
An Analysis of Tensor Models
for Learning on Structured Data

Maximilian Nickel1 and Volker Tresp2

1 Ludwig Maximilian University, Oettingenstr. 67, Munich, Germany
nickel@dbs.ifi.lmu.de

2 Siemens AG, Corporate Technology, Otto-Hahn-Ring 6, Munich, Germany
volker.tresp@siemens.com

Abstract. While tensor factorizations have become increasingly popu-
lar for learning on various forms of structured data, only very few theo-
retical results exist on the generalization abilities of these methods. Here,
we discuss the tensor product as a principled way to represent structured
data in vector spaces for machine learning tasks. To derive generaliza-
tion error bounds for tensor factorizations, we extend known bounds for
matrix factorizations to the tensor case. Furthermore, we analyze exper-
imentally and analytically how tensor factorization behaves for learning
on over- and understructured representations, for instance, when matrix
factorizations are applied to tensor data.

Keywords: Tensor Factorization, Structured Data, Generalization Er-
ror Bounds

1 Introduction

Learning from structured data is a very active line of research in a variety of
fields, including social network analysis, natural language processing, bioinfor-
matics, and artificial intelligence. While tensor factorizations have a long tradi-
tion in Psycho- and Chemometrics, only more recently they have been applied
to various tasks on structured data in machine learning. Examples include link
prediction and entity resolution on multi-relational data [18,13] and large knowl-
edge bases [3,19], item recommendation on sequential data [20], or the analysis
of time varying social networks [2]; only to name a few examples. A reason for
the success of tensor methods in these tasks is their very appealing property to
efficiently impose structure on vector space representations of data. Moreover,
tensor factorizations can be related to multilinear models, which overcome lim-
itations of linear models, such as their limited expressiveness, but at the same
time remain more scalable and easier to handle than more general non-linear
approaches. However, despite their increasing popularity and these appealing
properties, only very few theoretical results exist on the generalization abilities
of tensor factorizations. Furthermore, an important open question in addition
to the overall generalization ability of tensor factorizations is what kind of im-
provements over simpler, less structured models can be expected in terms of

2 Maximilian Nickel and Volker Tresp

learning success. For instance, propositionalization, which transforms relational
data into feature-based representations, has been considered as a mean for re-
lational learning [15,12]. In terms of tensor factorization, propositionalization
would be equivalent to transforming a tensor into a matrix representation prior
to computing the factorization. While it has been shown empirically that tensor
methods usually scale better with the amount of missing data than their matrix
counterparts [25,16,24,21] and that they can yield significantly improved results
over “flat” methods that ignore a large part of the data structure [18], no theo-
retical justification of this behavior is known in terms of generalization bounds.

In this paper, we approach several of these questions. First, we will briefly
discuss the tensor product as a principled way to derive vector space represen-
tations of structured data. Furthermore, we will present the first generalization
error bounds of tensor factorizations for classification tasks. We will analyze ex-
perimentally the effect of increasing the structure of vector space representations
via the tensor product as well as the effect of constraints that are applied by
popular tensor decompositions. Based on the newly derived bounds we discuss
how these results can be interpreted analytically.

2 Theory and Methods

In this section we will briefly review concepts related to tensor factorizations and
which are important for the course of this paper. Furthermore, we will discuss
how structured data can be modeled via weighted sets of n-tuples, what enables a
closer analysis of the relations between tensor factorizations and structured data.

In the following, scalars will be denoted by lowercase letters x; vectors will be
denoted by bold lowercase letters x,y with elements xi, yj . Vectors are assumed
to be column vectors. Matrices will be denoted by uppercase letters X,Y with
elements xij . Tensors will be indicated by upright bold uppercase letters X,Y
with elements xi1,...,in . For notational convenience, we will often group tensor
indices into a vector i = [i1, · · · , in]T and write xi instead of xi1,...,in . Sets will
be denoted by calligraphic letters S and their cardinality by |S|.

2.1 Tensor Product

First, we will review basic properties of the tensor product for which we will
follow mostly the discussion in [4] and [14].

Definition 1 (Tensor Product of Vectors). The tensor product of vectors
x ∈ Rm and y ∈ Rn, denoted by x⊗ y, is an array with mn entries, where

(x⊗ y)ij = xiyj

The defining property of the tensor product of vectors is that (x⊗ y)ij = xiyj .
However, since the shape of x⊗ y is not defined, there exists a deliberate ambi-
guity in how to compute the tensor product of vectors. Possible ways to compute

An Analysis of Tensor Models for Learning on Structured Data 3

the array x⊗ y are

x⊗ y = xyT ∈ Rm×n (1)

x⊗ y =
[
x1y

T x2y
T . . . xny

T
]T ∈ Rmn (2)

We will refer to Eq. (1) as a structured representation of x ⊗ y and to Eq. (2)
as a vectorized representation. Usually, it will be clear from context which op-
tion is used. The tensor product of vectors preserves their independence: if the
vectors {x1, . . . ,xn} and {y1, . . . ,ym} are, respectively, linearly independent,
then the vectors {xi ⊗ yj | i = 1 . . . n, j = 1 . . .m} are also linearly indepen-
dent. The tensor product of vectors is easily extended to more then two vectors,
e.g. (x⊗ y⊗ z)ijk = xiyjzk. In the following, we will denote the tensor product
of n vectors also by

⊗
n vn.

Definition 2 (Tensor Product of Vector Spaces). The tensor product of
vector spaces V and W , denoted by V ⊗W , is defined to be the vector space
consisting of all linear combinations

∑
i aivi ⊗wi, where vi ∈ V and wi ∈ W .

Similarly to the tensor product of vectors, the tensor product of vector spaces
is easily extended to more than two vector spaces. In the following,

⊗
n Vn will

denote the tensor product of n vector spaces.

Definition 3 (Tensor). Let V =
⊗

n Wn be a tensor product space with n ≥ 1.
The elements of V are called n-th order tensors.

Following Definition 1 and Definition 3, tensors can be interpreted in different
ways. One way is as a vector in a structured vector space, what corresponds to
the vectorized representation in Eq. (2). However, since there exists the equiva-
lent structured representation in Eq. (1), tensors can also be regarded as multi-
dimensional arrays, which is the more commonly used interpretation. Here, we
will use both interpretations interchangeably. It also follows immediately, that
vectors are first-order tensors and matrices are second-order tensors. In the fol-
lowing, ord(X) will denote the order of a tensor X. For notational convenience,
we will also write X ∈ R

∏
i ni instead of X ∈ Rn1×···×nk .

2.2 Structured Data, the Cartesian, and the Tensor Product

To analyze the relation between the order of a tensor and the “structuredness”
of data representation we introduce the concept of the order of structured data.
The general framework in which we will describe this concept is in form of sets
of weighted n-tuples, which are defined as follows:

Definition 4 (Sets of Weighted n-Tuples). A set of weighted n-tuples T is
a 4-tuple (V, E , φ, n), where E is a set of n-tuples

(
v(1), . . . , v(n)

)
where v(i) ∈ V(i)

such that V =
⋃n

i=1 V(i) is the set of all elements in all tuples. The function
φ : V(1) × · · ·×V(n) 7→ R assigns a weight to each n-tuple in E. For conciseness,
we will refer to sets of weighted n-tuples as tuple-sets.

4 Maximilian Nickel and Volker Tresp

Tuple-sets are a very general form of data representation that allow us to
consider many forms of structured data, common in machine learning.3 For in-
stance, dyadic multi-relational data – as it arises for instance in the Semantic
Web or Linked Data – has a natural representation as a tuple-set, where V con-
sists of all entities and predicates in the data, while E consists of (predicate,
entity, entity) tuples and φ : E 7→ {0, 1} is the function

φ(pi, ej , ek) =

{
1, if pi(ej , ek) is true

0, otherwise
.

The variables pi, ej in φ range over all predicates and entities in the data. Ob-
viously, this type of representation can be easily extended to higher-order rela-
tions. Similarly, sequential or time-varying data can be modeled via n-tuples such
as (user, item, last item) triples for item recommendation [20] or (person,
person, month) triples in time-varying social networks [2]. At last, traditional
attribute-value data, as it is common in many machine learning applications, can
be modeled via (object, feature) pairs, which are weighted by the respective
attribute values, e.g. φ(Anne,age) = 36.

Using tuple-sets, we can now define the order of structured data as follows

Definition 5 (Order of Structured Data). The order of structured data D
is defined as the minimal length n of weighted sets of n-tuples T = (V, E , φ, n)
that is necessary to model D without loss of information.

Tuple-sets can be modeled very naturally using tensors in the following way:
Let T = (V, E , φ, n) be a tuple-set and let I(i) be the standard basis of dimension
|V(i)|, such that it indexes the elements of V(i). It is straightforward to show
that for standard bases, the tensor product behaves like the Cartesian product.
Consequently, any set of n-tuples can be modeled as a tensor Y ∈

⊗n
i=1 I

(i) with

yi1,...,in = φ
(
v
(1)
i , . . . , v

(n)
j

)
meaning, that each element of the tensor Y receives the value of the weight
function φ for the corresponding n-tuple in T . Using this construction, each set
of objects V(i) is indexed separately by a mode of the tensor Y. Therefore, it
holds that the order of the tensor Y is identical to the order of the tuple-set T .
This enables us to rephrase the question how the structuring of a vector space
representation affects the generalization ability of a factorization in terms of the
order of tuple-sets and the order of tensors. In particular we are interested in
how the generalization ability changes for a tensor representation that has not
the same order as the underlying tuple-set; compared to a tensor representation
that has the identical order.

In this work, we will only consider the problem of learning from sets of binary-
weighted tuples, i.e. tuple-sets with weight functions of the form φ : E 7→ {0, 1}.
3 In fact, tuple-sets can be interpreted as a directed generalization of hypergraphs.
However, since there is only very few theoretical work on this form of hypergraphs,
we refrain from overcomplicating the discussion unnecessarily.

An Analysis of Tensor Models for Learning on Structured Data 5

This corresponds to a classification setting on binary tensors where yi ∈ {0, 1}
indicates the presence or absence of an n-tuple.

2.3 Tensor Factorizations

Learning via tensor factorizations is based on the idea of explaining an observed
tensor Y through a set of latent factors. The Tucker decomposition is a very
general form of factorizing a tensor and allows us to consider different factoriza-
tion methods within this framework through additional constraints. The Tucker
decomposition is defined as

Definition 6 (Tucker Decomposition). Let Y ∈ R
∏

i ni be an observed ten-
sor with ord(Y) = m. The Tucker decomposition with n-rank (r1, . . . , rm) fac-
torizes Y such that each entry of Y is described by the multilinear polynomial

yi1,...,im ≈
r1∑

j1=1

r2∑
j2=1

· · ·
rm∑

jm=1

wj1,...,jm

m∏
k=1

u
(k)
ik,jk

(3)

Following the discussion in Section 2.2, the factorization Eq. (3) can be inter-
preted as learning a multilinear function φ which maps m- tuples from m index
sets to the entries of Y.

In the following, it will prove convenient to state Eq. (3) in different notations.
In tensor notation, Eq. (3) is equivalent to

Y ≈ W ×1 U
(1) ×2 · · · ×m U (m) (4)

where ×i denotes the n-mode product of a tensor and a matrix in mode i, while
U (i) ∈ Rni×ri is the latent factor matrix for mode i and W ∈ Rr1×...×rm is
the core tensor of the factorization. Furthermore, via the unfolding operation on
tensors and the Kronecker product, Eq. (4) can be stated in matrix notation as

Y(i) ≈ U (i)W(i)

(
U (m) ⊗ · · · ⊗ U (i+1) ⊗ U (i−1) ⊗ · · · ⊗ U (1)

)T

(5)

We will also shorten n-rank(Y) = (r1, . . . , rm) to n-rank(Y) = r. Furthermore,
we define some quantities associated with the Tucker decomposition that will
prove convenient for the rest of this paper.

Definition 7. Let X = W×1U
(1)×2· · ·×mU (m) with n-rank(X) = r, m = ord(X)

and X ∈ R
∏

i ni . The number of variables of a Tucker decomposition, i.e. the
number of entries in the latent factors, is then given by

var(X) =

m∏
i=1

ri +

m∑
i=1

niri

The number of polynomials associated with X, i.e. the number of entries in X,
is denoted by

pol(X) =

m∏
i=1

ni

6 Maximilian Nickel and Volker Tresp

By applying specific constraints on the core tensor or the latent factors, vari-
ous important factorization methods can be expressed as special cases within
the Tucker decomposition framework. One focus of this work is to analyze how
these constraints affect the generalization ability of a factorization. In the follow-
ing, we will briefly discuss some important models to illustrate these constraints:
Most matrix factorization methods, can be considered a Tucker decomposition of
a second-order tensor. For instance, the singular value decomposition can be
expressed as a Tucker decomposition of a second order tensor with orthogo-
nal factor matrices. Furthermore, Candecomp / Parafac (CP) [10,7] is a very
popular tensor factorization, which can be described as a Tucker decomposi-
tion with the additional constraints that the core tensor W is superdiagonal
and r1 = r2 = · · · = rm. Similarly, the very general Block-Term decomposition
(BTD) [8] can be regarded as imposing the constraint that the core tensor W
is blockdiagonal. While CP and BTD are decompositions that put special con-
straints on the core tensor, Rescal [18] is a factorization that constrains the
number of different vector spaces that are considered. Specifically, it requires that
some of the latent factors are identical, which corresponds to the fact that, for
some index sets V(i), V(j) of the underlying tuple-set, it holds that V(i) = V(j).
Due to space constraints we refer the interested reader to [14] for a thorough
introduction to tensor factorizations.

3 Generalization Bounds for Low-Rank Factorizations

To get deeper theoretical insight into the generalization ability of tensor factor-
izations, we will now present generalization error bounds; an important method
to study the generalization abilities of learning methods. This section is struc-
tured as following: In Section 3.1 and Section 3.2 we will derive generalization
error bounds for the zero-one loss and real-valued loss functions, based on the
number of sign patterns that a factorization can express. In these sections, we
will closely follow the theory developed in [23,22] and extend it to the general
multilinear setting. Upper and lower bounds on the number of sign patterns that
a tensor factorization can express are then given in Section 3.3.

Consider the following setting: Let Y be the tensor representation of struc-
tured data, where a subset of entries yi has been observed and let the set
Ω = {i | yi observed} hold the indices of these observed entries. Then, we seek
to predict the missing entries in Y, by computing a factorization such that

Y ≈ W ×1 U
(1) ×2 · · · ×m U (m) = X.

Similar to the matrix case [22], we now seek to bound the true discrepancy
between the predicted tensor X and the target tensor Y as a function of the
discrepancy of the observed entries Ω of Y. The discrepancy of tensors is defined
relative to a specific loss function ∆(· , ·). The true discrepancy of a predicted
tensor X and a target tensor Y with ord(X) = ord(Y) = m is defined as

D(X,Y) =
1∏m

i=1 ni

n1∑
i1=1

n2∑
i2=1

· · ·
nm∑

im=1

∆(xi1,...im , yi1,...,im)

An Analysis of Tensor Models for Learning on Structured Data 7

while the empirical discrepancy is given as

DΩ(X,Y) =
1

|Ω|
∑
i∈Ω

∆(xi, yi)

For this purpose, we restrict the latent tensor X to the class of fixed n-rank
tensors of a given order, which will be denoted by

Xr := {X | n-rank(X) ≤ r}

Please note that by restricting the factorization to a Tucker-type decomposition
and by fixing n-rank(X) = r, we also fix the quantity var(X), while ord(X) and
pol(X) are already determined by the target tensor Y. By using the discrepancy
of tensors, we then seek to derive PAC-type error bounds of the form

∀Y ∈ R
∏

n : Pr
Ω

(
∀X ∈ Xr : D(X,Y) ≤ DΩ(X,Y) + ε(n, |Ω|,Xr, δ)

)
≥ 1− δ

(6)
such that the true discrepancy for all tensors in Xr is bounded by their discrep-
ancy on the observed entries Ω. An important assumption that will be made is
that the set of observed entries Ω is chosen uniformly at random.

3.1 Bounds for Zero-One Sign Agreement Loss

A reasonable choice for ∆(·, ·) in a classification setting is the zero-one loss, i.e.

∆(a, b) =

{
0, if sgn(a) = sgn(b)

1, otherwise.

For target entries yi ∈ {±1}, the zero-one loss ∆(xi, yi) is independent of the
magnitude of the predictions xi and only depends on their sign. A central concept
in the following discussion will therefore be the equivalence classes of tensors
with identical sign patterns, i.e. the elements of the set

Sn,r =
{
sgn(X) ∈ {−1, 0,+1}

∏
n
∣∣∣X ∈ R

∏
n, n-rank(X) ≤ r

}
.

Consequently, the cardinality |Sn,r| specifies how many different sign patterns
can be expressed by factorizations with n-rank(X) ≤ r and pol(X) =

∏
n.

Lemma 1. Let Y ∈ {±1}
∏

n be any binary tensor with ni > 2. Furthermore,

let Ω be a set of |Ω| uniformly chosen entries of Y, let δ > 0 and r ∈ Nord(X)
+ .

Then, it holds with probability at least 1− δ that

∀X ∈ Xr : D(X,Y) < DΩ(X,Y) +

√
log |Sn,r| − log δ

2|Ω|

where log |Sn,r| ≤ var(X) log
(

4e (ord(X)+1) pol(X)
var(X)

)

8 Maximilian Nickel and Volker Tresp

Proof. The following proof is analogue to the matrix case [23], hence we will only
provide a brief outline. First, we fixY andX. For an index i, chosen uniformly at
random, it holds that ∆(xi, yi) ∼ Bernoulli(D(X,Y)). Consequently, for inde-
pendently and uniformly chosen observed entries, |Ω|DΩ(X,Y) follows a bino-
mial distribution with mean |Ω|D(X,Y). It follows from Chernoff’s inequality
that

Pr
Ω
(D(X,Y) ≥ DΩ(X,Y) + ε) ≤ exp

(
−2|Ω|ε2

)
Furthermore, since ∆(xi, yi) depends only on the sign of xi it is sufficient to
consider only the equivalence classes of tensors with identical sign patterns. The
random variable DΩ(X,Y) is identical for all tensors X in the same equivalence
class. Since there exist |Sn,r| different equivalence classes, Lemma 1 follows by
taking a union bound of the events D(X,Y) ≥ DΩ(X,Y) + ε for these random
variables. The bound on |Sn,r| is deferred until Section 3.3. ut

3.2 Bounds for Real-Valued Loss Functions

Before deriving the bounds for the number of sign patterns, we also provide
a bound for real-valued loss functions, which are far more common for tensor
factorizations compared to the zero-one loss. However, these loss functions, and
therefore their associated discrepancy, are not only determined by the sign of an
entry xi but are also determined by the value of this entry. We will therefore
derive bounds for the pseudodimension of low-rank tensors.

Theorem 1. Let Y ∈ {±1}n by any binary tensor with ni > 2. Furthermore, let
|∆(·, ·)| ≤ β be a bounded monotone loss function, let Ω be a set of |Ω| uniformly

chosen entries of Y, let δ > 0, and r ∈ Nord(Y)
+ . Then, it holds with probability

at least 1− δ

∀X ∈ Xr : D(X,Y) < DΩ(X,Y) +

√√√√
32

log |Sn,r,T| log β|Ω|
var(X) − log δ

|Ω|

Proof. Again, the following proof is analogue to the matrix case [23], hence we
will outline it only briefly. As mentioned in Section 2.3, tensor factorizations
can be interpreted as real-valued functions, which map from tuples of indices
to entries of the tensor, i.e. a multilinear function φ : I(1) × · · · × I(n) 7→ R,
where I(i) indexes the i-th mode. This allows to use the pseudodimension of
classes of real-valued functions to obtain similar generalization error bounds as
for the matrices. The difference to the matrix case is that for tensors the domain
of the function φ ranges of tuples of fixed length n, while for matrices it ranges
over 2-tuples. Therefore, we first bound the pseudodimension of n-rank tensors
via the number of sign patterns relative to a threshold tensor T ∈ R

∏
n. The

equivalence classes for these relative sign patterns are given by the set

Sn,r,T =
{
sgn(X−T) ∈ {−1, 0,+1}

∏
n
∣∣∣X ∈ R

∏
n,n-rank(X) ≤ r

}
.

The concrete bound for |Sn,r,T| will be given in Section 3.3. Using [22, Theorem
44] we can then obtain the desired bound. ut

An Analysis of Tensor Models for Learning on Structured Data 9

3.3 Bounds on the Number of Sign Patterns

Following the discussion in Section 3.1 and Section 3.2, we now seek to bound the
number of possible sign patterns |Sn,r| and the number of relative sign patterns
|Sn,r,T| for tensors X ∈ Xr. For this purpose, consider the polynomial form of
the Tucker decompositions as given in Eq. (3). Due to the multilinearity of tensor
factorizations, the degree of the polynomial in Eq. (3) is equal to ord(X) + 1.
Furthermore, for tensors of fixed size and n-rank, the quantities pol(X) and
var(X) are also fixed. Using this property of multilinear factorizations, we can
bound the number of possible sign patterns of tensors with n-rank(X) = r by
using their polynomial representation. Following [26] it has been shown, that the
number of possible sign patterns for polynomials are bounded by

Theorem 2 ([22, Theorem 34, 35]). The number of sign patterns of m poly-
nomials, each of degree at most d, over q variables is at most(

4edm

q

)q

for all m > q > 2.

By combining the polynomial form of tensor factorizations Eq. (3) and Theo-
rem 2, we can immediately derive the following lemma which bounds the number
of possible sign patterns for n-rank tensors.

Lemma 2 (Upper Bound for Sign Patterns). The number of possible sign
patterns of a m-th order tensor X ∈ R

∏
n = W ×1 U (1) ×2 · · · ×m U (m) with

n-rank(X) = r is at most

|Sn,r| ≤
(
4e (ord(X) + 1) pol(X)

var(X)

)var(X)

for pol(X) > var(X) > 2.

Furthermore, the number of relative sign patterns, i.e. |Sn,r,T|, can be bounded
in the same way, since for

yi1,...,im − ti1...,im =

r1∑
j1=1

r2∑
j2=1

· · ·
rm∑

jm=1

wj1,...,jm

m∏
k=1

u
(k)
ikjk

− ti1...,im

we have again pol(X) polynomials of degree ord(X) + 1 over var(X) variables.
Next, we provide a lower bound on the number of sign patterns, by inter-

preting tensor factorization as multiple simultaneous linear classifications.

Lemma 3 (Lower Bound for Sign Patterns). The number of possible sign
patterns of a m-th order tensor X ∈ R

∏
n = W ×1 U (1) ×2 · · · ×m U (m) with

n-rank(X) = r is at least

|Sn,r| ≥
(

ni

ri − 1

) 1
ni

(ri−1) pol(X)

10 Maximilian Nickel and Volker Tresp

Proof. First, consider the Tucker decomposition in its unfolded variant, i.e.

X(i) = U (i)W(i)

(
U (m) ⊗ · · · ⊗ U (i+1) ⊗ U (i−1) ⊗ · · · ⊗ U (1)

)T

Let B = U (m) ⊗ · · · ⊗ U (i+1) ⊗ U (i−1) ⊗ · · · ⊗ U (1), and fix U (k) ∈ Rnk×rk with
rows in general position for all k = 1, . . . ,m. We now consider the number of
possible sign patterns of matrices U (i)W(i)B

T . It follows from the rows being

in general position that rank(U (k)) = rk [11, Sec. 1.3.2]. Furthermore, since
the tensor product preserves the linear independence of vectors, it follows that
span(B) = R

∏
r/ri [1, Sec. 6.1.4]. Although B is highly structured, it follows that

the product W(i)B
T varies over all varies over all possible ri ×

∏
n/ni matrices.

Each column of sgn(U (i)W(i)B
T) can therefore be considered an independent

homogeneous linear classification of ni vectors in Rri , for which exactly

2

ri−1∑
k=1

(
ni

k

)
>

(
ni

ri − 1

)ri−1

such classifications exists. Consequently, this many sign patterns exist for each
of the

∏
n/ni = pol(X)/ni columns of U (i)W(i)B

T . ut

Next we analyze the tightness of bounds in Lemma 2 and Lemma 3. Letm = ord(X),
α = 4e(m+1), ∀i : rmin ≤ ri, and similarly ∀i : nmax ≥ ni. Then, for rmin ≥ m

√
α

it follows from Lemma 2 that

|Sn,r| ≤
(
αnm

max

rmmin

)var(X)

≤
(

m
√
αnmax

rmin

)m var(X)

≤ nm var(X)
max

Furthermore, for low-rank factorizations with n2
i > ri and pol(X) > m

ri−1 var(X)
it follows from Lemma 3 that

|Sn,r| ≥
(

ni

ri − 1

) 1
ni

(ri−1) pol(X)

≥
√
ni

1
ni

(ri−1) pol(X) ≥ n
1

2ni
m var(X)

i

Hence, the bound tight up to a multiplicative factor in the exponent.

4 The Effect of Structure and Constraints

In Section 3 we derived bounds on the generalization error of tensor factoriza-
tions. In this section we discuss what conclusions can be drawn from the derived
bounds. In particular, we are interested in how additional structure or constraints
affect the generalization ability of tensor factorizations. For this purpose, we will
first present a setting in which it is reasonable to compare tensor factorizations of
different order. Furthermore, we will evaluate experimentally how the general-
ization ability of tensor factorizations behaves with the change of structure and
constraints. At last, we will discuss how these results can be interpreted with
respect to the derived generalization bounds.

An Analysis of Tensor Models for Learning on Structured Data 11

4.1 Comparable Tensors

Since it is not reasonable to compare arbitrary tensor factorizations, consider the
following setting: Let T = (V, E , φ,m) be a tuple-set of order m and let Y be
the tensor representation of T . Furthermore, let Y− be a tensor representation
of T such that the k-th mode of Y− is indexed by the set

U (k) =

{
V(k) , k 6= i 6= j

V(i) × V(j) , k = i.

This means that for two index sets V(i), V(j) of T only a single vector space
representation is used in Y−. Consequently, it holds that ord(Y−) = ord(Y)−1.
This setting corresponds, for example, to propositionalization in multi-relational
learning. We will refer to Y− as an understructured representation of T . The
opposite setting would be an overstructured representation where the tensor Y−

is the correct representation of T , while Y represents one index set V(i) of T by
two modes, i.e.

V(k) =

{
U (k) , k 6= i 6= j

U (i) × U (j) , k = i

For both, the under- and the overstructured case, we are interested to see how the
generalization ability of a tensor factorization changes by factorizingY compared
to Y−. Without loss of generalization, let i = m− 1, j = m where m = ord(Y)
and ` = ord(Y−) = m−1. Furthermore, let X = W×1U

(1)×2 · · ·×mU (m) ∈ Rn

and X− = W− ×1 U
(1)− ×2 · · · ×` U

(`)− ∈ Rn−
be factorizations of Y and Y−.

Since we are only interested in the effect that the order of data representation
has on the generalization ability, we want to exclude the effect of different ranks.
Analogously to Section 3, we restrict therefore X and X− to be of similar n-rank,
in order to get comparable models. Since it holds for the Kronecker product that
rank(V ⊗W) = rank(V) rank(W), we require that

r−k =

{
rk , k 6= m 6= `

rmr` , k = `

It also follows immediately from the construction ofY andY− and the properties
of the Cartesian product that

n−
k =

{
nk , k 6= m 6= `

nmn` , k = `

In the following, we will refer to tensors X, X− who have these properties
as comparable tensors. Please note that for comparable tensors, it holds that
var(X−) > var(X), since nmn`rmr` > nmrm + n`r`. Furthermore, it holds that
ord(X−) + 1 = ord(X) and pol(X−) = pol(X).

12 Maximilian Nickel and Volker Tresp

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ratio Missing Data

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95
F
1
-S
co
re

SVD (1)

SVD (2)

SVD (3)

Tucker 3 (true)

Tucker 4

(a) Third-Order Model

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ratio Missing Data

0.75

0.80

0.85

0.90

Tucker

CP (true)

(b) CP Model

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ratio Missing Data

0.86

0.87

0.88

0.89

0.90

0.91

0.92

Tucker

RESCAL (true)

(c) Rescal Model

Fig. 1. Mean and standard error of the F1-Score over 100 iterations per percentage
of missing data. SVD (i) denotes the singular value decomposition of Y(i), i.e. the
unfolding of the i-th mode of Y.

4.2 Experimental Results

Given comparable tensors, we evaluated experimentally how tensor factorization
behaves under the change of structure and constraints. The experiments were
carried out on synthetic data with different amounts of missing data. To evaluate
the effects of structure, we created a third-order tensor X = W ×1 A×2 B ×3 C,
where W ∈ R5×10×2, A ∈ R50×5, B ∈ R100×10, C ∈ R20×2 and where all
entries of the core tensor and the factor matrices had been drawn from the
standard normal distribution N (0, 1). From X we created the target tensor Y
by setting yijk = sgn(xijk). Furthermore, the set of observed entries Ω has been
drawn uniformly at random, where we increased the ratio of missing entries from
[0.1, 0.9]. To evaluate the effects of under- and overstructuring, we compared
three models: a Tucker-3 decomposition, which is the correct model, the SVD
which is an understructured model and a Tucker-4 decomposition, which is an
overstructured model. Moreover, the SVD has been computed on all possible
unfoldings Y(i), where i ∈ {1, 2, 3}. For the Tucker-4 decomposition, we split the
second mode of Y into two size-10 modes, such that Y4 ∈ R50×10×10×20. For
each model and each ratio of missing entries we computed 100 factorizations and
recorded the F1-score for the classification of the missing entries compared to the
ground truth. Fig. 1(a) shows the results of these experiments. As expected, the
true model provides the best overall performance. One understructured model,
i.e. SVD (3), shows comparable results to the true model for low amounts of
missing entries but scales significantly worse as the missing data increases. The
overstructured model displays the opposite behaviour; it shows reduced overall
generalization ability compared to the true model but is more stable with the
amount of missing data.

An Analysis of Tensor Models for Learning on Structured Data 13

In similar experiments we also evaluated the effects of constraints. For this
purpose, we created synthetic CP and Rescal models under similar conditions
as in the previous experiment. However, in this experiment we evaluated how the
correct model compared to a unconstrained Tucker model. Figures Fig. 1(b) and
Fig. 1(c) show the results of these experiments. Again, the true models show the
best overall performance in both experiments. Furthermore, it in both settings,
the constrained models scale better with the amount of missing data than the
unconstrained tucker model.

4.3 Discussion

The previously derived generalization bounds can provide insight in how to
interpret these experimental results. First, note that both terms in Eq. (6),
i.e. DΩ(X,Y) and ε, are influenced by the number of sign patterns that a fac-
torization can express. For DΩ(X,Y) this is the case because the discrepancy
will increase when a model X is not expressive enough to model the sign pat-
terns of a target tensor Y. Furthermore, for the term ε it has been shown in
Section 3 that it is upper bounded by the number of sign patterns. Since it has
also been shown that the upper bound in Lemma 2 is tight at least up to a mul-
tiplicative factor in the exponent, we consider how this upper bound changes
with the order of the data representation; to see what possible effects the change
of structure can have in terms of the generalization ability.

Corollary 1. For comparable tensors X ∈ Rn, X− ∈ Rn−
with ord(X) =

ord(X)− + 1, n-rank(X) = r and n-rank(X)− = r−, the ratio of upper bounds
on then number of possible sign patterns is at most

1 <
O(|S−

n,r|)
O(|Sn,r|)

<

(
4e (ord(X−) + 1) pol(X)

var(X−)

)v

where v = nmn`rmr` − (n`r` + nmrm) > 0

Proof. It follows straight from the definition of comparable tensors that var(X−)
can be rewritten as var(X−) = var(X) + v. Furthermore, let

α = 4e (ord(X−) + 1) pol(X)

β = 4e (ord(X) + 1) pol(X) = α+ 4e pol(X)

Then, it holds that

O(|S−
n,r|)

O(|Sn,r|)
=

αvar(X)+v

var(X−)
var(X)+v

var(X)var(X)

βvar(X)

=

(
α

var(X−)

)v
αvar(X)

(var(X) + v)var(X)

var(X)var(X)

βvar(X)

≤
(

α

var(X−)

)v
αvar(X)

var(X)var(X)

var(X)var(X)

αvar(X)
=

(
α

var(X−)

)v

ut

14 Maximilian Nickel and Volker Tresp

The main result of Corollary 1 for this discussion is that the bound increases as
we decrease the order of the tensor. This suggests that as we increase the order
of the data representation, we will reduce the term ε in Eq. (6). As the amount of
missing data increases, it is therefore likely to see increasingly severe overfitting
for X− compared to X. However, O(|S−

n,r|) > O(|Sn, r|) also suggests that this
comes at the cost of a reduced model capacity for X. This corresponds nicely
to the experimental results shown in Fig. 1(a). The understructured models are
expressive enough to model the sign patterns ofY, as seen in the case of SVD (3).
However, they also scale significantly worse than the correct model with the
amount of missing data. The overstructured Tucker-4 model scales even better
with missing data than the true model, but at the same time gives significantly
worse overall results, what suggests that it might not be expressive enough. A
possible interpretation is therefore, that the ratio between expressiveness and
overfitting is superior for a correct model specification. Since the correct model
X has a much smaller number of variables, it should also be noted that the
memory complexity of X is significantly reduced compared to X−.

Similar arguments apply for the effect of constraints. Here, the key insight
is that both CP-type and Rescal-type constraints decrease the number of vari-
ables in a model. Models like CP or the Block-Term Decompostion, require that
W is superdiagonal or block-superdiagonal and therefore set most entries in the
core tensor to wi = 0. Models like Rescal on the other hand, decrease the
number of variables through the constraint that some factor matrices U (i), U (j)

have to be identical. Since O(|Sn,r|) depends exponentially on var(X), conclu-
sions similar to the effects of structure can be drawn with regard to the effects of
constraints. It suggests that a model with a larger number of variables, i.e. fewer
constraints, has more capacity to model sign patterns, but at the same time is
more likely to overfit as the amount of missing data increases. Again, this cor-
responds nicely to the experimental results in Fig. 1(b) and Fig. 1(c).

5 Related Work

We are not aware of any previous generalization error bounds for tensor factor-
izations or of any theoretical results that relate the order of a tensor and the or-
der of data to the generalization ability of factorizations. Our derivation of error
bounds for the tensor case builds strongly on the work of [23,22], which provided
error bounds for matrix factorizations with zero-one loss and general loss func-
tions. [27] derived similar bounds in the context of rank-k SVMs. For general
matrices, [6,5] show that under suitable conditions a low-rank matrix can be re-
covered from a minimal set of entries via convex optimization and also provide
theoretical bounds. [9,25] extends these methods to tensor completion, although
without providing error bounds. It has also been shown experimentally that by
adding structure to the vector space representations via the tensor product, the
amount of data needed for exact recovery can be greatly reduced [25,24].

An Analysis of Tensor Models for Learning on Structured Data 15

6 Conclusion

To get a deeper understanding of the generalization ability of tensor factor-
izations, we derived generalization error bounds based on the number of sign
patterns that a tensor factorization can model. Using a general framework to
describe structured data based on tuple-sets, we analyzed how tensor factor-
izations behave when their order does not match the true order of the data.
We showed experimentally that structuring vector space representations via the
tensor product, up to the true order of the data, adds important information
such that tensor models often scale better with sparsity or missing data than
their understructured counterparts. We also discussed analytically how this be-
haviour can be explained in the light of the newly derived generalization bounds.
In this work, we only considered binary values for the target tensor Y, which
corresponds to a classification setting. For future work, it would prove very valu-
able to also derive error bounds for the more general case of real-valued weight
functions. Since the current error bounds are based on the assumption that the
observed entries are independently and identically distributed what – especially
on structured data – might not hold, it might also be useful to consider tech-
niques as in [17], to overcome this limitation.

References

1. Anthony, M., Harvey, M.: Linear Algebra: Concepts and Methods. Cambridge Uni-
versity Press (2012)

2. Bader, B.W., Harshman, R.A., Kolda, T.G.: Temporal analysis of semantic graphs
using ASALSAN. In: Seventh IEEE International Conference on Data Mining
(ICDM 2007). pp. 33—42. Omaha, NE, USA (2007)

3. Bordes, A., Weston, J., Collobert, R., Bengio, Y.: Learning structured embeddings
of knowledge bases. In: Proceedings of the 25th Conference on Artificial Intelli-
gence. San Francisco, USA (2011)

4. Burdick, D.S.: An introduction to tensor products with applications to multiway
data analysis. Chemometrics and intelligent laboratory systems 28(2), 229—237
(1995)

5. Candes, E.J., Plan, Y.: Matrix completion with noise. Proceedings of the IEEE
98(6), 925—936 (2010)

6. Cands, E.J., Recht, B.: Exact matrix completion via convex optimization. Foun-
dations of Computational mathematics 9(6), 717—772 (2009)

7. Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional
scaling via an n-way generalization of Eckart-Young decomposition. Psychometrika
35(3), 283—319 (1970)

8. De Lathauwer, L.: Decompositions of a higher-order tensor in block termsPart II:
definitions and uniqueness. SIAM Journal on Matrix Analysis and Applications
30(3), 1033—1066 (2008)

9. Gandy, S., Recht, B., Yamada, I.: Tensor completion and low-n-rank tensor recov-
ery via convex optimization. Inverse Problems 27(2), 025010 (2011)

10. Harshman, R.A., Lundy, M.E.: PARAFAC: parallel factor analysis. Computational
Statistics & Data Analysis 18(1), 39—72 (1994)

16 Maximilian Nickel and Volker Tresp

11. Hassoun, M.H.: Fundamentals of Artificial Neural Networks. MIT Press (1995)
12. Huang, Y., Tresp, V., Bundschus, M., Rettinger, A., Kriegel, H.P.: Multivariate

prediction for learning on the semantic web. In: Proceedings of the 20th interna-
tional conference on Inductive logic programming. pp. 92—104. Springer-Verlag,
Berlin, Heidelberg (2011)

13. Jenatton, R., Le Roux, N., Bordes, A., Obozinski, G.: A latent factor model for
highly multi-relational data. In: Advances in Neural Information Processing Sys-
tems. vol. 25, pp. 3176—3184. MIT Press, Lake Tahoe, Nevada, USA (2012)

14. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Review
51(3), 455—500 (2009)

15. Kramer, S., Lavrac, N., Flach, P.: Propositionalization approaches to relational
data mining. Springer-Verlag New York, Inc. (2001)

16. Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing
values in visual data. In: Computer Vision, 2009 IEEE 12th International Confer-
ence on. pp. 2114—2121 (2009)

17. Mohri, M., Rostamizadeh, A.: Rademacher complexity bounds for non-iid pro-
cesses. In: Advances in Neural Information Processing Systems. vol. 21, pp.
1097—1104. MIT Press, Cambridge, MA, USA (2009)

18. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning
on multi-relational data. In: Proceedings of the 28th International Conference on
Machine Learning. pp. 809—816. ACM, Bellevue, WA, USA (2011)

19. Nickel, M., Tresp, V., Kriegel, H.P.: Factorizing YAGO: scalable machine learning
for linked data. In: Proceedings of the 21st international conference on World Wide
Web. pp. 271—280. ACM, New York, NY, USA (2012)

20. Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized
markov chains for next-basket recommendation. In: Proceedings of the 19th in-
ternational conference on World Wide Web. pp. 811—820. ACM (2010)

21. Signoretto, M., Van de Plas, R., De Moor, B., Suykens, J.A.: Tensor versus ma-
trix completion: a comparison with application to spectral data. Signal Processing
Letters, IEEE 18(7), 403—406 (2011)

22. Srebro, N.: Learning with matrix factorizations. Ph.D. thesis, Massachusetts Insti-
tute of Technology, Cambridge, MA, USA (2004)

23. Srebro, N., Alon, N., Jaakkola, T.S.: Generalization error bounds for collaborative
prediction with low-rank matrices. In: Advances in Neural Information Processing
Systems. vol. 17, pp. 1321—1328. MIT Press, Cambridge, MA (2005)

24. Tomioka, R., Hayashi, K., Kashima, H.: Estimation of low-rank tensors via convex
optimization. arXiv preprint arXiv:1010.0789 (2010)

25. Tomioka, R., Suzuki, T., Hayashi, K., Kashima, H.: Statistical performance of con-
vex tensor decomposition. In: Advances in Neural Information Processing Systems.
vol. 24, pp. 972—980 (2012)

26. Warren, H.E.: Lower bounds for approximation by nonlinear manifolds. Transac-
tions of the American Mathematical Society 133(1), 167—178 (1968)

27. Wolf, L., Jhuang, H., Hazan, T.: Modeling appearances with low-rank SVM. In:
IEEE Conference on Computer Vision and Pattern Recognition. pp. 1—6 (2007)

	An Analysis of Tensor Models for Learning on Structured Data

