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Abstract

There has been an increasing interest in in-
ferring future links on temporal knowledge
graphs (KG). While links on temporal KGs
vary continuously over time, the existing ap-
proaches model the temporal KGs in discrete
state spaces. To this end, we propose a novel
continuum model by extending the idea of neu-
ral ordinary differential equations (ODEs) to
multi-relational graph convolutional networks.
The proposed model preserves the continuous
nature of dynamic multi-relational graph data
and encodes both temporal and structural in-
formation into continuous-time dynamic em-
beddings. In addition, a novel graph transition
layer is applied to capture the transitions on the
dynamic graph, i.e., edge formation and disso-
lution. We perform extensive experiments on
five benchmark datasets for temporal KG rea-
soning, showing our model’s superior perfor-
mance on the future link forecasting task.

1 Introduction

Reasoning on relational data has long been consid-
ered an essential subject in artificial intelligence
with wide applications, including decision sup-
port and question answering. Recently, reasoning
on knowledge graphs has gained increasing inter-
est (Ren and Leskovec, 2020; Das et al., 2018).
A Knowledge Graph (KG) is a graph-structured
knowledge base to store factual information. KGs
represent facts in the form of triples (s, r, o), e.g.,
(Bob, livesIn, New York), in which s (subject) and
o (object) denote nodes (entities), and r denotes
the edge type (relation) between s and o. Knowl-
edge graphs are commonly static and store facts in
their current state. In reality, however, the relations
between entities often change over time. For exam-
ple, if Bob moves to California, the triple of (Bob,
livesIn, New York) will be invalid. To this end,
temporal knowledge graphs (tKG) were introduced.

∗Equal contribution.
†Corresponding author.

A tKG represents a temporal fact as a quadruple
(s, r, o, t) by extending a static triple with time t,
describing that this fact is valid at time t. In recent
years, several sizable temporal knowledge graphs,
such as ICEWS (Boschee et al., 2015), have been
developed that provide widespread availability of
such data and enable reasoning on temporal KGs.
While lots of work (García-Durán et al., 2018; Goel
et al., 2020; Lacroix et al., 2020) focus on the tem-
poral KG completion task and predict missing links
at observed timestamps, recent work (Jin et al.,
2019; Trivedi et al., 2017) paid attention to forecast
future links of temporal KGs. In this work, we
focus on the temporal KG forecasting task, which
is more challenging than the completion task.

Most existing work (Jin et al., 2019; Zhu et al.,
2020) models temporal KGs in a discrete-time do-
main where they take snapshots of temporal KGs
sampled at regularly-spaced timestamps. Thus,
these approaches cannot model irregular time inter-
vals, which convey essential information for analyz-
ing dynamics on temporal KGs, e.g., the dwelling
time of a user on a website becomes shorter, indicat-
ing that the user’s interest in the website decreases.
KnowEvolve (Trivedi et al., 2017) uses a neural
point process to model continuous-time temporal
KGs. However, Know-Evolve does not take the
graph’s structural information into account, thus
losing the power of modeling temporal topological
information. Also, KnowEolve is a transductive
method that cannot handle unseen nodes. In this
paper, we present a graph neural-based approach
to learn dynamic representations of entities and
relations on temporal KGs. Specifically, we pro-
pose a graph neural ordinary differential equation
to model the graph dynamics in the continuous-
time domain.

Inspired by neural ordinary differential equations
(NODEs) (Chen et al., 2018), we extend the idea
of continuum-depth models to encode the continu-
ous dynamics of temporal KGs. To apply NODEs
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to temporal KG reasoning, we employ a NODE
coupled with multi-relational graph convolutional
(MGCN) layers. MGCN layers are used to cap-
ture the structural information of multi-relational
graph data, while the NODE learns the evolution
of temporal KGs over time. Specifically, we in-
tegrate the hidden representations over time us-
ing an ODE solver and output the continuous-time
dynamic representations of entities and relations.
Unlike many existing temporal KG models that
learn the dynamics by employing recurrent model
structures with discrete depth, our model lets the
time domain coincide with the depth of a neural
network and takes advantage of NODE to steer
the latent entity features between two timestamps
smoothly. Besides, existing work simply uses the
adjacency tensor from previous snapshots of the
tKG to predict its linkage structure at a future time.
Usually, most edges do not change between two
observations, while only a few new edges have
formatted or dissolved since the last observation.
However, the dissolution and formation of these
small amounts of edges always contain valuable
temporal information and are more critical than
unchanged edges for learning the graph dynamics.
For example, we know an edge with the label eco-
nomicallyCooperateWith between two countries
x and y at time t, but this dissolves at t + ∆t1.
Additionally, there is another edge with the label
banTradesWith between these two countries that
are formated at t+ ∆t2 (∆t2 > ∆t1). Intuitively,
the dissolution of (x, economicallyCooperateWith,
y) is an essential indicator of the quadruple (x,
banTradesWith, y, t + ∆t2). Thus, it should get
more attention from the model. However, suppose
we only feed the adjacency tensors of different ob-
servation snapshots into the model. In that case, we
do not know whether the model can effectively cap-
ture the changes of the adjacency tensors and puts
more attention on the evolving part of the graph.
To let the model focus on the graph’s transitions,
we propose a graph transition layer that takes a
graph transition tensor containing edge formation
and dissolution information as input and uses graph
convolutions to process the transition information
explicitly.

In this work, we propose a model to perform
Temporal Knowledge Graph Forecasting with Neu-
ral Ordinary Equations (TANGO ). The main
contributions are summarized as follows:

• We propose a continuous-depth multi-

relational graph neural network for forecast-
ing future links on temporal KGs by defining
a multi-relational graph neural ordinary differ-
ential equation. The ODE enables our model
to learn continuous-time representations of en-
tities and relations. We are the first to show
that the neural ODE framework can be ex-
tended to modeling dynamic multi-relational
graphs.

• We propose a graph transition layer to model
the edge formation and dissolution of tem-
poral KGs, which effectively improves our
model’s performance.

• We propose two new tasks, i.e., inductive link
prediction and long horizontal link forecast-
ing, for temporal KG models. They evaluate
a model’s potential by testing the model’s per-
formance on previously unseen entities and
predicting the links happening in the farther
future.

• We apply our model to forecast future links
on five benchmark temporal knowledge graph
datasets, showing its state-of-the-art perfor-
mance.

2 Preliminaries and Related Work

2.1 Graph Convolutional Networks

Graph convolutional networks (GCNs) have shown
great success in capturing structural dependencies
of graph data. GCNs come in two classes: i) spec-
tral methods (Kipf and Welling, 2016; Defferrard
et al., 2016) and ii) spatial methods (Niepert et al.,
2016; Gilmer et al., 2017). However, common
GCNs can only deal with homogeneous graphs.
To distinguish between different relations, R-GCN
(Schlichtkrull et al., 2017) introduces relation-
specific weight matrices for message transforma-
tions. However, the number of parameters in R-
GCN grows rapidly with the number of relations,
easily leading to overfitting. Vashishth et al. (2019)
proposed a multi-relational GCN, which is compat-
ible with KGs and leverages various entity-relation
composition operations from KG embedding tech-
niques. Additionally, some work combines GCN
with temporal graphs (Yan et al., 2018; Li et al.,
2020). However, they are designed for homoge-
neous graphs but not for multi-relational graphs.
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2.2 Neural Ordinary Differential Equations
Neural Ordinary Differential Equation (NODE)
(Chen et al., 2018) is a continuous-depth deep neu-
ral network model. It represents the derivative of
the hidden state with a neural network:

dz(t)

dt
= f(z(t), t, θ), (1)

where z(t) denotes the hidden state of a dynamic
system at time t, and f denotes a function parame-
terized by a neural network to describe the deriva-
tive of the hidden state regarding time. θ represents
the parameters in the neural network. The output
of a NODE framework is calculated using an ODE
solver coupled with an initial value:

z(t1) = z(t0) +

∫ t1

t0

f(z(t), t, θ)dt. (2)

Here, t0 is the initial time point, and t1 is the output
time point. z(t1) and z(t0) represent the hidden
state at t1 and t0, respectively. Thus, the NODE
can output the hidden state of a dynamic system at
any time point and deal with continuous-time data,
which is extremely useful in modeling continuous-
time dynamic systems.

Moreover, to reduce the memory cost in the back-
propagation, Chen et al. (2018) introduced the ad-
joint sensitivity method into NODEs. An adjoint
is a(t) = ∂L

∂z(t) , where L means the loss. The gradi-
ent of L with regard to network parameters θ can
be directly computed by the adjoint and an ODE
solver:

dL
dθ

= −
∫ t0

t1

a(t)T
∂f(z(t), t, θ)

∂θ
dt. (3)

In other words, the adjoint sensitivity method
solves an augmented ODE backward in time and
computes the gradients without backpropagating
through the operations of the solver.

2.3 Temporal Knowledge Graph Reasoning
Let V andR represent a finite set of entities and re-
lations, respectively. A temporal knowledge graph
(tKG) G is a multi-relational graph whose edges
evolve over time. At any time point, a snapshot
G(t) contains all valid edges at t. Note that the time
interval between neighboring snapshots may not
be regularly spaced. A quadruple q = (s, r, o, t)
describes a labeled timestamped edge at time t,
where r ∈ R represents the relation between a
subject entity s ∈ V and an object entity o ∈ V .

Formally, we define the tKG forecasting task as
follows. Let (sq, rq, oq, tq) denote a target quadru-
ple and F represent the set of all ground-truth
quadruples. Given query (sq, rq, ?, tq) derived
from the target quadruple and a set of observed
events O = {(s, r, o, ti) ∈ F|ti < tq}, the tKG
forecasting task predicts the missing object entity
oq based on observed past events. Specifically, we
consider all entities in set V as candidates and rank
them by their scores to form a true quadruple to-
gether with the given subject-relation-pair (sq, rq)
at time tq. In this work, we add reciprocal relations
for every quadruple, i.e., adding (o, r−1, s, t) for
every (s, r, o, t). Hence, the restriction to predict
object entities does not lead to a loss of generality.

Extensive studies have been done for temporal
KG completion task (Leblay and Chekol, 2018;
García-Durán et al., 2018; Goel et al., 2020; Han
et al., 2020a). Besides, a line of work (Trivedi
et al., 2017; Jin et al., 2019; Deng et al., 2020; Zhu
et al., 2020) has been proposed for the tKG fore-
casting task and can generalize to unseen times-
tamps. Specifically, Trivedi et al. (2017) and Han
et al. (2020b) take advantage of temporal point
processes to model the temporal KG as event se-
quences and learn evolving entity representations.

3 Our Model

Our model is designed to model time-evolving
multi-relational graph data by learning continuous-
time representations of entities. It consists of a
neural ODE-based encoder and a decoder based on
classic KG score functions. As shown in Figure 1b,
the input of the network will be fed into two paral-
lel modules before entering the ODE Solver. The
upper module denotes a multi-relational graph con-
volutional layer that captures the graph’s structural
information according to an observation at time t.
And the lower module denotes a graph transition
layer that explicitly takes the edge transition ten-
sor of the current observation representing which
edges have been added and removed since the last
observation. The graph transition layer focuses on
modeling the graph transition between neighbor-
ing observations for improving the prediction of
link formation and dissolution. For the decoder, we
compare two score functions, i.e., DistMult (Yang
et al., 2014) and TuckER (Balazevic et al., 2019).
In principle, the decoder can be any score function.
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(a) fMGCN

(b) fTANGO

Figure 1: (a) The structure of fMGCN: stacked
multi-relational graph convolutional layers (the orange
block). H(t) denotes the hidden representations of en-
tities and relations at time t. HMGCN(t) denotes the out-
put of the stacked multi-relational graph convolutional
layers. (b) The architecture of TANGO that parameter-
izes the derivatives of the hidden representations H(t).
In addition to fMGCN, a graph transition layer ftrans is
employed to model the edge formation and dissolution.

3.1 Neural ODE for Temporal KG

The temporal dynamics of a time-evolving multi-
relational graph can be characterized by the follow-
ing neural ordinary differential equation

dH(t)

dt
=fTANGO(H(t),T(t),G(t), t)

=fMGCN(H(t),G(t), t)

+ wftrans(H(t),T(t),G(t), t),

(4)

where H ∈ R(|V|+2|R|)×d denotes the hidden rep-
resentations of entities and relations. fTANGO rep-
resents the neural network that parameterizes the
derivatives of the hidden representations. Besides,
fMGCN denotes stacked multi-relational graph con-
volutional layers, ftrans represents the graph tran-
sition layer, and G(t) denotes the snapshot of the
temporal KG at time t. T(t) contains the informa-
tion on edge formation and dissolution since the
last observation. w is a hyperparameter controlling
how much the model learns from edge formation
and dissolution. We set H(t = 0) = Emb(V,R),
where Emb(V,R) denotes the learnable initial em-
beddings of entities and relations on the temporal
KG. Thus, given a time window ∆t, the repre-
sentation evolution performed by the neural ODE

assumes the following form

H(t+ ∆t)−H(t)

=

∫ t+∆t

t
fTANGO(H(τ),T(τ),G(τ), τ) dτ

=

∫ t+∆t

t
(fMGCN(H(τ),G(τ), τ)

+ wftrans(H(τ),T(τ), τ))dτ.

(5)

In this way, we use the neural ODE to learn the
dynamics of continuous-time temporal KGs.

3.2 Multi-Relational Graph Convolutional
Layer

Inspired by (Vashishth et al., 2019) and (Yang et al.,
2014), we use the entity-relation composition to
model relational information. Specifically, we pro-
pose a multi-relational graph convolutional layer
as follows. At time t, for every object entity o ∈ V
with N (o) = {(s, r)|(s, r, o, t) ∈ G(t)}, its hid-
den representation evolves as

h̃
l+1

o (t) =
1

|N (o)|
∑

(s,r)∈N (o)

Wl(hl
s(t) ∗ hr),

hl+1
o (t) = hl

o(t) + δσ(h̃
l+1

o (t)),

(6)

where hl+1
o (t) denotes the hidden representation

of the object o at the (l + 1)th layer, Wl repre-
sents the weight matrix on the lth layer, ∗ denotes
element-wise multiplication. hl

s(t) means the hid-
den representation of the subject s at the lth layer.
hl=0
s (t) = hs(t) is obtained by the ODE Solver

that integrates Equation 4 until t. δ is a learnable
weight. In this work, we assume that the relation
representations do not evolve, and thus, hr is time-
invariant. We use ReLU(·) as the activation func-
tion σ(·). From the view of the whole tKG, we
use H(t) to represent the hidden representations
of all entities and relations on the tKG. Besides,
we use fMGCN to denote the network consisting of
multiple multi-relational graph convolutional lay-
ers (Equation 6).

3.3 Graph Transition Layer
To let the model focus on the graph’s transitions,
we define a transition tensor for tKGs and use graph
convolutions to capture the information of edge for-
mation and dissolution. Given two graph snapshots
G(t −∆t) and G(t) at time t −∆t and t, respec-
tively, the graph transition tensor T(t) is defined
as

T(t) = A(t)− A(t−∆t), (7)



8356

where A(t) ∈ {0, 1}|V|×|R|×|V| is a three-way ad-
jacency tensor whose entries are set such that

Asro =

{
1, if the triple (s, r, o) exists at time t,

0, otherwise.
(8)

Intuitively, T(t) ∈ {−1, 0, 1}|V|×|R|×|V| contains
the information of the edges’ formation and disso-
lution since the last observation G(t−∆t). Specif-
ically, Tsro(t) = −1 means that the triple (s, r, o)
disappears at t, and Tsro(t) = 1 means that the
triplet (s, r, o) is formatted at t. For all unchanged
edges, their values in T(t) are equal to 0. Addi-
tionally, we use graph convolutions to extract the
information provided by the graph transition tensor:

h̃
l+1

o,trans(t) = Wtrans(Tsro(t)(hl
s(t) ∗ hr))

hl+1
o,trans(t) = σ

 1

|NT (o)|
∑

(s,r)∈NT (o)

h̃
l+1

o,trans(t)


(9)

Here, Wtrans is a trainable diagonal weight matrix
and NT (o) = {(s, r)|Tsro(t) 6= 0)}. By employ-
ing this graph transition layer, we can better model
the dynamics of temporal KGs. We use ftrans to de-
note Equation 9. By combining the multi-relational
graph convolutional layers fMGCN with the graph
transition layer ftrans, we get our final network that
parameterizes the derivatives of the hidden repre-
sentations H(t), as shown in Figure 1b.

3.4 Learning and Inference
TANGO is an autoregressive model that fore-
casts the entity representation at time t by utilizing
the graph information before t. To answer a link
forecasting query (s, r, ?, t), TANGO takes three
steps. First, TANGO computes the hidden represen-
tations H(t) of entities and relations at the time t.
Then TANGO uses a score function to compute the
scores of all quadruples {(s, r, o, t)|o ∈ V} accom-
panied with candidate entities. Finally, TANGO
chooses the object with the highest score as its
prediction.

Representation inference The representation in-
ference procedure is done by an ODE Solver, which
is H(t) = ODESolver(H(t − ∆t), fTANGO, t −
∆t, t,ΘTANGO,G). Adaptive ODE solvers may in-
cur massive time consumption in our work. To keep
the training time tractable, we use fixed-grid ODE
solvers coupled with the Interpolated Reverse Dy-
namic Method (IRDM) proposed by Daulbaev et al.

Table 1: Score Functions. hs,hr,ho denote the entity
representations of the subject entity s, object entity o,
and the representation of the relation r, respectively. d
denotes the hidden dimension of representations. W ∈
Rd×d×d is the core tensor specified in (Balazevic et al.,
2019). As defined in (Tucker, 1964), ×1,×2,×3 are
three operators indicating the tensor product in three
different modes.

Method Score Function
Distmult (Yang et al., 2014) < hs,hr,ho > hs,hr,ho ∈ Rd

TuckER (Balazevic et al., 2019) W ×1 hs ×2 hr ×3 ho hs,hr,ho ∈ Rd

(2020). IRDM uses Barycentric Lagrange interpo-
lation (Berrut and Trefethen, 2004) on Chebyshev
grid (Tyrtyshnikov, 2012) to approximate the so-
lution of the hidden states in the reverse-mode of
NODE. Thus, IRDM can lower the time cost in the
backpropagation and maintain good learning accu-
racy. Additional information about representation
inference is provided in Appendix A.

Score function Given the entity and relation rep-
resentations at the query time tq, one can compute
the scores of every triple at tq. In our work, we take
two popular knowledge graph embedding models,
i.e., Distmult (Yang et al., 2014) and TuckER (Bal-
azevic et al., 2019). Given triple (s, r, o), its score
is computed as shown in Table 1.

Parameter Learning For parameter learning,
we employ the cross-entropy loss:

L =
∑

(s,r,o,t)∈F

−log(f(o|s, r, t,V)), (10)

where f(o|s, r, t,V) = exp(score(hs(t),hr,ho(t)))∑
e∈V

exp(score(hs(t),hr,he(t))) .

e ∈ V represents an object candidate, and score(·)
is the score function. F summarizes valid quadru-
ples of the given tKG.

4 Experiments

4.1 Experimental Setup

We evaluate our model by performing future link
prediction on five tKG datasets1. We compare
TANGO’s performance with several existing meth-
ods and evaluate its potential with inductive link
prediction and long horizontal link forecasting. Be-
sides, an ablation study is conducted to show the
effectiveness of our graph transition layer.

1Code and datasets are available at
https://github.com/TemporalKGTeam/TANGO.
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4.1.1 Datasets
We use five benchmark datasets to evaluate
TANGO: 1) ICEWS14 (Trivedi et al., 2017) 2)
ICEWS18 (Boschee et al., 2015) 3) ICEWS05-15
(García-Durán et al., 2018) 4) YAGO (Mahdisoltani
et al., 2013) 5) WIKI (Leblay and Chekol, 2018).
Integrated Crisis Early Warning System (ICEWS)
(Boschee et al., 2015) is a dataset consisting of
timestamped political events, e.g., (Barack Obama,
visit, India, 2015-01-25). Specifically, ICEWS14
contains events occurring in 2014, while ICEWS18
contains events from January 1, 2018, to Octo-
ber 31, 2018. ICEWS05-15 is a long-term dataset
that contains the events between 2005 and 2015.
WIKI and YAGO are two subsets extracted from
Wikipedia and YAGO3 (Mahdisoltani et al., 2013),
respectively. The details of each dataset and the
dataset split strategy are provided in Appendix D.

4.1.2 Evaluation Metrics
We use two metrics to evaluate the model per-
formance on extrapolated link prediction, namely
Mean Reciprocal Rank (MRR) and Hits@1/3/10.
MRR is the mean of the reciprocal values of the
actual missing entities’ ranks averaged by all the
queries, while Hits@1/3/10 denotes the proportion
of the actual missing entities ranked within the
top 1/3/10. The filtering settings have been imple-
mented differently by various authors. We report
results based on two common implementations: i)
time-aware (Han et al., 2021) and ii) time-unaware
filtering (Jin et al., 2019). We provide a detailed
evaluation protocol in Appendix B.

4.1.3 Baseline Methods
We compare our model performance with nine base-
lines. We take three static KG models as the static
baselines, including Distmult (Yang et al., 2014),
TuckER (Balazevic et al., 2019), and COMPGCN
(Vashishth et al., 2019). For tKG baselines, we
report the performance of TTransE (Leblay and
Chekol, 2018), TA-Distmult (García-Durán et al.,
2018), CyGNet (Zhu et al., 2020), DE-SimplE
(Goel et al., 2020), TNTComplEx (Lacroix et al.,
2020), and RE-Net (Jin et al., 2019). We provide
implementation details of baselines and TANGO
in Appendix C.

4.2 Experimental Results
4.2.1 Time-aware filtered Results
We run TANGO five times and report the averaged
results. The time-aware filtered results are pre-

sented in Table 2, where denotes TANGO. As
explained in Appendix B, we take the time-aware
filtered setting as the fairest evaluation setting. Re-
sults demonstrate that TANGO outperforms all
the static baselines on every dataset. This implies
the importance of utilizing temporal information
in tKG datasets. The comparison between Dist-
mult and TANGO-Distmult shows the superiority
of our NODE-based encoder, which can also be
observed by the comparison between TuckER and
TANGO-TuckER. Additionally, TANGO achieves
much better results than COMPGCN, indicating
our method’s strength in incorporating temporal
features into tKG representation learning.

Figure 2: Time-aware filtered MRR of TANGO with
or without the graph transition layer on subsets of
ICEWS05-15 and WIKI. We split the graph snapshots
into two groups, where the transition tensor’s norm
||T(t)||L1 of each graph snapshot in the first group is
larger than that of all graph snapshots in the second
group. Since the graph transition layer is tailored to
graph changes, we show the results of the first group
here. The corresponding result of the ablation study
on the whole test sets are presented in Figure 8 in the
appendix.

Similarly, TANGO outperforms all the tKG base-
lines as well. Unlike TTransE and TA-Distmult,
RE-Net uses a recurrent neural encoder to capture
temporal information, which shows great success
on model performance and is the strongest baseline.
Our model TANGO implements a NODE-based
encoder in the recurrent style to capture temporal
dependencies. It consistently outperforms RE-Net
on all datasets because TANGO explicitly encodes
time information into hidden representations while
RE-Net only considers the temporal order between
events. Additionally, we provide the raw and time-
unaware filtered results in Table 5 and 4 in the
appendix.
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Datasets ICEWS05-15 - aware filtered ICEWS14 - aware filtered ICEWS18 - aware filtered WIKI - aware filtered YAGO - aware filtered
Model MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

Distmult 24.75 16.10 27.67 42.42 14.49 8.15 15.31 27.66 16.69 9.68 18.12 31.21 49.66 46.17 52.81 54.13 54.84 47.39 59.81 68.52
TuckER 27.13 17.01 29.93 47.81 18.96 11.23 20.77 33.94 20.68 12.58 22.60 37.27 50.01 46.12 53.60 54.86 54.86 47.42 59.63 68.96
CompGCN 29.68 20.72 32.51 47.87 17.81 10.12 19.49 33.11 20.56 12.01 22.96 38.15 49.88 45.78 52.91 55.58 54.35 46.72 59.26 68.29

TTransE 21.24 4.98 31.48 49.88 9.67 1.25 12.29 28.37 8.08 1.84 8.25 21.29 29.27 21.67 34.43 42.39 31.19 18.12 40.91 51.21
TA-DistMult 24.39 14.77 27.80 44.22 10.34 4.72 10.54 21.48 11.38 5.58 12.04 22.82 44.53 39.92 48.73 51.71 54.92 48.15 59.61 66.71
CyGNet 35.79 26.09 40.18 54.48 22.83 14.28 25.36 39.97 24.93 15.90 28.28 42.61 33.89 29.06 36.10 41.86 52.07 45.36 56.12 63.77
DE-SimplE 35.57 26.33 39.41 53.97 21.58 13.77 23.68 37.15 19.30 11.53 21.86 34.80 45.43 42.6 47.71 49.55 54.91 51.64 57.30 60.17
TNTComplEx 35.88 26.92 39.55 53.43 23.81 15.58 26.27 40.12 21.23 13.28 24.02 36.91 45.03 40.04 49.31 52.03 57.98 52.92 61.33 66.69
RE-Net 40.23 30.30 44.83 59.59 25.66 16.69 28.35 43.62 27.90 18.45 31.37 46.37 49.66 46.88 51.19 53.48 58.02 53.06 61.08 66.29

-TuckER 42.86 32.72 48.14 62.34 26.25 17.30 29.07 44.18 28.97 19.51 32.61 47.51 51.60 49.61 52.45 54.87 62.50 58.77 64.73 68.63
± 0.2 ± 0.3 ± 0.2 ± 0.2 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.2 ± 0.1 ± 0.2 ± 0.3 ± 0.3 ± 0.2 ± 0.3 ± 0.3 ± 0.5 ± 0.2 ± 0.1 ± 0.4

-Distmult 40.71 31.23 45.33 58.95 24.70 16.36 27.26 41.35 27.56 18.68 30.86 44.94 53.04 51.52 53.84 55.46 63.34 60.04 65.19 68.79
± 0.3 ± 0.4 ± 0.1 ± 0.5 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.2 ± 0.2 ± 0.2 ± 0.3 ± 0.3 ± 0.4 ± 0.2 ± 0.1 ± 0.4 ± 0.4 ± 0.1 ± 0.2

Table 2: Extrapolated link prediction results on five datasets. Evaluation metrics are time-aware filtered MRR (%)
and Hits@1/3/10 (%). denotes TANGO. The best results are marked in bold.

4.2.2 Ablation Study
To evaluate the effectiveness of our graph transi-
tion layer, we conduct an ablation study on two
datasets, i.e., ICEWS05-15 and WIKI. We choose
these two datasets as the representative of two types
of tKG datasets. ICEWS05-15 contains events that
last shortly and happen multiple times, i.e., Obama
visited Japan. In contrast, the events in the WIKI
datasets last much longer and do not occur periodi-
cally, i.e., Eliran Danin played for Beitar Jerusalem
FC between 2003 and 2010. The improvement of
the time-aware filtered MRR brought by the graph
transition layer is illustrated in Figure 2, showing
that the graph transition layer can effectively boost
the model performance by incorporating the edge
formation and dissolution information.

Figure 3: Time cost comparison on ICEWS05-15.
Columns marked as orange denote the time consumed
by our model.

4.2.3 Time Cost Analysis
Keeping training time short while achieving a
strong performance is significant in model eval-
uation. We report in Figure 3 the total training time
of our model and the baselines on ICEWS05-15.
We see that static KG reasoning methods generally
require less training time than temporal methods.
Though the total training time for TTransE is short,
its performance is low, as reported in the former

sections. TA-Distmult consumes more time than
our model and is also beaten by TANGO in per-
formance. RE-Net is the strongest baseline in per-
formance; however, it requires almost ten times as
much as the total training time of TANGO. TANGO
ensures a short training time while maintaining the
state-of-the-art performance for future link predic-
tion, which shows its superiority.

4.3 New Evaluation Tasks

4.3.1 Long Horizontal Link Forecasting
Given a sequence of observed graph snapshots un-
til time t, the future link prediction task infers the
quadruples happening at t + ∆t. ∆t is usually
small, i.e., one day, in standard settings (Trivedi
et al., 2017; Jin et al., 2019; Zhu et al., 2020).
However, in some scenarios, the graph informa-
tion right before the query time is likely missing.
This arouses the interest in evaluating the temporal
KG models by predicting the links in the farther
future. In other words, given the same input, the
model should predict the links happening at t+∆T ,
where ∆T >> ∆t. Based on this idea, we define
a new evaluation task, e.g., long horizontal link
forecasting.
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Figure 4: Long horizontal link forecasting: time-aware
filtered MRR (%) on ICEWS05-15 with regard to dif-
ferent ∆t.
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Datasets ICEWS05-15 - raw ICEWS05-15 - aware filtered ICEWS05-15 - unaware filtered
Model MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

RE-Net 4.96 2.20 5.39 10.12 5.02 2.29 5.49 10.12 5.50 2.95 5.93 10.26
-TuckER w.o.trans 5.13 2.58 5.67 9.91 5.18 2.64 5.70 9.94 5.98 3.34 6.71 10.67
-Distmult w.o.trans 3.72 2.05 3.80 6.76 3.76 2.09 3.82 6.77 4.09 2.46 4.17 6.99
-TuckER 5.74 3.07 6.48 10.74 5.81 3.16 6.52 10.78 6.75 4.11 7.60 11.54
-Distmult 5.00 2.70 5.67 9.16 5.05 2.78 5.69 9.17 5.69 3.45 6.27 9.69

Table 3: Inductive future link prediction results on ICEWS05-15. Evaluation metrics are raw, time-aware filtered,
and time-unaware filtered MRR (%), Hits@1/3/10 (%). w.o.trans means without the graph transition layer. The
best results are marked in bold.

To perform long horizontal link forecasting, we
adjust the integral length according to how far the
future we want to predict. As described in Figure
5, the integration length between the neighboring
timestamps is short for the first k steps, e.g., inte-
gration from (t − tk) to (t − tk + ∆t). However,
for the last step, e.g., integration from t to t+ ∆T ,
the integration length becomes significantly large
according to how far the future we want to predict.
The larger ∆T is, the longer the length is for the
last integration step.

Figure 5: Graphical illustration of long horizontal link
forecasting. Given a sequence of graph snapshots G =
{G(t−tk), ...,G(t)}, whose length is k, test quadruples
at t+ ∆T are to be predicted.

We report the results corresponding to different
∆T on ICEWS05-15 and compare our model with
the strongest baseline RE-Net. In Figure 4, we ob-
serve that our model outperforms RE-Net in long
horizontal link forecasting. The gap between the
performances of the two models diminishes as ∆T
increases. This trend can be explained in the fol-
lowing way. Our model employs an ODE solver to
integrate the graph’s hidden states over time. Since
TANGO takes the time information into account
and integrates the ODE in the continuous-time do-
main, its performance is better than RE-Net, which
is a discrete-time model. However, TANGO as-
sumes that the dynamics it learned at t also holds
at t + ∆T . This assumption holds when ∆T is
small. As ∆T increases, the underlying dynamics
at t+∆T would be different from the dynamics at t.
Thus, the TANGO’s performance degrades accord-
ingly, and the advancement compared to RE-Net

also vanishes.

4.3.2 Inductive Link Prediction
New graph nodes might emerge as time evolves in
many real-world applications, i.e., new users and
items. Thus, a good model requires a strong gen-
eralization power to deal with unseen nodes. We
propose a new task, e.g., inductive link prediction,
to validate the model potential in predicting the
links regarding unseen entities at a future time. A
test quadruple is selected for the inductive predic-
tion if either its subject or object or both haven’t
been observed in the training set. For example, in
the test set of ICEWS05-15, we have a quadruple
(Raheel Sharif, express intent to meet or negotiate,
Chaudhry Nisar Ali Khan, 2014-12-29). The en-
tity Raheel Sharif does not appear in the training
set, indicating that the aforementioned quadruple
contains an entity that the model does not observe
in the training set. We call the evaluation of this
kind of test quadruples the inductive link prediction
analysis.

We perform the future link prediction on these in-
ductive link prediction quadruples, and the results
are shown in Table 3. We compare our model with
the strongest baseline RE-Net on ICEWS05-15.
We also report the results achieved by TANGO
without the graph transition layer to show the per-
formance boost brought by it. As shown in Table 3,
TANGO-TuckER achieves the best results across
all metrics. Both TANGO-TuckER and TANGO-
Distmult can beat RE-Net, showing the strength
of our model in inductive link prediction. The re-
sults achieved by the TANGO models are much
better than their variants without the graph transi-
tion layers, which proves that the proposed graph
transition layer plays an essential role in inductive
link prediction.

5 Conclusions

We propose a novel representation method,
TANGO , for forecasting future links on tem-
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poral knowledge graphs (tKGs). We propose a
multi-relational graph convolutional layer to cap-
ture structural dependencies on tKGs and learn
continuous dynamic representations using graph
neural ordinary differential equations. Especially,
our model is the first one to show that the neural
ODE can be extended to modeling dynamic multi-
relational graphs. Besides, we couple our model
with the graph transition layer to explicitly capture
the information provided by the edge formation
and deletion. According to the experimental results,
TANGO achieves state-of-the-art performance on
five benchmark datasets for tKGs. We also pro-
pose two new tasks to evaluate the potential of link
forecasting models, namely inductive link predic-
tion and long horizontal link forecasting. TANGO
performs well in both tasks and shows its great
potential.
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Appendix

A Representation Inference

Assume we want to forecast a link at t. We take
the graph histories between the timestamp (t− tk)
and the timestamp t into account, where tk indi-
cates the length of history. To infer the hidden
representations H(t), we first use the initial em-
beddings Emb(V,R) to approximate the hidden
representations H(t− tk). Then we take H(t− tk)
as the NODE input at the timestamp (t− tk), and
integrate it with an ODE solver ODESolver(H(t−
tk), fTANGO, t−tk, t,ΘTANGO,G) over time. As the
hidden state evolves with time, it learns from differ-
ent graph observations taken at different time. The
whole process is described in Figure 6 and Algo-
rithm 1. In Figure 6, set_graph and set_transition
stand for two functions used to feed graph snap-
shots and the transition tensors into the neural net-
work fTANGO. They are called at every observation
time before integration.

Figure 6: Illustration of the inference procedure. The
shaded purple area represents the whole architecture of
TANGO. It is a Neural ODE equipped with a GNN-
based module fTANGO. Dashed arrows denote the input
and the output path of the graph’s hidden state. Red
solid arrows indicate the continuous hidden state flows
learned by TANGO. Black solid lines represent that
TANGO calls the function set_graph and set_trans. The
corresponding graph snapshots G and transition tensors
T are input into fTANGO for learning temporal dynam-
ics.

B Evaluation Metrics

We report the results in three settings, namely raw,
time-unaware filtered, and time-aware filtered. For
time-unaware filtered results, we follow the fil-
tered evaluation constraint applied in (Bordes et al.,
2013; Jin et al., 2019), where we remove from
the list of corrupted triplets all the triplets that ap-
pear either in the training, validation, or test set ex-

http://arxiv.org/abs/2010.11465
http://arxiv.org/abs/2010.11465
http://arxiv.org/abs/2010.11465
http://arxiv.org/abs/1703.06103
http://arxiv.org/abs/1703.06103
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Datasets ICEWS05-15 - raw ICEWS14 - raw ICEWS18 - raw WIKI - raw YAGO - raw
Model MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR HITS@1 HITS@3 HITS@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

Distmult 24.55 15.85 27.53 42.17 14.00 7.72 14.65 27.16 16.30 9.25 17.67 30.93 42.08 34.29 48.69 53.25 47.66 36.59 55.89 67.45
TuckER 26.95 16.81 29.69 47.61 18.39 10.69 20.01 33.42 20.20 12.08 21.99 36.91 42.50 34.41 49.41 53.90 47.48 36.20 55.55 68.07
COMPGCN 29.41 20.41 32.17 47.65 17.13 9.36 18.84 32.54 19.98 11.45 22.25 37.73 42.33 34.02 48.65 54.63 47.08 65.36 66.90 68.81

TTransE 20.89 4.88 3.11 49.66 9.21 1.12 11.19 27.46 7.92 1.75 8.00 21.02 19.53 12.34 23.11 32.47 26.18 12.36 36.16 48.00
TA-DistMult 24.03 14.37 27.36 44.04 9.92 4.39 9.99 20.90 11.05 5.24 11.72 22.55 27.33 19.94 32.05 39.42 45.54 36.54 51.08 62.15
RE-Net 39.31 28.88 44.40 59.38 23.84 14.60 26.48 42.58 26.62 16.91 30.26 45.82 31.10 25.31 34.13 41.33 46.28 37.52 51.77 61.55

-TuckER 41.82 31.10 47.55 62.19 24.36 15.12 27.15 43.07 27.59 17.77 31.40 46.92 31.99 25.74 35.00 42.61 49.31 40.78 55.12 63.73
-Distmult 40.23 30.53 44.95 59.05 22.87 14.22 25.43 40.32 26.21 16.92 29.77 44.41 32.53 26.33 35.75 43.17 49.49 40.90 55.42 63.74

Table 4: Future link prediction results on benchmark datasets. Evaluation metrics are raw MRR (%) and
Hits@1/3/10 (%). denotes TANGO. The best results are marked in bold.

Datasets ICEWS05-15 - unaware filtered ICEWS14 - unaware filtered ICEWS18 - unaware filtered WIKI - unaware filtered YAGO - unaware filtered
Model MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

Distmult 48.77 43.85 51.22 57.99 33.88 27.86 36.16 45.14 40.28 36.04 41.78 48.36 53.22 52.61 53.41 54.20 67.55 66.76 67.49 69.11
TuckER 58.69 54.74 59.82 66.57 46.51 41.11 49.45 57.34 44.50 38.33 46.11 53.71 53.97 52.70 54.15 54.94 67.40 66.22 67.62 69.84
COMPGCN 49.60 43.13 52.85 61.59 38.15 31.04 41.00 51.44 35.68 27.87 39.38 49.94 53.54 52.29 53.61 55.76 66.66 65.36 66.90 68.81

TTransE 28.81 5.83 48.67 60.38 15.95 1.57 25.98 42.67 10.52 3.01 11.98 26.16 31.94 24.82 36.91 43.55 33.73 20.99 43.51 52.61
TA-DistMult 38.54 29.94 42.92 54.81 18.74 11.97 20.32 31.95 16.27 10.22 17.39 27.91 50.18 48.65 51.41 52.37 66.06 64.36 66.78 68.74
RE-Net 57.66 51.86 60.40 68.60 45.24 37.82 48.53 58.92 43.02 36.26 45.61 56.03 52.27 50.92 52.73 53.57 64.68 62.94 65.11 67.82

-TuckER 59.93 54.99 62.65 69.64 46.42 38.94 50.25 59.80 44.56 37.87 47.46 57.06 53.28 52.21 53.61 54.84 67.21 65.56 67.59 70.04
-Distmult 58.89 54.42 60.76 67.47 46.68 41.20 48.64 57.05 44.00 38.64 45.78 54.27 54.05 51.52 53.84 55.46 68.34 67.05 68.39 70.70

Table 5: Future link prediction results on benchmark datasets. Evaluation metrics are time-unaware filtered MRR
(%) and Hits@1/3/10 (%). denotes TANGO. The best results are marked in bold.

cept the triplet of interest. Time-unaware filtering
setting is inappropriate for temporal KG reason-
ing, while the time-aware filtering setting provides
fairer results. For time-aware filtered results, we
follow the setting proposed by (Han et al., 2021)
by only removing from the list of corrupted triplets
all the triplets that appear at the query time tq. The
following example illustrates the reason why the
time-aware filtered results are fairer than the time-
unaware filtered results. Assume we have a test
quadruple of interest (Xi Jinping, make a visit, New
Zealand, 2014-11-26) in the test set, and we de-
rive an object prediction query (Xi Jinping, make a
visit, ?, 2014-11-26) from this quadruple where the
query time is 2014-11-26. Additionally, we have
another quadruple (Xi Jinping, make a visit, South
Korea, 2014-07-05) in the test set. According to
the time-unaware filtering setting (Bordes et al.,
2013), (Xi Jinping, make a visit, South Korea) will
be filtered out since it appears in the test set. How-
ever, it is unreasonable because (Xi Jinping, make
a visit, South Korea) is not valid at 2014-11-26.
Therefore, we use the time-aware filtered setting,
which, in our example, will only filter the triplets
(Xi Jinping, make a visit, o) appearing at 2014-11-
26. Here, o denotes all the objects from triplets
accompanied with Xi Jinping, Make a visit, and the
date 2014-11-26.

C Implementation Details

We train TANGO with the following settings. We
tune the model across a range of hyperparameters
as shown in Table 7. We do 432 trials, and each
trial runs 20 epochs. We select the best-performing

configuration according to filtered MRR on val-
idation data. The best configuration will be fur-
ther trained until its convergence. We run the
selected configuration five times and obtain an
averaged results. Specifically, we use a fixed-
grid ODE solver, fourth-order Runge-Kutta, as the
ODE solver, and implement the interpolated re-
verse dynamic method (Daulbaev et al., 2020) with
3 Chebyshev nodes to keep training time tractable
while maintaining high precision. To improve the
ODE solver’s precision, we re-scale the time range
of each dataset from 0 to 0.01 (or 0.1). This step
restricts the length of ODE integration, preventing
the high error induced by ODE solvers. For each
query, we set the time range of the input history tk
to 4 days for the ICEWS datasets. For WIKI and
YAGO, we set tk to 4 years. Besides, we choose
different values for the transition coefficient w for
different datasets. Our model is implemented with
PyTorch (Paszke et al., 2019), and the experiments
are run on GeForce RTX 2080 Ti. A detailed report
of the best configuration is provided in Table 8.

We implement Distmult in PyTorch and use the
binary cross-entropy loss for learning parameters.
We use the official implementation of TuckER2,
COMPGCN3, and RE-Net4. For a fair comparison,
we choose to use the variant of RE-Net with ground
truth history during multi-step inference, and thus
the model knows all the interactions before the time
for testing. Besides, we set the history length of
RE-Net to 10 and use the max-pooling in the global

2https://github.com/ibalazevic/TuckER
3https://github.com/malllabiisc/CompGCN
4https://github.com/INK-USC/RE-Net
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Datasets ICEWS05-15 - aware filtered ICEWS18 - aware filtered WIKI - aware filtered YAGO - aware filtered
Model MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

-TuckER 44.57 34.40 49.94 63.95 30.68 20.75 34.61 50.43 62.29 59.54 63.92 66.63 69.29 64.33 72.40 77.63
-Distmult 43.33 33.46 48.45 62.05 29.62 20.18 33.35 48.36 63.93 62.14 64.74 67.06 70.79 66.15 74.04 78.18

Table 6: Validation results on benchmark datasets regarding our model. Evaluation metrics are time-aware filtered
MRR (%) and Hits@1/3/10 (%). denotes TANGO. The best results are marked in bold. ICEWS14 has no
validation set.

model. Additionally, we use the implementation of
TTransE and TA-Distmult provided in (Jin et al.,
2019). For TA-Distmult, the vocabulary of tempo-
ral tokens consists of year, month, and day for all
the datasets. We use the released code to imple-
ment DE-SimplE5, TNTComplEx6, and CyGNet7.
All the baselines are trained with Adam Optimizer
(Kingma and Ba, 2017), and the batch size is set to
512.

Table 7: Search space of hyperparameters. w repre-
sents the weight controlling how much the model learns
from edge formation and dissolution. Scale represents
the time range re-scaling parameter as introduced in C.

Hyperparameter Search space
Embedding size {200, 300}
# MGCN layer {2, 3}
Decoder {TuckER, Distmult}
Scale {0.001, 0.01, 0.1}
w {0.01, 0.1, 1}
Dropout {0.3, 0.5}
History length {4, 6, 10}

Table 8: Best hyperparameter settings on each dataset.

Datasets ICEWS14 ICEWS18 ICEWS05-15 WIKI YAGO

Hyperparameter

Embedding size 200 200 200 200 300
# MGCN layer 2 2 2 2 3
Decoder TuckER TuckER TuckER Distmult Distmult
Scale 0.01 0.1 0.1 0.1 0.1
w 0.01 1 0.01 1 1
Dropout 0.3 0.3 0.3 0.3 0.3
History length 4 4 4 4 4

D Datasets

Table 9 We follow the data preprocessing method
and the dataset split strategy proposed in (Jin et al.,
2019). Specifically, we split each dataset except
ICEWS14 in chronological order into three parts,
e.g., 80%/10%/10% (training/validation/test). For
ICEWS14, we split it into the training set and test-
ing set with 50%/50% since ICEWS14 is not pro-

5https://github.com/BorealisAI/de-simple
6https://github.com/facebookresearch/tkbc
7https://github.com/CunchaoZ/CyGNet

vided with a validation set. As explained in (Jin
et al., 2019), the difference between the first type
(ICEWS) and the second type (WIKI and YAGO)
of tKG datasets is that the first type datasets are
events that often last shortly and happen multiple
times, i.e., Obama visited Japan four times. In con-
trast, the events in the second type datasets last
much longer and do not occur periodically, i.e., Eli-
ran Danin played for Beitar Jerusalem FC between
2003 and 2010.

Dataset Ntrain Nvalid Ntest |V| |R| Nobs

ICEWS14 (Trivedi et al., 2017) 323, 895 − 341, 409 12, 498 260 365
ICEWS18 (Boschee et al., 2015) 373, 018 45, 995 49, 545 23, 033 256 304

ICEWS05-15 (García-Durán et al., 2018) 369, 104 46, 188 46, 037 10, 488 251 4, 017
WIKI (Leblay and Chekol, 2018) 539, 286 67, 538 63, 110 12, 554 24 232
YAGO (Mahdisoltani et al., 2013) 161, 540 19, 523 20, 026 10, 623 10 189

Table 9: Dataset statistics. Ntrain, Nvalid, Ntest represent
the number of quadruples in the training set, validation
set, and test set, respectively. Nobs denotes the number
of observations, where we take a snapshot of the tKG
at each observation.

E Impact of Past History Length

As mentioned in A, TANGO utilizes the previous
histories between (t− tk) and t to forecast a link
at t, where tk is a hyperparameter. Figure 7 shows
the performance with various lengths of past his-
tories along with the corresponding training time.
When TANGO uses longer histories, MRR is get-
ting higher. However, a long history requires more
forwarding inferences. The choice of history length
is a trade-off between the performance and com-
putational cost. We observe that the gain of MRR
compared to the training time is not significant
when the length of history is four and over. Thus,
the history length of four is chosen in our experi-
ments.

F Analysis on Temporal KGs with
Irregular Time Intervals

Most existing tKG reasoning models cannot prop-
erly deal with temporal KGs with irregular time
intervals, while TANGO model them much bet-
ter due to the nature of Neural ODE. We verify
this via experiments on a new dataset. We call it
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Figure 7: Time-aware filtered MRR (%) and Training
Time (seconds) on ICEWS05-15 corresponding to dif-
ferent history length (days).

Figure 8: Time-aware filtered MRR of TANGO with
or without the graph transition layer on the whole test
sets of ICEWS05-15 and WIKI.

ICEWS05-15_continuous. We sample the times-
tamps in ICEWS05-15 and keep the time intervals
between each two of them in a range from 1 to 4.
We only keep the temporal KG snapshots at the
sampled time and extract a new subset. ICEWS05-
15_continuous fits the setting when observations
are taken non-periodically in continuous time. The
dataset statistics of ICEWS05-15_continuous is re-
ported in Table 11. We train our model and baseline
methods on it and evaluate them with time-aware
filtered MRR. As shown in Table 10, we validate
that TANGO performs well on temporal KGs with
irregular time intervals.

G Average runtime for each approach

Table 12 show the average runtime for each model.

Datasets ICEWS05-15 continuous - aware filtered ICEWS05-15 - aware filtered
Model MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TTransE 20.55 5.36 29.80 47.54 21.24 4.98 31.48 49.88
CyGNet 34.13 25.06 37.85 51.94 35.79 26.09 40.18 54.48
DE-SimplE 33.56 24.79 37.32 50.63 35.57 26.33 39.41 53.97
TNTComplEx 33.96 24.93 37.86 51.30 35.88 26.92 39.55 53.43

-TuckER 37.69 28.01 45.00 59.05 42.86 32.72 48.14 62.34
-Distmult 36.91 26.91 40.28 54.34 40.71 31.23 45.33 58.95

Table 10: Future link prediction results on ICEWS05-
15 continuous dataset. Evaluation metrics are time-
aware filtered MRR (%) and Hits@1/3/10 (%). de-
notes TANGO. The best results are marked in bold.

Dataset Ntrain Nvalid Ntest |V| |R| Nobs

ICEWS05-15 continuous 149, 001 17, 962 17, 902 10, 488 251 1, 589

Table 11: Dataset statistics. Ntrain, Nvalid, Ntest repre-
sent the number of quadruples in the training set, vali-
dation set, and test set, respectively. Nobs denotes the
number of observations, where we take a snapshot of
the tKG at each observation.

Table 12: Average training time (second) until conver-
gence

Datasets ICEWS14 ICEWS18 ICEWS05-15 WIKI YAGO

Model Runtime Runtime Runtime Runtime Runtime

Distmult 743 1,365 401 2,245 3,310
TuckER 730 3,147 1,626 5,093 2,795
COMPGCN 9,226 6,432 1,607 5,810 2,233
TTransE 15,840 23,894 35,520 19,337 5,395
TA-Distmult 6,232 112,188 110,460 83,999 27,833
RE-Net 33,313 46,068 190,076 42,983 27,489

-TuckER 5,796 3,786 15,301 9,218 2,355
-Distmult 3,593 2,883 11,085 15,086 5,106


