proposed approach which achieves new state-of-the-art results
by outperforming 18 DG algorithms on multiple DG benchmark
datasets in the DOMAINBED framework.

I. INTRODUCTION

Deep learning models have achieved tremendous success
when applied to independent and identically distributed (i.i.d.)
data. However, in real-world applications, distribution shifts
between training and test data are commonly encountered.
For instance, data distributions might differ from one hospital
to another [1], and from one production plant to another.
Similarly, the models in self-driving cars are exposed to
different urban and rural environments in different countries
with changing weather conditions [2] and object poses [3].

Approaches to make machine learning models resilient
to such data distribution changes were studied for different
domain shift settings. For example, several domain adaptation
methods were developed to address the case where, besides
the data from the source domain(s), a set of labeled [5] or
unlabeled [6] data is available from a specific target domain.
However, in real-world scenarios, collecting data from the tar-
get domain(s) is often slow, e.g., a new hospital or production
site, expensive, or even infeasible, e.g., collecting images from
every street of every country in the context of self-driving cars.
Sometimes, the target domains cannot be known beforehand.

The Domain Generalization (DG) problem [7], [8] was
introduced to address such cases. Specifically, a model trained
on multiple source domains is expected to directly perform
well in unseen target domains without requiring any exposure
to its data. This problem setting can be interpreted as multi-
source 0-shot domain adaptation.

Fig. 1. Relevance maps computed with GuidedGrad-CAM [4] for ERM and
COLUMBUS using images from the target domains, PACS Sketch, VLCS
VOC and OfficeHome Clipart. COLUMBUS recognizes more features than
ERM, including horse back and muzzle, dog legs and tail, and phone shape.

Training a model to generalize across several related but
unseen data distributions remains arguably one of the most
challenging open problems in machine learning. In the last
decade, a plethora of widely different methods were developed
to address the DG problem. We refer to [9] for an extensive
overview of DG algorithms. Despite these efforts, [10] found
that carefully tuning the baseline, which simply applies Em-
pirical Risk Minimization (ERM) on the data of the source
domains, achieves a high performance that is competitive with
state-of-the-art methods.

One major challenge of DG is that the model can only
observe and learn features from the source domains, which
may not be present in the unseen target domains, limiting gen-
eralization. We presume that learning a wider set of different
features would increase the chance of learning features that are
useful for a larger set of unseen domains. Hence, we introduce

ar
X

iv
:2

10
9.

04
32

0v
3 

 [
cs

.L
G

] 
 3

 O
ct

 2
02

2



COLUMBUS, a training procedure for automated new feature
discovery, which leads to a better feature recognition in unseen
domains (Figure 1). During training on the source domains,
COLUMBUS incentivizes the model to discover new features,
even in data examples on which it already performs well. To
achieve this, COLUMBUS prevents the model from using the
features it deems most relevant for the source domains by
corrupting them during training. To identify the most relevant
features for a model, we leverage attribution methods [11]
usually used for model explainability purposes.

We evaluate our approach on the recently proposed DO-
MAINBED framework [10] which includes several DG datasets
and algorithm implementations to promote a fair and re-
producible comparison of different approaches. Our method
outperforms 18 DG algorithms evaluated on 3 datasets in the
DOMAINBED framework, achieving new state-of-the-art re-
sults using 2 different model selection methods. Furthermore,
our method achieves the highest performance when evaluated
on unseen data from the source domains used for training (in-
domain generalization), which confirms its effectiveness and
ability to learn new features useful for unseen data.

II. RELATED WORK

A. Domain Generalization

This section presents an overview of domain generalization
(DG) approaches. Methods to which we compare in our
experiments (Section IV) are highlighted in bold. We refer
to [9] for an extensive overview of DG algorithms. The
simplest approach to DG is to train one model via Empirical
Risk Minimization (ERM) [12] on the training datasets of
all source domains. GroupDRO [13] additionally increases
the importance of source domains where the model yields a
lower performance. In the following, we broadly categorize
DG approaches into three categories.

Domain alignment methods aim to learn domain-invariant
representations of the data by aligning features across the
source domains. The reduction of the representation distribu-
tion mismatch across source domains can be achieved by mini-
mizing the maximum mean discrepancy criteria [14] combined
with an adversarial autoencoder (MMD) [15], minimizing
the difference between the means [16] or covariance matri-
ces (CORAL) [17] in the embedding space across different
domains, or minimizing a contrastive loss [18]–[20], e.g.,
SelfReg [21]. Domain alignment is also performed by aligning
the loss gradients across source domains via inner product
maximization (Fish) [22], or binary (AND-mask) [23], [24]
or continuous gradient masking (SAND-mask) [24].

Another line of works optimizes for features that confuse
a domain discriminator model [25]–[28], and includes DANN
[29] and its class-conditional extension C-DANN [30]. Other
works additionally involve the classifier in the representation
alignment, either by optimizing for an embedding space such
that the optimal linear classifier on top of it is the same across
different domains (IRM) [31], or by passing a domain-specific
mean embedding to the classifier as a second argument (MTL)
[32]. VREx [33] is an approximation of IRM via a variance

penalty and ARM [34] is an extension of MTL that employs
a separate embedding CNN.

Meta-learning techniques were applied to DG by training
a model in a bi-level optimization scheme on meta-train and
meta-test sets sampled from the source domains. Hereby,
MLDG [35] optimizes for parameters that can be quickly
adapted to different domains, MASF [1] adds inter-class and
intra-class losses to regularize the embedding space, and
MetaReg meta-learns a regularizer for the output layer [36].

Data augmentation approaches were proposed to tackle
DG and our method falls into this category. Some works use
Mixup [37] to compute inter-domain examples to augment the
training set [38]–[40]. SagNets [41] reduce the domain gap by
randomizing the style of images while keeping their content.
Another line of works generate images by using adversarial
attacks [42] to perturb input images based on a class classifier
[43]–[45] or a domain classifier [46], by training CNNs to
generate images within the source domains [47]–[49] or novel
domains [50]–[52]. Other works apply such perturbations on
a feature level [53], [54].

Our approach corrupts the raw input data as well as the
multi-level representations that the model learns in order to
enforce new feature discovery. Instead of using visually unde-
tectable adversarial attacks or highly parametrized generative
models, we employ attribution methods, e.g., Guided-Grad-
CAM [4], to identify and corrupt the most relevant features.
Our approach shares similarities with RSC [53] which discards
the most dominant features fed to the output layer to promote
the activation of the remaining features. The key difference of
our approach is that we corrupt features not only in the last
high-level representation space, i.e., the input to the output
layer, but also in the raw input space and other low-level
representation spaces. We argue that by discarding the features
only in the representation space (e.g., elephant trunk detector),
as done in RSC, the same silenced feature detectors can be
relearned as long as the model is exposed to the corresponding
features in the input space (e.g., the pixels of the elephant
trunk). We hypothesize that corrupting the features in the input
space is crucial to enforce the discovery of new features. Our
empirical results show that our method outperforms RSC by
a significant margin (Section IV) on unseen data from source
and target domains, hence confirming our hypothesis.

B. Relevance Attribution

In an attempt to explain and interpret the predictions of
deep learning models, several attribution methods that assign
relevance scores to input features have been developed [4],
[55], [56]. In Saliency Maps [55] the relevance scores are
given by the gradient of the output neuron corresponding to the
ground truth w.r.t. the input. Better attributions were achieved
by averaging these gradients over local neighborhood patches
in SmoothGrad [57] and over brightness level interpolations
in IntegratedGradients [58]. Another category of approaches
modifies the backpropagation procedure by considering only
positive gradients [59] or to satisfy the relevance conservation
property through the layers [60], [61]. Class Activation Maps



(CAM) [62] leverages the activations in the last convolutional
layer to produce a heatmap highlighting the relevance of
each feature in the raw input. Gradient-weighted CAM (Grad-
CAM) [4] generalizes CAM to a variety of CNNs by using
the gradient information flowing into the last convolutional
layer. This method can be combined with GuidedBP [59]
to yield GuidedGrad-CAM [4]. IBA [56] approximates at-
tribution scores by restricting the information flow via noise
injection to intermediate feature maps during the forward pass.

While prior works used attribution methods to explain and
interpret model predictions, we leverage them for training
purposes. To the best of our knowledge, we are the first to
incorporate attribution methods combined with data corruption
into training to improve the model’s generalization ability. For
a broader overview of attribution methods, we refer to [11].

III. METHOD

The proposed method improves the knowledge transfer to
unknown data distributions by training a model to learn a rich
set of features on several representation levels of the data via
an automated new feature discovery.

Let Fs and Ft denote the sets of features learnable for the
addressed classification task, which are present in the data of
the source domains and in the target domain, respectively, and
G their intersection. In the optimal case, the set of features
L learned by the model on the source domains encompasses
G fully. Since Ft is unknown at training time, our method
maximizes the size of L by training the model to learn as
many features as possible, resulting in a higher chance to
capture features from G via the higher intersection between
L and G. To achieve this, we propose COLUMBUS, a train-
ing procedure that enables automated new feature discovery.
COLUMBUS prevents the model from using (a part of)
the most relevant features for its current predictions during
training. This is done in 3 major steps: identification of the
most relevant features, their corruption, and training with the
corrupted data representations. Figure 2 presents an overview
of our approach. We apply this technique on several levels of
representations of the data ranging from the raw input, e.g.,
pixels of the elephant trunk, to the high-level features fed to
the output layers, e.g., elephant-trunk-detector, including the
representations yielded by intermediate layers, hence fostering
multi-level new feature discovery.

A. Identification

In each training iteration, we sample a method from a set
of attribution methods A, and use it to compute an attribu-
tion map M that identifies the most relevant features. Any
attribution method can be included in the set A. In this work,
we use Saliency Maps [55] and GuidedGrad-CAM [4], since
they are simple, fast, and model-architecture-agnostic. Other
methods require modifications to support skip connections and
batch normalization layers [60] or involve training additional
parameters after each update [56]. Moreover, GuidedGrad-
CAM was found to be competitive with the state-of-the-art
attribution methods in the image degradation evaluation [56].

Fig. 2. Overview of the proposed COLUMBUS method. In the identification
stage, the most class-discriminative features according to the current model
are identified via a relevance attribution method, which in this case is applied
to the raw input representation. In the corruption stage, the identified features,
e.g., elephant trunk and back, are perturbed by using a corruption method, in
this case a replacement by a random pixel. Finally, the model is trained with
the batch of corrupted data, promoting the discovery of new features, e.g.,
elephant feet and toes. The image used belongs to the PACS Sketch domain.

While Saliency Maps and GuidedGrad-CAM were devel-
oped to assign relevance scores to features in the input
space, we extend their usage to identify relevant features in
representations extracted by intermediate layers. Let y and
ŷ denote the ground truth and the model prediction for a
datapoint X. The attribution map Ml yielded by Saliency Maps
for a representation Rl yielded by layer l is given by

Ml,Saliency =
∂(ŷ� y)
∂Rl

. (1)

Note that the original Saliency Maps method [55] corresponds
to the case where l = 0, i.e., R0 is the raw input representation.

The class-discriminative relevance map Ml yielded by Grad-
CAM [4] for a layer l is given by a sum over the channels of
the representation Rl weighted by importance factors αc for
each channel c, resulting in

Ml,GradCAM = ReLU(
∑
c

αcR
c
l ). (2)

Hereby, the importance factors are given by the gradient of the
model prediction for the correct class w.r.t. the global-average-
pooled representation Rl. Formally,

αc =
1

Z

∑
i

∑
j

∂(ŷ� y)
∂Rc,i,jl

. (3)

Grad-CAM is applied to the representation yielded by the last
convolutional layer to obtain a relevance map M which is
upsampled to the input size [4]. For intermediate representa-
tion Rl, we use the corresponding relevance map Ml (Eq.
2). We use GuidedGrad-CAM [4] which yields more fine-
grained maps than Grad-CAM by multiplying Ml,GradCAM

with the relevance maps determined by Guided Backpropaga-
tion (Guided BP) [59], for the same representation Rl. Guided
BP modifies Saliency Maps by removing negative gradients
when backpropagating through ReLU layers.



B. Corruption

In each training iteration, we sample a method from the set
of corruption methods C and use it to corrupt the identified
features based on the relevance attribution map M . Any tech-
nique that perturbs the information contained in the identified
features can be used. We use different corruption methods
depending on the sampled representation level l.

To corrupt the raw input (l = 0), the most relevant input
features according to the attribution map M0, e.g., the pixels
corresponding to an elephant trunk, are perturbed using a
corruption method. Hereby, we perturb the identified pixel
values by setting them to a random value, to zero, i.e., black
pixels, by applying the Fast Gradient Sign Method (FGSM)
[42], or by applying Gaussian blurring. For an intermediate
representation level l > 0, first the original input is fed
through the model up to the corresponding layer l to yield the
representation Rl. The latter is then corrupted based on the
relevance attribution map Ml resulting from the identification
stage and finally fed to the next layer. To corrupt intermediate
embeddings, we drop the most relevant features, i.e., set their
values to zero. This can be viewed as a targeted Dropout [63].

C. Training

The COLUMBUS training procedure is described by Algo-
rithm 1. In each training iteration, a data batch B, a representa-
tion level l, an attribution method, and a corruption method are
sampled. Subsequently, the aforementioned identification and
corruption steps are performed. The model is trained on the
corrupted data (representations). Hereby, the p% most relevant
features are corrupted. To enable the model to learn some
features at the beginning of training, p is set to 0, i.e., no
corruption is applied. As training progresses, more features are
corrupted in the data, forcing the model to discover and learn
new features. Concretely, p is linearly increased throughout
the training to reach pmax, a hyperparameter. Note that the
resulting gradual learning of new features, independently from
each other, promotes also feature disentanglement, which was
found to be beneficial for visual reasoning [64]. We use
different identification and corruption methods to increase the
diversity of the corrupted datapoints used to train the model
and prevent overfitting. We also found that sampling multiple
methods leads to better empirical results. It should also be
noted that COLUMBUS is adaptive to the model’s learning,
since the identification step is model-state-specific. In other
words, if the model forgets a set of features during training,
these will not be identified (again), and hence will not be
corrupted (again), which enables the model to relearn them.

The model parameters θ are updated by minimizing a loss
function f using a gradient-based optimization algorithm,
e.g., Adam [65]. In algorithm 1, SGD is used for simplicity
of notation. The loss function f used is a weighted sum
comprising a classification loss Lcls and a domain-alignment
regularization loss term LDA. Formally,

f = Lcls + λ

Ns∑
i=1

Ns∑
j=i+1

LDA(i, j), (4)

where λ is a weighting factor and Ns the number of source
domains. We use cross-entropy as classification loss Lcls. LDA
regularizes the embedding space by minimizing the l2-norm
between the domain-specific embedding means and covariance
matrices for each pair of source domains i and j, as in DDC
[16] and CORAL [17] respectively. The normalization of the
regularization loss by the number of source domain pairs is
omitted for simplicity of notation. We note that, unlike prior
works [10], [16], [17] that apply this loss on the represen-
tations of the original images, we use corrupted images and
representations. This leads to an alignment in the embedding
space not only across the domains, but also between class-
specific features, e.g., by minimizing the difference between
the embedding distribution of cartoon images of elephant feet
and art painting images of elephant trunks.

Algorithm 1 The COLUMBUS training procedure
Require: Ds: Training data of all source domains
Require: f : Loss function
Require: α: Learning rate
Require: L: Set of representation levels including the raw

input level
Require: A: Set of relevance attribution methods
Require: C: Set of corruption methods
Require: pmax: Max. % of representation to be corrupted

1: Initialize the model parameters θ randomly or from a pre-
trained model

2: Initialize the % of representation to be corrupted p = 0
3: while not done do
4: Sample a data batch B = {X, y} from Ds

5: Sample level of representation l from L
6: Feed B through the model parametrized by θ
7: Get the relevance attribution map Ml by applying a

relevance attribution method randomly sampled from
A on level l using the current model parameters θ

8: if l = 0 then
9: Corrupt the values in B corresponding to the p%

highest values in M0 by applying a corruption
method randomly sampled from C, yielding the
corrupted input Bc

10: Feed Bc through the model to obtain the predictions
ŷ

11: else
12: Feed B through the model until level l to obtain the

representation Rl
13: Corrupt the values in Rl corresponding to the p%

highest values in Ml, yielding the corrupted repre-
sentation Rl,c

14: Feed Rl,c through the model starting from level l+1
to obtain the predictions ŷ

15: end if
16: Update θ: θ ← θ − α∇θf(y, ŷ)
17: Increase p linearly towards pmax
18: end while
19: return Learned model parameters θ



In our experiments, we corrupt q% of the sampled data batch
in each iteration, and increase q linearly during the training
until qmax is reached, as done for the representation percentage
to be corrupted p. This is omitted in Algorithm 1 for simplicity
of notation. During training, we alternate between sampling an
intermediate representation and the raw input for corruption.
The intermediate representations correspond to the outputs of
each ResNet block in the used ResNet-50 model [66]. At test
time, the model trained with COLUMBUS is applied to the
data from the target domains without any corruption.

IV. EXPERIMENTS

A. Experimental Setup

We evaluate our approach empirically* on the recently pro-
posed DOMAINBED framework [10] which includes several
DG datasets, implementations of DG algorithms, and model
selection methods. DOMAINBED promotes a fair and repro-
ducible comparison of the different approaches by including
a common automated hyperparameter search, i.e., a random
search with the given seeds conducts the same experiments for
all methods. For a fair comparison with the 18 DG algorithms,
our experiments follow the same experimental setting adopted
in DOMAINBED [10]: We use a ResNet-50 model [66] pre-
trained on ImageNet [67] with frozen batch normalization [68]
statistics as suggested in [69], the same optimization algo-
rithm, data augmentation techniques and number of training
iterations used in DOMAINBED. The COLUMBUS-specific
hyperparameters pmax, qmax and λ are included in the hyper-
parameter search of DOMAINBED, and the intervals used can
be found in the Appendix. We noticed that the published code
[10] with the provided seeds does not enable the reproduction
of the published results, since the resulting points in the
hyperparameter search space are different from the ones used
for the published results. Therefore, for a fairer comparison,
we additionally rerun the experiments of the best performing
DG method in DOMAINBED, i.e., CORAL, with the published
code and seeds that we used for COLUMBUS.

We conduct experiments on 3 challenging multi-domain
datasets commonly used as DG benchmarks: VLCS [70], Of-
ficeHome [71] and PACS [72]. VLCS contains images belong-
ing to 5 classes from 4 photographic domains: VOC2007 (V),
LabelMe (L), Caltech101 (C), and SUN09 (S). OfficeHome
consists of images of 65 classes from the domains Art (A),
Clipart (C), Product (P), and Real (R). PACS comprises images
belonging to 7 classes from the domains Art-painting (A),
Cartoon (C), Photo (P), and Sketch (S). DOMAINBED splits
each source domain data into 80% for training and 20% for
validation. Each experiment is run with the provided 3 seeds.

B. Results

Tables I, II and III show the results averaged over the 3
seeds pre-determined by DOMAINBED, on VLCS, PACS and
OfficeHome respectively. Hereby, the unseen target domain is
defined by the column name, i.e., the 3 other domains are

*Code under https://github.com/AhmedFrikha/columbus-domainbed.

used as source domains for training. The test accuracy is
computed on the test set of the target domain. We provide
results including standard deviations in the appendix. The
average results over the domains of each dataset can be seen in
Table IV. We select the model with the highest source-domain
validation performance for the evaluation on the target domain.

TABLE I
DOMAIN GENERALIZATION RESULTS ON VLCS.

Algorithm C L S V Avg

ERM 97.7 64.3 73.4 74.6 77.5
IRM 98.6 64.9 73.4 77.3 78.5
GroupDRO 97.3 63.4 69.5 76.7 76.7
Mixup 98.3 64.8 72.1 74.3 77.4
MLDG 97.4 65.2 71.0 75.3 77.2
CORAL 98.3 66.1 73.4 77.5 78.8
MMD 97.7 64.0 72.8 75.3 77.5
DANN 99.0 65.1 73.1 77.2 78.6
CDANN 97.1 65.1 70.7 77.1 77.5
MTL 97.8 64.3 71.5 75.3 77.2
SagNet 97.9 64.5 71.4 77.5 77.8
ARM 98.7 63.6 71.3 76.7 77.6
VREx 98.4 64.4 74.1 76.2 78.3
RSC 97.9 62.5 72.3 75.6 77.1

CORAL† 97.3 65.2 71.5 75.6 77.4
COLUMBUS 98.9 65.0 75.0 77.9 79.2

TABLE II
DOMAIN GENERALIZATION RESULTS ON PACS.

Algorithm A C P S Avg

ERM 84.7 80.8 97.2 79.3 85.5
IRM 84.8 76.4 96.7 76.1 83.5
GroupDRO 83.5 79.1 96.7 78.3 84.4
Mixup 86.1 78.9 97.6 75.8 84.6
MLDG 85.5 80.1 97.4 76.6 84.9
CORAL 88.3 80.0 97.5 78.8 86.2
MMD 86.1 79.4 96.6 76.5 84.6
DANN 86.4 77.4 97.3 73.5 83.6
CDANN 84.6 75.5 96.8 73.5 82.6
MTL 87.5 77.1 96.4 77.3 84.6
SagNet 87.4 80.7 97.1 80.0 86.3
ARM 86.8 76.8 97.4 79.3 85.1
VREx 86.0 79.1 96.9 77.7 84.9
RSC 85.4 79.7 97.6 78.2 85.2

CORAL† 87.4 79.4 97.5 73.9 84.5
COLUMBUS 88.7 78.7 97.2 81.5 86.5

COLUMBUS achieves the highest results on all datasets
on average, advancing the state-of-the-art by 1.6% and 1.2%
compared to ERM and CORAL respectively. We note an
impressive 5.5% improvement on OfficeHome’s most chal-
lenging domain Clipart (C) compared to ERM and 3.3%
compared to CORAL, on this 65-class classification task.
Likewise, on the Art (A) domain of PACS, substantial 4% and
1.3% increases are observed compared to ERM and CORAL
respectively. A significant performance increase is achieved

†Results yielded by using published code [10] with the provided seeds.

https://github.com/AhmedFrikha/columbus-domainbed


TABLE III
DOMAIN GENERALIZATION RESULTS ON OFFICEHOME.

Algorithm A C P R Avg

ERM 61.3 52.4 75.8 76.6 66.5
IRM 58.9 52.2 72.1 74.0 64.3
GroupDRO 60.4 52.7 75.0 76.0 66.0
Mixup 62.4 54.8 76.9 78.3 68.1
MLDG 61.5 53.2 75.0 77.5 66.8
CORAL 65.3 54.4 76.5 78.4 68.7
MMD 60.4 53.3 74.3 77.4 66.3
DANN 59.9 53.0 73.6 76.9 65.9
CDANN 61.5 50.4 74.4 76.6 65.8
MTL 61.5 52.4 74.9 76.8 66.4
SagNet 63.4 54.8 75.8 78.3 68.1
ARM 58.9 51.0 74.1 75.2 64.8
VREx 60.7 53.0 75.3 76.6 66.4
RSC 60.7 51.4 74.8 75.1 65.5

CORAL† 64.8 54.6 76.8 78.4 68.6
COLUMBUS 62.8 57.9 75.5 77.9 68.5

TABLE IV
AVERAGE DOMAIN GENERALIZATION RESULTS.

Algorithm VLCS PACS OfficeHome Avg

ERM 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 76.5
IRM 78.5 ± 0.5 83.5 ± 0.8 64.3 ± 2.2 75.5
GroupDRO 76.7 ± 0.6 84.4 ± 0.8 66.0 ± 0.7 75.7
Mixup 77.4 ± 0.6 84.6 ± 0.6 68.1 ± 0.3 76.7
MLDG 77.2 ± 0.4 84.9 ± 1.0 66.8 ± 0.6 76.3
CORAL 78.8 ± 0.6 86.2 ± 0.3 68.7 ± 0.3 77.9
MMD 77.5 ± 0.9 84.6 ± 0.5 66.3 ± 0.1 76.2
DANN 78.6 ± 0.4 83.6 ± 0.4 65.9 ± 0.6 76.0
CDANN 77.5 ± 0.1 82.6 ± 0.9 65.8 ± 1.3 75.3
MTL 77.2 ± 0.4 84.6 ± 0.5 66.4 ± 0.5 76.1
SagNet 77.8 ± 0.5 86.3 ± 0.2 68.1 ± 0.1 77.4
ARM 77.6 ± 0.3 85.1 ± 0.4 64.8 ± 0.3 75.8
VREx 78.3 ± 0.2 84.9 ± 0.6 66.4 ± 0.6 76.5
RSC 77.1 ± 0.5 85.2 ± 0.9 65.5 ± 0.9 75.9
SelfReg 77.8 ± 0.9 85.6 ± 0.4 67.9 ± 0.7 77.1
Fish 77.8 ± 0.3 85.5 ± 0.3 68.6 ± 0.4 77.3
AND-mask 78.1 ± 0.9 84.4 ± 0.9 65.6 ± 0.4 76.0
SAND-mask 77.4 ± 0.2 84.6 ± 0.9 65.8 ± 0.4 75.9

CORAL† 77.4 ± 0.3 84.5 ± 0.5 68.6 ± 0.2 76.9
COLUMBUS 79.2 ± 0.2 86.5 ± 0.4 68.5 ± 0.4 78.1

on PACS’s challenging Sketch (S) domain as well. On all
target domains, COLUMBUS consistently outperforms all the
baselines or yields a competitive performance. The fact that
COLUMBUS outperforms RSC [53] confirms our hypothesis,
that corrupting the learned features in the raw input is crucial
to prevent relearning the same high-level features, and hence
enforce new feature discovery.

We also evaluate our approach using the oracle selection
method [10], where the model is evaluated on a held-out
validation set from the target domain. In order to limit access
to the target domain, this evaluation is performed only once
at the end of each training, disallowing early stopping. The
average results are presented in Table V. We find that the per-
formance advantage of COLUMBUS is increased when better
proxies for model selection, e.g., a held-out set from the target
domain, are available, further confirming the effectiveness of

TABLE V
DOMAIN GENERALIZATION RESULTS USING THE TEST-DOMAIN

VALIDATION SET (ORACLE) AS A SELECTION METHOD.

Algorithm VLCS PACS OfficeHome Avg

ERM 77.6 ± 0.3 86.7 ± 0.3 66.4 ± 0.5 76.9
IRM 76.9 ± 0.6 84.5 ± 1.1 63.0 ± 2.7 74.8
GroupDRO 77.4 ± 0.5 87.1 ± 0.1 66.2 ± 0.6 76.9
Mixup 78.1 ± 0.3 86.8 ± 0.3 68.0 ± 0.2 77.6
MLDG 77.5 ± 0.1 86.8 ± 0.4 66.6 ± 0.3 77.0
CORAL 77.7 ± 0.2 87.1 ± 0.5 68.4 ± 0.2 77.7
MMD 77.9 ± 0.1 87.2 ± 0.1 66.2 ± 0.3 77.1
DANN 79.7 ± 0.5 85.2 ± 0.2 65.3 ± 0.8 76.8
CDANN 79.9 ± 0.2 85.8 ± 0.8 65.3 ± 0.5 77.0
MTL 77.7 ± 0.5 86.7 ± 0.2 66.5 ± 0.4 77.0
SagNet 77.6 ± 0.1 86.4 ± 0.4 67.5 ± 0.2 77.2
ARM 77.8 ± 0.3 85.8 ± 0.2 64.8 ± 0.4 76.1
VREx 78.1 ± 0.2 87.2 ± 0.6 65.7 ± 0.3 77.0
RSC 77.8 ± 0.6 86.2 ± 0.5 66.5 ± 0.6 76.8
AND-mask 76.4 ± 0.4 86.4 ± 0.4 66.1 ± 0.2 76.3
SAND-mask 76.2 ± 0.5 85.9 ± 0.4 65.9 ± 0.5 76.0

CORAL† 77.4 ± 0.6 85.6 ± 0.8 68.4 ± 0.4 77.1
COLUMBUS 77.7 ± 0.4 88.2 ± 0.2 69.6 ± 0.4 78.5

our approach. Our results on DOMAINBED using both model
selection methods show that the additional features learned
thanks to the corruption of the most relevant features are useful
for generalization to unseen domains. This is backed by Figure
1, where COLUMBUS recognizes more features in examples
from the unseen target domain than ERM.

Finally, we investigate whether the richer set of features
learned by COLUMBUS leads to a better in-domain general-
ization, i.e., whether a performance boost is also yielded on
unseen source domain data. We evaluate COLUMBUS and
the DG baselines on the held-out validation sets of the source
domains and report the maximal mean validation accuracy
across domains in the Appendix. COLUMBUS consistently
achieves the highest validation performance on the training
domains compared to the DG baselines. This shows that the
richer set of learned features improves generalization to unseen
in-distribution datapoints, suggesting that COLUMBUS might
also be suitable for applications without domain shift.

V. CONCLUSION

In this work, we proposed COLUMBUS, a novel and
strong domain generalization (DG) approach that enforces
new feature discovery to improve the transfer to a wider set
of unseen domains. During training, COLUMBUS corrupts
the input and multi-level representations of the data most
relevant for the model. For the identification of such features,
relevance attribution methods that are usually used for model
explainability purposes are leveraged. Our extensive empirical
evaluation on DOMAINBED demonstrates the effectiveness of
the proposed method, which outperforms 18 DG algorithms
and achieves new state-of-the-art results on multiple DG
benchmarks. Our results show that the richer set of learned
features improves the generalization to unseen data from both
seen and unseen domains, suggesting the suitability of our
approach for applications beyond domain generalization to
include scenarios without domain shift.



APPENDIX

Experimental Setting Details In this section we provide
further details about the experiments conducted. The experi-
ments were conducted on computing instances that include a
Tesla T4 NVIDIA GPU, 8 custom Intel Cascade Lake CPUs
and 32 Gb of memory. The operating system used is Ubuntu
20.04 LTS. The libraries PyTorch [73] and TorchVision were
used with the versions 1.7.1 and 0.8.2, respectively.

In our experiments, the percentage of representation cor-
rupted p and the percentage of the batch corrupted q are
increased linearly towards pmax and qmax, respectively, during
the first half of the training. In the second half of the training,
the maximum values are used.

For a fair comparison, we used the automated
hyperparameter search from DOMAINBED [10] for
each domain and dataset. Hereby, each hyperparameter
search involves 20 random search experiments, i.e., the
hyperparameters are randomly sampled from the specified
intervals. To distribute the hyperparameter search experiments
over multiple devices (each experiment runs on a single
GPU), we used the Ray Tune package [74], [75]. Our
experiments follow the experimental setting: We use a
ResNet-50 model [66] pretrained on ImageNet [67] with
frozen batch normalization [68] statistics as suggested in [69],
as well as the same optimization algorithm, ADAM [65], data
augmentation techniques, and number of training iterations.
An overview of the hyperparameter-specific intervals we used
for COLUMBUS can be seen in Table VI. The algorithm-
specific hyperparameter intervals used for the other DG
algorithms can be found in [10]. Depending on whether
the corruption is applied on the input or an intermediate
representation, different value intervals were used for
the percentage of the representation corrupted p and the
percentage of the batch corrupted q. For the hyperparameters
related to intermediate representations, i.e., pmax,intermediate
and qmax,intermediate, the interval upper bounds were
chosen based on the results of RSC [53], which discards
the most dominant features fed to the output layer, i.e., the
last representation level. We used the same intervals used in
DOMAINBED for the other algorithms for all hyperparameters.

Source Domain Generalization
In this section, we investigate whether the richer set of

features learned by COLUMBUS leads to a better in-domain
generalization, i.e., whether a performance boost is also
yielded on unseen data from the source domains used for
training. We evaluate COLUMBUS and the DG baselines on
the held-out validation sets of the source domains and report
the maximal average validation accuracy across domains in
Table VII*.

COLUMBUS consistently achieves the highest validation
performance on the training domains compared to the DG

*For the baselines, we computed the results using
the logs made public in https://drive.google.com/file/d/
16VFQWTble6-nB5AdXBtQpQFwjEC7CChM/view?usp=sharing.

baselines, on every dataset. This shows that the richer
set of learned features improves generalization to unseen
in-distribution data examples as well, suggesting that
COLUMBUS might be suitable for applications beyond
domain generalization to include scenarios without domain
shift.

Results including standard deviations We present the
domain generalization results of COLUMBUS and the base-
lines, including the standard deviations computed over the 3
runs with the seeds provided by DOMAINBED in Tables VIII,
IX and X. Hereby, for model selection, the training-domain
validation-set from DOMAINBED is used.

https://drive.google.com/file/d/16VFQWTble6-nB5AdXBtQpQFwjEC7CChM/view?usp=sharing
https://drive.google.com/file/d/16VFQWTble6-nB5AdXBtQpQFwjEC7CChM/view?usp=sharing


TABLE VI
HYPERPARAMETER INTERVALS USED FOR THE HYPERPARAMETER SEARCH CONDUCTED WITH DOMAINBED

Hyperparameter Random Distribution

Weighting coefficient λ 10Uniform(−1,1)

Max. corruption % for input representation pmax,input Uniform(0.2, 0.5)
Max. corruption % for intermediate representation pmax,intermediate Uniform(0.01, 0.333)
Max. batch corruption % for input representation qmax,input Uniform(0.2, 1.0)
Max. batch corruption % for intermediate representation qmax,intermediate Uniform(0.1, 0.5)

TABLE VII
SOURCE DOMAIN VALIDATION PERFORMANCE.

Algorithm VLCS PACS OfficeHome Avg

ERM 86.4 ± 0.0 97.0 ± 0.1 82.1 ± 0.2 88.5
IRM 85.8 ± 0.2 96.5 ± 0.4 79.9 ± 2.0 87.4
GroupDRO 86.4 ± 0.0 96.9 ± 0.1 81.6 ± 0.2 88.3
Mixup 86.6 ± 0.1 97.4 ± 0.1 83.2 ± 0.3 89.0
MLDG 86.4 ± 0.1 97.1 ± 0.1 82.4 ± 0.3 88.6
CORAL 86.5 ± 0.0 97.1 ± 0.1 83.7 ± 0.2 89.1
MMD 86.4 ± 0.1 96.9 ± 0.0 82.0 ± 0.1 88.4
DANN 86.3 ± 0.0 96.4 ± 0.3 80.4 ± 0.9 87.7
CDANN 86.4 ± 0.1 96.4 ± 0.3 80.5 ± 0.9 87.8
MTL 86.3 ± 0.0 97.0 ± 0.0 81.7 ± 0.2 88.3
SagNet 86.4 ± 0.0 97.0 ± 0.2 82.9 ± 0.4 88.8
ARM 86.3 ± 0.0 96.5 ± 0.1 80.2 ± 0.2 87.7
VREx 86.2 ± 0.1 96.9 ± 0.1 81.8 ± 0.4 88.3
RSC 86.4 ± 0.3 96.8 ± 0.2 81.5 ± 0.3 88.2

CORAL† 86.6 ± 0.1 96.8 ± 0.2 83.6 ± 0.0 89.0
COLUMBUS 86.6 ± 0.1 97.3 ± 0.0 83.4 ± 0.1 89.1

TABLE VIII
DOMAIN GENERALIZATION RESULTS ON VLCS, INCLUDING STANDARD DEVIATION.

Algorithm C L S V Avg

ERM 97.7 ± 0.4 64.3 ± 0.9 73.4 ± 0.5 74.6 ± 1.3 77.5
IRM 98.6 ± 0.1 64.9 ± 0.9 73.4 ± 0.6 77.3 ± 0.9 78.5
GroupDRO 97.3 ± 0.3 63.4 ± 0.9 69.5 ± 0.8 76.7 ± 0.7 76.7
Mixup 98.3 ± 0.6 64.8 ± 1.0 72.1 ± 0.5 74.3 ± 0.8 77.4
MLDG 97.4 ± 0.2 65.2 ± 0.7 71.0 ± 1.4 75.3 ± 1.0 77.2
CORAL 98.3 ± 0.1 66.1 ± 1.2 73.4 ± 0.3 77.5 ± 1.2 78.8
MMD 97.7 ± 0.1 64.0 ± 1.1 72.8 ± 0.2 75.3 ± 3.3 77.5
DANN 99.0 ± 0.3 65.1 ± 1.4 73.1 ± 0.3 77.2 ± 0.6 78.6
CDANN 97.1 ± 0.3 65.1 ± 1.2 70.7 ± 0.8 77.1 ± 1.5 77.5
MTL 97.8 ± 0.4 64.3 ± 0.3 71.5 ± 0.7 75.3 ± 1.7 77.2
SagNet 97.9 ± 0.4 64.5 ± 0.5 71.4 ± 1.3 77.5 ± 0.5 77.8
ARM 98.7 ± 0.2 63.6 ± 0.7 71.3 ± 1.2 76.7 ± 0.6 77.6
VREx 98.4 ± 0.3 64.4 ± 1.4 74.1 ± 0.4 76.2 ± 1.3 78.3
RSC 97.9 ± 0.1 62.5 ± 0.7 72.3 ± 1.2 75.6 ± 0.8 77.1

CORAL† 97.3 ± 0.3 65.2 ± 0.5 71.5 ± 0.6 75.6 ± 0.9 77.4
COLUMBUS 98.9 ± 0.2 65.0 ± 1.3 75.0 ± 0.2 77.9 ± 0.9 79.2



TABLE IX
DOMAIN GENERALIZATION RESULTS ON PACS, INCLUDING STANDARD DEVIATION.

Algorithm A C P S Avg

ERM 84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5
IRM 84.8 ± 1.3 76.4 ± 1.1 96.7 ± 0.6 76.1 ± 1.0 83.5
GroupDRO 83.5 ± 0.9 79.1 ± 0.6 96.7 ± 0.3 78.3 ± 2.0 84.4
Mixup 86.1 ± 0.5 78.9 ± 0.8 97.6 ± 0.1 75.8 ± 1.8 84.6
MLDG 85.5 ± 1.4 80.1 ± 1.7 97.4 ± 0.3 76.6 ± 1.1 84.9
CORAL 88.3 ± 0.2 80.0 ± 0.5 97.5 ± 0.3 78.8 ± 1.3 86.2
MMD 86.1 ± 1.4 79.4 ± 0.9 96.6 ± 0.2 76.5 ± 0.5 84.6
DANN 86.4 ± 0.8 77.4 ± 0.8 97.3 ± 0.4 73.5 ± 2.3 83.6
CDANN 84.6 ± 1.8 75.5 ± 0.9 96.8 ± 0.3 73.5 ± 0.6 82.6
MTL 87.5 ± 0.8 77.1 ± 0.5 96.4 ± 0.8 77.3 ± 1.8 84.6
SagNet 87.4 ± 1.0 80.7 ± 0.6 97.1 ± 0.1 80.0 ± 0.4 86.3
ARM 86.8 ± 0.6 76.8 ± 0.5 97.4 ± 0.3 79.3 ± 1.2 85.1
VREx 86.0 ± 1.6 79.1 ± 0.6 96.9 ± 0.5 77.7 ± 1.7 84.9
RSC 85.4 ± 0.8 79.7 ± 1.8 97.6 ± 0.3 78.2 ± 1.2 85.2

CORAL† 87.4 ± 0.3 79.4 ± 0.3 97.5 ± 0.1 73.9 ± 1.8 84.5
COLUMBUS 88.7 ± 0.8 78.7 ± 1.0 97.2 ± 0.1 81.5 ± 1.5 86.5

TABLE X
DOMAIN GENERALIZATION RESULTS ON OFFICEHOME, INCLUDING STANDARD DEVIATION.

Algorithm A C P R Avg

ERM 61.3 ± 0.7 52.4 ± 0.3 75.8 ± 0.1 76.6 ± 0.3 66.5
IRM 58.9 ± 2.3 52.2 ± 1.6 72.1 ± 2.9 74.0 ± 2.5 64.3
GroupDRO 60.4 ± 0.7 52.7 ± 1.0 75.0 ± 0.7 76.0 ± 0.7 66.0
Mixup 62.4 ± 0.8 54.8 ± 0.6 76.9 ± 0.3 78.3 ± 0.2 68.1
MLDG 61.5 ± 0.9 53.2 ± 0.6 75.0 ± 1.2 77.5 ± 0.4 66.8
CORAL 65.3 ± 0.4 54.4 ± 0.5 76.5 ± 0.1 78.4 ± 0.5 68.7
MMD 60.4 ± 0.2 53.3 ± 0.3 74.3 ± 0.1 77.4 ± 0.6 66.3
DANN 59.9 ± 1.3 53.0 ± 0.3 73.6 ± 0.7 76.9 ± 0.5 65.9
CDANN 61.5 ± 1.4 50.4 ± 2.4 74.4 ± 0.9 76.6 ± 0.8 65.8
MTL 61.5 ± 0.7 52.4 ± 0.6 74.9 ± 0.4 76.8 ± 0.4 66.4
SagNet 63.4 ± 0.2 54.8 ± 0.4 75.8 ± 0.4 78.3 ± 0.3 68.1
ARM 58.9 ± 0.8 51.0 ± 0.5 74.1 ± 0.1 75.2 ± 0.3 64.8
VREx 60.7 ± 0.9 53.0 ± 0.9 75.3 ± 0.1 76.6 ± 0.5 66.4
RSC 60.7 ± 1.4 51.4 ± 0.3 74.8 ± 1.1 75.1 ± 1.3 65.5

CORAL† 64.8 ± 0.2 54.6 ± 0.7 76.8 ± 0.6 78.4 ± 0.3 68.6
COLUMBUS 62.8 ± 0.3 57.9 ± 0.8 75.5 ± 0.1 77.9 ± 0.5 68.5



REFERENCES

[1] Q. Dou, D. Coelho de Castro, K. Kamnitsas, and B. Glocker, “Do-
main generalization via model-agnostic learning of semantic features,”
NeurIPS, 2019.

[2] X. Yue, Y. Zhang, S. Zhao, A. Sangiovanni-Vincentelli, K. Keutzer,
and B. Gong, “Domain randomization and pyramid consistency:
Simulation-to-real generalization without accessing target domain data,”
in IEEE/CVF ICCV, 2019.

[3] M. A. Alcorn, Q. Li, Z. Gong, C. Wang, L. Mai, W.-S. Ku, and
A. Nguyen, “Strike (with) a pose: Neural networks are easily fooled
by strange poses of familiar objects,” in IEEE/CVF CVPR, 2019.

[4] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” in IEEE ICCV, 2017.

[5] M. Wang and W. Deng, “Deep visual domain adaptation: A survey,”
Neurocomputing, 2018.

[6] G. Wilson and D. J. Cook, “A survey of unsupervised deep domain
adaptation,” ACM Transactions on Intelligent Systems and Technology
(TIST), 2020.

[7] G. Blanchard, G. Lee, and C. Scott, “Generalizing from several related
classification tasks to a new unlabeled sample,” NeurIPS, 2011.

[8] K. Muandet, D. Balduzzi, and B. Schölkopf, “Domain generalization
via invariant feature representation,” in ICML, 2013.

[9] K. Zhou, Z. Liu, Y. Qiao, T. Xiang, and C. C. Loy, “Domain general-
ization: A survey,” arXiv:2103.02503, 2021.

[10] I. Gulrajani and D. Lopez-Paz, “In search of lost domain generalization,”
arXiv:2007.01434, 2020.

[11] E. Tjoa and C. Guan, “A survey on explainable artificial intelligence
(xai): Toward medical xai,” IEEE Transactions on Neural Networks and
Learning Systems, 2020.

[12] V. N. Vapnik, “An overview of statistical learning theory,” IEEE trans-
actions on neural networks, 1999.

[13] S. Sagawa, P. W. Koh, T. B. Hashimoto, and P. Liang, “Distributionally
robust neural networks for group shifts: On the importance of regular-
ization for worst-case generalization,” arXiv:1911.08731, 2019.

[14] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola,
“A kernel two-sample test,” JMLR, 2012.

[15] H. Li, S. J. Pan, S. Wang, and A. C. Kot, “Domain generalization with
adversarial feature learning,” in IEEE CVPR, 2018.

[16] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell, “Deep do-
main confusion: Maximizing for domain invariance,” arXiv:1412.3474,
2014.

[17] B. Sun and K. Saenko, “Deep coral: Correlation alignment for deep
domain adaptation,” in ECCV, 2016.

[18] S. Motiian, M. Piccirilli, D. A. Adjeroh, and G. Doretto, “Unified deep
supervised domain adaptation and generalization,” in IEEE ICCV, 2017.

[19] C. Yoon, G. Hamarneh, and R. Garbi, “Generalizable feature learning in
the presence of data bias and domain class imbalance with application
to skin lesion classification,” in International Conference on Medical
Image Computing and Computer-Assisted Intervention, 2019.

[20] D. Mahajan, S. Tople, and A. Sharma, “Domain generalization using
causal matching,” arXiv:2006.07500, 2020.

[21] D. Kim, S. Park, J. Kim, and J. Lee, “Selfreg: Self-supervised contrastive
regularization for domain generalization,” arXiv:2104.09841, 2021.

[22] Y. Shi, J. Seely, P. H. Torr, N. Siddharth, A. Hannun, N. Usunier,
and G. Synnaeve, “Gradient matching for domain generalization,”
arXiv:2104.09937, 2021.

[23] G. Parascandolo, A. Neitz, A. Orvieto, L. Gresele, and B. Schölkopf,
“Learning explanations that are hard to vary,” arXiv:2009.00329, 2020.

[24] S. Shahtalebi, J.-C. Gagnon-Audet, T. Laleh, M. Faramarzi, K. Ahuja,
and I. Rish, “Sand-mask: An enhanced gradient masking strategy for the
discovery of invariances in domain generalization,” arXiv:2106.02266,
2021.

[25] I. Albuquerque, J. Monteiro, M. Darvishi, T. H. Falk, and
I. Mitliagkas, “Generalizing to unseen domains via distribution match-
ing,” arXiv:1911.00804, 2019.

[26] R. Shao, X. Lan, J. Li, and P. C. Yuen, “Multi-adversarial discriminative
deep domain generalization for face presentation attack detection,” in
IEEE/CVF CVPR, 2019.

[27] M. M. Rahman, C. Fookes, M. Baktashmotlagh, and S. Sridharan,
“Correlation-aware adversarial domain adaptation and generalization,”
Pattern Recognition, 2020.

[28] Z. Deng, F. Ding, C. Dwork, R. Hong, G. Parmigiani, P. Patil, and P. Sur,
“Representation via representations: Domain generalization via adversar-
ially learned invariant representations,” arXiv:2006.11478, 2020.

[29] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Lavio-
lette, M. Marchand, and V. Lempitsky, “Domain-adversarial training of
neural networks,” JMLR, 2016.

[30] Y. Li, X. Tian, M. Gong, Y. Liu, T. Liu, K. Zhang, and D. Tao, “Deep
domain generalization via conditional invariant adversarial networks,” in
ECCV, 2018.

[31] M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz, “Invariant risk
minimization,” arXiv:1907.02893, 2019.

[32] G. Blanchard, A. A. Deshmukh, U. Dogan, G. Lee, and C. Scott, “Do-
main generalization by marginal transfer learning,” arXiv:1711.07910,
2017.

[33] D. Krueger, E. Caballero, J.-H. Jacobsen, A. Zhang, J. Binas, D. Zhang,
R. Le Priol, and A. Courville, “Out-of-distribution generalization via
risk extrapolation (rex),” in ICML, 2021.

[34] M. Zhang, H. Marklund, N. Dhawan, A. Gupta, S. Levine, and C. Finn,
“Adaptive risk minimization: A meta-learning approach for tackling
group distribution shift,” arXiv:2007.02931, 2020.

[35] D. Li, Y. Yang, Y.-Z. Song, and T. M. Hospedales, “Learning to gen-
eralize: Meta-learning for domain generalization,” in AAAI Conference
on Artificial Intelligence, 2018.

[36] Y. Balaji, S. Sankaranarayanan, and R. Chellappa, “Metareg: Towards
domain generalization using meta-regularization,” NeurIPS, 2018.

[37] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond
empirical risk minimization,” arXiv:1710.09412, 2017.

[38] M. Xu, J. Zhang, B. Ni, T. Li, C. Wang, Q. Tian, and W. Zhang, “Ad-
versarial domain adaptation with domain mixup,” in AAAI Conference
on Artificial Intelligence, 2020.

[39] S. Yan, H. Song, N. Li, L. Zou, and L. Ren, “Improve unsupervised
domain adaptation with mixup training,” arXiv:2001.00677, 2020.

[40] Y. Wang, H. Li, and A. C. Kot, “Heterogeneous domain generalization
via domain mixup,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2020.

[41] H. Nam, H. Lee, J. Park, W. Yoon, and D. Yoo, “Reducing domain gap
via style-agnostic networks,” arXiv e-prints, 2019.

[42] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv:1412.6572, 2014.

[43] A. Sinha, H. Namkoong, R. Volpi, and J. Duchi, “Certifying
some distributional robustness with principled adversarial training,”
arXiv:1710.10571, 2017.

[44] R. Volpi, H. Namkoong, O. Sener, J. Duchi, V. Murino, and S. Savarese,
“Generalizing to unseen domains via adversarial data augmentation,”
arXiv:1805.12018, 2018.

[45] F. Qiao, L. Zhao, and X. Peng, “Learning to learn single domain
generalization,” in IEEE/CVF CVPR, 2020.

[46] S. Shankar, V. Piratla, S. Chakrabarti, S. Chaudhuri, P. Jyothi, and
S. Sarawagi, “Generalizing across domains via cross-gradient training,”
arXiv:1804.10745, 2018.

[47] M. M. Rahman, C. Fookes, M. Baktashmotlagh, and S. Sridharan,
“Multi-component image translation for deep domain generalization,”
in 2019 IEEE Winter Conference on Applications of Computer Vision
(WACV), 2019.

[48] N. Somavarapu, C.-Y. Ma, and Z. Kira, “Frustratingly simple domain
generalization via image stylization,” arXiv:2006.11207, 2020.

[49] F. C. Borlino, A. D’Innocente, and T. Tommasi, “Rethinking domain
generalization baselines,” in International Conference on Pattern Recog-
nition (ICPR), 2021.

[50] F. Maria Carlucci, P. Russo, T. Tommasi, and B. Caputo, “Hallucinating
agnostic images to generalize across domains,” in IEEE/CVF ICCV
Workshops, 2019.

[51] K. Zhou, Y. Yang, T. Hospedales, and T. Xiang, “Deep domain-
adversarial image generation for domain generalisation,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, no. 07, 2020,
pp. 13 025–13 032.

[52] ——, “Learning to generate novel domains for domain generalization,”
in European conference on computer vision. Springer, 2020, pp. 561–
578.

[53] Z. Huang, H. Wang, E. P. Xing, and D. Huang, “Self-challenging im-
proves cross-domain generalization,” in Computer Vision–ECCV 2020:
16th European Conference, 2020.

[54] K. Zhou, Y. Yang, Y. Qiao, and T. Xiang, “Domain generalization with
mixstyle,” arXiv:2104.02008, 2021.



[55] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv:1409.1556, 2014.

[56] K. Schulz, L. Sixt, F. Tombari, and T. Landgraf, “Restricting the flow:
Information bottlenecks for attribution,” arXiv:2001.00396, 2020.

[57] D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg, “Smooth-
grad: removing noise by adding noise,” arXiv:1706.03825, 2017.

[58] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep
networks,” in ICML, 2017.

[59] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving
for simplicity: The all convolutional net,” arXiv:1412.6806, 2014.

[60] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and
W. Samek, “On pixel-wise explanations for non-linear classifier deci-
sions by layer-wise relevance propagation,” PloS one, 2015.

[61] G. Montavon, S. Lapuschkin, A. Binder, W. Samek, and K.-R. Müller,
“Explaining nonlinear classification decisions with deep taylor decom-
position,” Pattern Recognition, 2017.

[62] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning
deep features for discriminative localization,” in IEEE CVPR, 2016.

[63] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from overfit-
ting,” JMLR, 2014.

[64] S. van Steenkiste, F. Locatello, J. Schmidhuber, and O. Bachem, “Are
disentangled representations helpful for abstract visual reasoning?”
arXiv:1905.12506, 2019.

[65] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv:1412.6980, 2014.

[66] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in IEEE CVPR, 2016.

[67] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International journal of computer
vision, 2015.

[68] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in ICML, 2015.

[69] S. Seo, Y. Suh, D. Kim, G. Kim, J. Han, and B. Han, “Learning to
optimize domain specific normalization for domain generalization,” in
ECCV, 2020.

[70] C. Fang, Y. Xu, and D. N. Rockmore, “Unbiased metric learning: On
the utilization of multiple datasets and web images for softening bias,”
in IEEE ICCV, 2013.

[71] H. Venkateswara, J. Eusebio, S. Chakraborty, and S. Panchanathan,
“Deep hashing network for unsupervised domain adaptation,” in IEEE
CVPR, 2017.

[72] D. Li, Y. Yang, Y.-Z. Song, and T. M. Hospedales, “Deeper, broader
and artier domain generalization,” in IEEE ICCV, 2017.

[73] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, pp. 8026–8037, 2019.

[74] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. I. Jordan et al., “Ray: A distributed
framework for emerging {AI} applications,” in 13th {USENIX} Sympo-
sium on Operating Systems Design and Implementation ({OSDI} 18),
2018, pp. 561–577.

[75] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I. Stoica,
“Tune: A research platform for distributed model selection and training,”
arXiv preprint arXiv:1807.05118, 2018.


	I Introduction
	II Related Work
	II-A Domain Generalization
	II-B Relevance Attribution

	III Method
	III-A Identification
	III-B Corruption
	III-C Training

	IV Experiments
	IV-A Experimental Setup
	IV-B Results

	V Conclusion
	Appendix
	References

