
Se
m

an
ti

cs
 i
n 

Lo
ca

ti
on

-B
as

ed
 S

er
vi

ce
s

2	 Published by the IEEE Computer Society	 1089-7801/11/$26.00 © 2011 IEEE� IEEE INTERNET COMPUTING

M obile technology users often 
turn to location-based services 
and systems to get directions or 

information about their surrounding 
environment. Such technology presents 
various challenges, and research in dif-
ferent fields provides partial solutions 
to those needs: operations research 
solves the routing problem, machine 
learning addresses traffic forecasting, 
and semantic technologies manage data 
integration and information retrieval. 
Still, the demand for location-based 
comprehensive solutions overcomes 
what’s currently on offer. Here, we aim 
to address the comprehensive research 
challenges inherent to location-based 
services.

People in (unfamiliar) urban environ-
ments might ask questions like, “What 

museum can I reach in less than 25 min-
utes if I get into my car at 4 p.m.?” The 
pieces of information required to answer 
such questions are usually available, but 
they’re scattered at different locations 
and aren’t interoperable. We aren’t aware 
of any service that can perform the mix 
of conceptual query answering, machine  
learning, and operations research required 
to answer this question.

To address these challenges, we pres-
ent the Traffic LarKC service, an award-
winning prototype based on Semantic 
Web technologies (the Resource Descrip-
tion Framework [RDF]1 and SPARQL2) 
that seamlessly integrates conceptual 
query answering, statistical regression, 
and operations research techniques into 
a single service fully operational for the 
city of Milano. We also provide empirical  
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evidence of its efficacy in answering complex 
semantic queries as well as its efficiency and 
scalability.

Architecture
To answer the question raised in the intro-
duction, a service must be able to semanti-
cally retrieve points of interest (POIs) in a city 
given a category (conceptual query answering), 
compute the most suitable path to reach the 
POI (operations research) by considering traf-
fic conditions and traffic predictions (machine 
learning), and give a complete answer to the 
requester in a reasonable time. Our research 
question was whether we could use Semantic 
Web technologies to make interoperable the 
different techniques required to realize such a 
service. To this end, we needed a platform that 
would act as a Semantic Web framework, could 
reuse processing components to leverage dif-
ferent technologies, and would orchestrate the 
different computations in a single workflow to 
solve the end user’s problem.

In this context, we decided to adopt the 
Large Knowledge Collider (LarKC),3 a platform 
for massive distributed reasoning that removes 
the scalability barriers of currently existing 
reasoning systems for the Semantic Web. The 
LarKC platform has a pluggable architecture to 
exploit techniques and heuristics from machine 
learning, operations research, and the Semantic 
Web. All plug-ins interoperate through a scal-
able RDF-based data layer. The platform also 
allows for parallelized and distributed data pro-
cessing, to improve the resulting applications’ 
scalability.

We selected Milano as the target of our experi-
ments. The datasets our service uses (see Figure 1)  
are diverse in topic and format. Traffic LarKC 
retrieves monuments, attractions, exhibitions, 
and events in Milano from the Linked Open Data 
cloud,4 DBpedia,5 GeoNames (www.geonames.
org), LinkedGeoData (http://linkedgeodata. 
org), and LinkedEvents.6 Because these data are 
already in RDF format, consolidated, and inter-
linked, LarKC can easily retrieve and process 
them.

Information about Milano’s topology and 
traffic comes from the local mobility agency. 
The road network shapefile contains approxi-
mately 30,000 streets with 15,000 junctions; 
this dataset semantically describes each street 
portion with a set of geometrical attributes and 

flow-related characteristics. Traffic informa-
tion consists of a three-year time-series record 
of how many vehicles passed by, sensed every 
5 minutes at 317 sensor locations; thus, traffic 
records add up to more than 109 records in a 
250-Gbyte database. Additionally, for the same 
time span, we gathered historical weather data 
from the Italian website ilMeteo.it (108 comma-
separated value, or CSV, records) and calendar 
information (week versus weekend days, holi-
days, and so on) to consider seasonal effects.

As Figure 1 illustrates, those data are pro-
cessed by two different LarKC workflows: a 
traffic prediction workflow that computes traf-
fic forecasts and a path-finding workflow that 
semantically retrieves POIs and computes the 
route to reach them.

Traffic LarKC invokes these two workflows 
at different times: while it re-executes the traf-
fic forecast every hour to update the predictions 
(batch-time execution), it operates the routing 
at each end-user request (runtime execution) 
using the most up-to-date predictions.

Traffic Predictions
Traffic predictions approaches available in 
literature are based either on simulation or 
statistical-regression. Simulation-based traf-
fic predictions are easily interpretable (such 
as DynaMIT; http://mit.edu/its/dynamit.html), 

Figure 1. The Traffic LarKC workflows and external datasets.  
The datasets the service uses are displayed at the bottom; the  
top-right box represents the workflows the service executes, 
whereas the top-left part of the figure displays the rendering  
of the Traffic LarKC response on a mobile device.
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whereas statistical-regression approaches7 
reduce the need to formulate and integrate 
detailed assumptions because they’re implicit in 
the data, and the learned system automatically 
considers them. Our traffic forecasts employ 
a statistical regression approach by coupling 
recurrent neural networks (RNNs)8 with semi-
supervised learning (SSL).9

Our service invokes the traffic prediction 
workflow (see Figure 1) recurrently. This work-
flow performs two steps. First, it uses RNNs 
to forecast speed and flow at sensor locations 
for the next four hours, in 5-minute intervals. 
The predictions are based on traffic observa-
tions from the previous 24 hours at the same 
sensors. After categorizing the predictions into 
two traffic conditions, normal and congested, 
the system generalizes the predictions from 
the sensor locations to all streets of the road 
network using SSL. It then uses the result-
ing predictions in conjunction with nominal 
speed and street lengths to assign estimated 
travel times. It stores the final results in the 
data layer as time-stamped “buckets” of infor-
mation (see Figure 1b). Each bucket is an RDF 
named graph10 containing the traffic fore-
casts in a specific time interval and is anno-
tated with the lower or upper limit of the time 
validity to enable an efficient retrieval at  
runtime.

Traffic Predictions at Sensor Locations
The RNN-prediction approach focuses on iden-
tifying underlying traffic dynamics. We assume 
that traffic dynamics are partially driven by an 
autonomous development (such as the traffic 
characteristics of different types of days, holidays,  

and special calendar events) and a variety of 
external inf luences (for example, events or 
weather conditions).

We use an open, discrete-time state-
space model, represented by the time-delay 
RNN structure Figure 2 depicts.11 The system 
parameter matrices A through E are identified 
via finite unfolding in time.4 The RNN archi-
tecture includes a coordinate transformation in 
the form of so-called “bottlenecks,” where the 
neural network uses past flows and speeds both 
as an input and output. The bottlenecks focus 
on predicting the traffic dynamics’ nonlinear 
principal components, roughly correspond-
ing to the system’s time variants. Because the 
neural network can reconstruct the traffic 
dynamics from the variants and invariants, 
we must forecast only the variants to predict 
the future time series of the traffic flow and  
speed.

We performed RNN training for the 317 sen-
sors with training data using Siemens’ Software 
Development Environment for Neural Networks 
(SENN; www.ct.siemens.com). Within the LarKC 
plug-in, SENN evaluates the RNNs online with 
current traffic observations obtained through 
the data layer.

Network-Wide Generalization
We can interpret the task of deriving traffic 
predictions for all network streets based on pre-
dictions at the sensor locations as the regres-
sion problem of mapping locations to traffic 
conditions. To this end, we employ a Bayesian 
SSL formulation9 that exploits the street graph 
topology to generalize beyond the sensors’ 
locations.

Figure 2. Traffic-prediction recurrent neural network (RNN). The network incorporates bottlenecks to separate  
time-variant from time-invariant structures.
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The assumption that neighboring links i 
have similar traffic conditions fi is formally 
encoded in the a priori distribution:

p w f fij i jij E( ) exp ( ) ,f ∝ − −( )∈∑
2

where E is the set of all connected links and wij 
is a fixed weight. The RNN traffic predictions at 
sensors yi are included via the likelihood

The system can then compute the maxi-
mum a posteriori traffic estimate for all streets 
f via the Bayes rule, which involves solving a 
large linear system of the size of the number 
of streets. However, because all involved matri-
ces are sparse, the system can still compute 
the solution in less than a second, even for the 
30,000 streets in our roadmap.

Note that the measured speed and flow val-
ues depend strongly on each sensor’s field of 
view, and speed and flow don’t necessarily gen-
eralize well over the road network. Our solution 
is to predict only two traffic conditions — that 
is, normal (yi = 0) and congested traffic (yi = 1). 
The system classify the speed and flow values 
into the two traffic conditions by thresholding 
the traffic speed. For a given street type (small 
residential street, normal city street, and so on), 

we then use default values for the two condi-
tions. We discuss the results for both the RNN 
predictions and the SSL smoothing step in a 
later section.

Semantic Traffic-Aware Routing
Trip planning considering time constraints 
is still an open research problem.12 Consider 
the user request we presented in the opening: 
“What Milano museum can I reach in less than 
25 minutes if I get into my car at 4 p.m.?” To 
answer this, we need to query the traffic pre-
dictions described in the previous section, 
together with the semantic descriptions of the 
city’s POIs. In addition, the road network data 
must be available. Let’s look at how our runtime 
LarKC workflow achieves semantic interoper-
ability between the different modules used to 
answer the user request.

Querying in SPARQL
Figure 3 shows how the stated user request is 
internally formalized in SPARQL. The prefix 
upf: refers to our Urban Path-Finding Ontology 
(http://larkc.cefriel.it/ontologies/urbanpathfinding), 
which formalizes our semantic model of the 
traffic- and path-finding domain.

In lines 3–4, this SPARQL query asks for the 
museums in Milano (here, the instances of the 
respective Yago concept13) and their positions. 

1	 SELECT DISTINCT ?museum ?path ?length ?travelTime
2	 WHERE {
3	   ?museum a yago:MuseumsInMilan ;
4	           upf:locatedAt ?museumPosition .
5	   ?g upf:TrafficRecordsFrom ?from ;
6	      upf:TrafficRecordsUntil ?until .
7	   FILTER(?from <= "2011-03-01T15:04:01Z"^^xsd:dateTime &&
8	          ?until >= "2011-03-01T15:04:01Z"^^xsd:dateTime)
9	   GRAPH ?g {
10		  ?path a upf:Path;
11			     upf:hasStart <START-POS> ;
12			     upf:hasGoal ?museumPosition ;
13			     upf:hasPathLength ?length ;
14			     upf:hasPathTravelTime ?travelTime ;
15			     upf:hasPolicy ?policy .
16		      ?policy upf:hasMinimizedDimension upf:estimatedTravelTime .
17	        FILTER(?travelTime < "PT25M"^^xsd:duration)
18	   }
19	 }

Figure 3. User request internally formalized in SPARQL. This query looks for the museums in Milano 
and their positions (lines 3 and 4), specifies when the user’s journey should take place (lines 5  
through 8), and expresses the routing request (lines 9 through 18).
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To answer this conceptual portion of the query, 
LarKC employs a reasoner to unfold the Yago 
category taxonomy and invokes the semantic 
search engine Sindice14 for the semantic POI 
retrieval. Lines 5–8 specify when the journey to 
the museum should take place. To this end, LarKC 
selects the named graphs — annotated with the 
lower/upper bound time limit of validity —  
that fit the user’s needs — that is, that are valid 
for the requested date and time.

The routing request is expressed in SPARQL 
at lines 9–18: for the selected graphs (line 9), 
LarKC must compute a path to the identified 
museum (lines 10–12) whose duration is com-
patible with user preferences (line 17). Each 
path should be described by its length and 
duration (lines 13–14) and globally minimized 
via the traffic estimations (line 16). To this 
end, our Urban Path-Finding Ontology defines 
three specific routing policies. The first mini-
mizes the path extent (upf:length), the second 
minimizes the duration in absence of traffic 
(upf:nominalTravelTime), and the third mini-
mizes the duration given the traffic forecasts 
(upf:estimatedTravelTime). The actual path 
computation, according to the policy indicated 
in the SPARQL query, is delegated to an opera-
tions research algorithm.

Efficient Query Evaluation
Our solution optimizes the query evaluation in 
two ways. First, we decouple the user’s routing 
requests from the traffic-prediction computa-
tion. When a user issues a request, traffic fore-
casts are already available in the LarKC Data 
Layer as time-stamped named graphs. These 
graphs are deleted and substituted with new 
predictions every hour, so forecast computation 
doesn’t affect user request evaluation.

The second optimization considers path 
finding. We can’t answer the full SPARQL query 
illustrated in Figure 3 using only Semantic Web 
technologies or only object-spatial databases; 
Traffic LarKC fragments the full SPARQL query 
into a conceptual part (POI semantic retrieval) 
and a routing part and dispatches those sub-
queries to the different plug-ins registered in 
the LarKC platform. To compute the paths, the 
runtime LarKC workflow invokes an opera-
tions research plug-in that applies the Dijkstra 
algorithm. Similarly to D2R,15 we treat the path 
computation as a query to a virtual RDF graph, 
where the Dijkstra-based component is hidden  

behind a SPARQL-compliant interface. The 
Traffic LarKC runtime workflow then joins the 
Dijkstra results with the rest of the data (Milano 
museums identified by the conceptual part of 
the query).

Without LarKC, we would have had to build 
an ad hoc system to put together the different 
pieces and make them “talk” to each other (for 
instance, by transforming all data into a GIS-
compliant format). LarKC goes well beyond tra-
ditional Semantic Web platforms: based on RDF 
as a means to lightweight data integration, it 
allows for encapsulating operations research 
algorithms for path finding within a SPARQL 
end point.

Evaluation
We evaluated the proposed system with regard 
to both the quality of the results and the com-
bined system’s runtime performance.

Quality
Figure 4 shows the RNN traffic forecasts. In  
Figure 4a, we show the traffic-flow time series for 
five exemplary sensors. The RNNs use the past 
24 hours of measurements to predict the next 
four hours. Apart from the predictions’ visual 
plausibility, the RNNs also numerically outper-
form other standard regression techniques —  
namely, feed-forward neural networks (MLP) 
and linear regression, as Figure 4b illustrates. 
We can see that the RNN’s average relative 
error is significantly lower and its variance 
much smaller compared to the MLP and linear 
regression.

Figure 5 shows an example result of the  
network-wide generalization of sensor traffic pre-
dictions. Connected areas of congestion are clearly 
visible around sensor locations. These results are 
qualitatively plausible, but their numerical vali-
dation isn’t currently possible, as no in-between-
the-sensors information is available.

The full routing service for the end user is 
available as a Web application at http://larkc.
cefriel.it/traffic-larkc. Figure 6 shows a screen-
shot of the application.

Currently, the sensor network that collects 
Milano traffic data isn’t designed to deliver 
information in real time, so we couldn’t evaluate 
our service with real-time data. However, we 
performed a numerical quality evaluation of our 
routing service using historical data. We selected 
100 random pairs of points and computed  
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the optimal paths following the three different 
policies (see Table 1). Compared to the shortest- 
distance paths, the quickest-path policy with 
traffic predictions leads to paths that, while 
6 percent longer, are 14 percent faster in 
expected travel time. We confirmed the sta-
tistical significance of this advantage using 
a student’s t-test with a significance level of  
5 percent.

Performance and Scalability
We tested our service’s performance and scal-
ability on a six-core AMD Opteron Processor 
2431 (2.4-GHz) machine with 8 Gbytes of RAM 
running Ubuntu 10.04 64-bit. The service acti-
vates the traffic-prediction workflow each hour 
and predicts the traffic for the next four hours 
on 30,000 streets in 5-minute intervals; thus 
600,000 RDF triples are updated in each run based 
on the newly available predictions. Although the 
whole run needs 90 seconds, the interaction with 
the data layer alone — that is, deleting old traf-
fic predictions, reading the necessary data for 
the RNNs, and rewriting new predictions — takes 
a share of 81 seconds, leaving only 9 seconds 
for the actual prediction algorithms. The data- 
loading cost is clearly an overhead for the LarKC 
platform. One advantage of the platform was also 
clear: the RDF representation used in the LarKC 
architecture permits seamless interoperability 
between different plug-ins.

For the path-finding workflow, we evalu-
ated runtime performance and scalability via 
stress tests, issuing concurrent requests across 
the Internet from an Intel Core 2 (2.16-GHz) 
machine with 2 Gbytes of RAM and Microsoft 

Windows XP Professional (SP3). By disabling 
the LarKC platform’s built-in caching feature, 
the response time is independent of the rout-
ing policy, as Figure 7a shows. Thanks to the 
periodic “batch-time” recomputation of traffic 
predictions, the time required for runtime rout-
ing is independent of the forecast processing. 
Moreover, by enabling the caching feature, our 
service replies in a few seconds and shows a 
sublinear dependency on the number of concur-
rent requests (see Figure 7b).

I n the use case we presented, mobile user 
queries required a service that seamlessly 

integrates techniques from machine learning 
(traffic predictions) and operations research 

Figure 4. Recurrent neural network (RNN) traffic forecasts. We can see (a) a traffic-flow time series for five exemplary 
sensors as well as (b) a comparison of the RNN’s prediction errors vs. a feed-forward neural network (MLP) and linear 
regression.
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(routing) with conceptual query answering (POI 
semantic retrieval). Here, we demonstrated that 
a pluggable Semantic Web application frame-
work such as the LarKC platform is suitable for 
addressing this challenge.

Although we couldn’t integrate our proto-
type  with real-time traffic data streams because 
of the technical limitations of the Milano  

traffic-management system, such a solution is 
under discussion for the Milano Expo 2015, and 
would supply added value to mobile end users.

A general lesson learned is that location 
information represents a natural basis for inte-
grating several information sources: we were 
able to sensibly glue together different pieces of 
data and computational services because they 
were related to the same physical place. This is 
one major reason for the recent popularity of 
mobile location-based services, and also repre-
sents a great opportunity for applying semantic 
technologies.�
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