
Journal of Machine Learning Research 22 (2021) 1-6 Submitted 7/20; Revised 2/21; Published 3/21

PyKEEN 1.0: A Python Library for Training and Evaluating
Knowledge Graph Embeddings

Mehdi Ali∗ mehdi.ali@cs.uni-bonn.de
Smart Data Analytics Group, University of Bonn & Fraunhofer IAIS

Max Berrendorf∗ berrendorf@dbs.ifi.lmu.de
Ludwig-Maximilians-Universität München

Charles Tapley Hoyt∗ charles.hoyt@envedatx.com
Enveda Biosciences

Laurent Vermue∗ lauve@dtu.dk
Technical University of Denmark

Sahand Sharifzadeh sharifzadeh@dbs.ifi.lmu.de
Ludwig-Maximilians-Universität München

Volker Tresp volker.tresp@siemens.com
Ludwig-Maximilians-Universität München & Siemens AG

Jens Lehmann jens.lehmann@cs.uni-bonn.de

Smart Data Analytics Group, University of Bonn & Fraunhofer IAIS

Editor: Antti Honkela

Abstract

Recently, knowledge graph embeddings (KGEs) have received significant attention,
and several software libraries have been developed for training and evaluation. While
each of them addresses specific needs, we report on a community effort to a re-design
and re-implementation of PyKEEN, one of the early KGE libraries. PyKEEN 1.0 enables
users to compose knowledge graph embedding models based on a wide range of interaction
models, training approaches, loss functions, and permits the explicit modeling of inverse
relations. It allows users to measure each component’s influence individually on the model’s
performance. Besides, an automatic memory optimization has been realized in order to
optimally exploit the provided hardware. Through the integration of Optuna, extensive
hyper-parameter optimization (HPO) functionalities are provided.

Keywords: Knowledge Graphs, Knowledge Graph Embeddings, Relational Learning

1. Introduction

Knowledge graphs (KGs) encode knowledge as a set of triples K ⊆ E×R×E where E denotes
the set of entities and R the set of relations. Knowledge graph embedding models (KGEMs)
learn representations for entities and relations of KGs in vector spaces while preserving the
graph structure. The learned embeddings can support machine learning tasks such as
entity clustering, link prediction, entity disambiguation, as well as downstream tasks such

∗Equal contribution.

c©2021 Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Laurent Vermue, Sahand Sharifzadeh, Volker Tresp, and
Jens Lehmann.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v22/20-825.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v22/20-825.html


Ali, Berrendorf, Hoyt, Vermue, Sharifzadeh, Tresp, and Lehmann

as question answering and item recommendation (Nickel et al., 2015; Wang et al., 2017;
Ruffinelli et al., 2020; Kazemi et al., 2020).

Most publications of KGEMs are accompanied by reference implementations, but they
are seldomly written for reusability or maintained. Existing software packages that provide
implementations for different KGEMs usually lack composability: model architectures (or
interaction models), training approaches, loss functions, and the usage of explicit inverse
relations cannot arbitrarily be combined. The full composability of KGEMs is fundamental
for assessing their performance because it allows the assessment of individual components
and not solely the sum of differences in published approaches (Ruffinelli et al., 2020). In
most previous libraries, only limited functionalities are provided, e.g., a small number of
KGEMs are supported, or functionalities such as hyper-parameter optimization (HPO) are
missing. For instance, in PyKEEN (Ali et al., 2019a,b), one of the early software packages
for KGEMs, models can only be trained under the stochastic local closed-world approach,
the evaluation procedure was too slow for larger KGs, and it was designed to be mainly
used through a command-line interface rather than programmatically, in order to facilitate
its usage for non-experts. This motivated the development of a reusable software package
comprising several KGEMs and related methodologies that is entirely configurable.

Here, we present PyKEEN (Python KnowlEdge EmbeddiNgs) 1.0, a community effort
in which PyKEEN has been re-designed and re-implemented from scratch to overcome the
mentioned limitations, to make models entirely configurable, and to extend it with more
interaction models and other components.

2. System Description

In PyKEEN 1.0, a KGEM is considered as a composition of four components that can flex-
ibly be combined: an interaction model (or model architecture), a loss function, a training
approach, and the usage of inverse relations. PyKEEN 1.0 currently supports 23 interaction
models, seven loss functions, four regularizers, two training approaches, HPO, six evaluation
metrics, and 21 built-in benchmarking datasets. It can readily import additional datasets
that have been pre-stratified into train/test/evaluation and generate appropriate splits for
unstratified datasets. Additionally, we implemented an automatic memory optimization
that ensures that the available memory is best utilized.

Composable KGEMs To ensure the composability of KGEMs, the interaction mod-
els, loss functions, and training approaches are separated from each other and imple-
mented as independent submodules, whereas the modeling of inverse relations is han-
dled by the interaction models. Our modules can be arbitrarily replaced because we
ensured through inheritance that all interaction models, loss functions, and training ap-
proaches follow unified APIs, which are defined by pykeen.model.Model, pykeen.loss.Loss,
and pykeen.training.TrainingLoop. Currently, we provide implementations of 23 interac-
tion models, the most common loss functions used for training KGEMs including the
binary-cross entropy, cross entropy, mean square error, negative-sampling self-adversarial
loss, and the softplus loss, as well as the local closed-world assumption (also referred as
KvsAll) and the stochastic local closed-world assumption training approach (also refereed
as NegSamp) (Ruffinelli et al., 2020). In PyKEEN, each interaction model can be trained
based on both approaches. To enable users to investigate the effect of explicitly modeling

2



PyKEEN 1.0

inverse relations (Lacroix et al., 2018; Kazemi and Poole, 2018) on the model’s performance,
each model can be trained with explicit inverse relations in PyKEEN 1.0, i.e., for each rela-
tion r ∈ R an inverse relation rinv is introduced, and the task of predicting the head entity
of a (r, t)-pair becomes the task of predicting the tail entity of the corresponding inverse
pair (t, rinv).

To facilitate the composition of KGE models for non-experts, we provide the pykeen.pipe-
line.pipeline() functions, which provides a high-level entry point into the functionalities of
PyKEEN. Users define the components to be used, and the pipeline ensures the correct com-
position of the KGEM and the correct composition of the training and evaluation workflow.

Evaluation KGEMs are usually evaluated on the task of link prediction. Given (h, r) (or
(r, t)), all possible entities E are considered as tail (or head) and ranked according to the
KGEMs interaction model. The individual ranks are commonly aggregated to mean rank,
mean reciprocal rank, and hits@k. However, these metrics have been realized differently
throughout the literature based on different definitions of the rank, leading to difficulties
in reproducibility and comparability (Sun et al., 2019). The three most common rank
definitions are the average rank, optimistic rank, and pessimistic rank. In PyKEEN 1.0,
we explicitly compute the aggregation metrics for all common rank definitions, average,
optimistic, and pessimistic, allowing inspection of differences between them. This can help
to reveal cases where the model predicts exactly equal scores for many different triples,
which is usually an undesired behavior. In addition, we support the recently proposed
adjusted mean rank (Berrendorf et al., 2020), which allows the comparison of results across
differently sized datasets, as well as offering an interface to use all metrics implemented in
scikit-learn (Pedregosa et al., 2011), including AUC-PR and AUC-ROC.

Automatic Memory Optimization Allowing high computational throughput, while
ensuring that the available hardware memory is not exceeded during training and evaluation,
requires the knowledge of the maximum possible training and evaluation batch size for the
current model configuration. However, determining the training and evaluation batch sizes
is a tedious process, and not feasible when a large set of heterogeneous experiments are run.
Therefore, we implemented an automatic memory optimization step that computes the
maximum possible training and evaluation batch sizes for the current model configuration
and available hardware before the actual experiment starts. If the user-provided batch
size is too large for the used hardware, the automatic memory optimization determines the
maximum sub-batch size for the training.

Extensibility Because we defined a uniform API for each interaction model, any new
model can be integrated by following the API of the existing models (pykeen.models). Sim-
ilarly, the remaining components, e.g., regularizers, and negative samplers follow a unified
API, so that new modules can be smoothly integrated.

Community Standards PyKEEN 1.0 relies on several community-oriented tools to en-
sure it is accessible, reusable, reproducible, and maintainable. It is implemented for Python
3.7+ using the PyTorch package. It comes with a suite of thorough unit tests that are au-
tomated with PyTest, Tox, run in a continuous integration setting on GitHub Actions, and
are tracked over time using codecov.io. Code quality is ensured with flake8 and careful

3

https://docs.pytest.org/en/latest/
https://tox.readthedocs.io/en/latest/
codecov.io


Ali, Berrendorf, Hoyt, Vermue, Sharifzadeh, Tresp, and Lehmann

Library AMO Models HPO ES
Evaluation
Metrics

Set
TA

Set
Inv.
Rels.

Set
Loss
Fct.

MGS DTR

AmpliGraph
(Costabello et al., 2019)

- 6 X X 3 - X X - -

DGL-KE
(Zheng et al., 2020)

- 6 - - 3 - - X X X

GraphVite
(Zhu et al., 2019)

- 6 - - 4 - - - X -

LibKGE
(Broscheit et al., 2020)

- 10 X X 3* X X X - -

OpenKE
(Han et al., 2018)

- 11 - - 3 - - X - -

PyTorch-BigGraph
(Lerer et al., 2019)

- 4 - - 4 - - X X X

Pykg2vec
(Yu et al., 2019)

- 18 X X 2 - - - - -

PyKEEN
(Ali et al., 2019b)

- 10 X - 2 - - - - -

PyKEEN 1.0 X 23 X X 6* X X X - -

Table 1: An overview of the functionalities (determined July 2020) of PyKEEN 1.0 and
similar libraries. AMO refers to automatic memory optimization, ES to early
stopping, * indicates that ranking metrics are computed for different definitions of
the rank, Set TA refers to interchanging the training approach, Set Inv. Rels.
to the explicit modeling of inverse relations, MGS to multi-GPU support, i.e.,
training a single model across several GPUs, and DTR to distributed training.

application of the GitHub Flow development workflow. Documentation is quality checked
by doc8, built with Sphinx, and hosted on ReadTheDocs.org.

3. Comparison to Related Software

Table 1 depicts the most popular KGE frameworks and their features. It shows that Py-
KEEN 1.0, in comparison with related software packages, emphasizes on both, full compos-
ability of KGEMs and extensive functionalities, i.e., a large number of supported interaction
models, and extensive evaluation (several metrics are supported) and HPO functionalities.
Concerning the evaluation metrics, PyKEEN and LibKGE are the only libraries that com-
pute the ranking metrics (i.e., mean rank and hits@k) for different definitions of the rank,
which ensures that undesired cases are detected in which the model predicts equal scores for
many triples. Finally, PyKEEN 1.0 is the only library that performs an automatic memory
optimization that ensures that the memory is not exceeded during training and evaluation.
GraphVite, DGL-KE, and PyTorch-BibGraph focus on scalability, i.e., they provide support
for multi-GPU/CPU or/and distributed training, but focus less on compositionality and ex-
tensibility. For instance, PyTorch-BigGraph supports only a small number of interaction
models that follow specific computation blocks.

4. Availability and Maintenance

PyKEEN 1.0 is publicly available under the MIT License at https://github.com/pykeen/
pykeen, and is distributed through the Python Package Index. It will be maintained by
the core developer team that is supported by the Smart Data Analytics research group
(University of Bonn), Fraunhofer IAIS, Munich Center for Machine Learning (MCML),

4

https://guides.github.com/introduction/flow/
https://launchpad.net/doc8
https://www.sphinx-doc.org
ReadTheDocs.org
https://github.com/pykeen/pykeen
https://github.com/pykeen/pykeen
http://pypi.org/project/pykeen


PyKEEN 1.0

Siemens, and the Technical University of Denmark (section for Cognitive Systems and
section for Statistics and Data Analysis). The project is funded by the German Federal
Ministry of Education and Research (BMBF) under Grant No. 01IS18036A and Grant No.
01IS18050D (project MLWin) as well as the Innovation Fund Denmark with the Danish
Center for Big Data Analytics driven Innovation (DABAI) which ensures the maintenance
of the project in the next years.

References

Mehdi Ali, Charles Tapley Hoyt, Daniel Domingo-Fernández, Jens Lehmann, and Hajira
Jabeen. Biokeen: a library for learning and evaluating biological knowledge graph em-
beddings. Bioinformatics, 35(18):3538–3540, 2019a.

Mehdi Ali, Hajira Jabeen, Charles Tapley Hoyt, and Jens Lehmann. The keen universe. In
International Semantic Web Conference, pages 3–18. Springer, 2019b.

Max Berrendorf, Evgeniy Faerman, Laurent Vermue, and Volker Tresp. Interpretable and
fair comparison of link prediction or entity alignment methods with adjusted mean rank.
In 2020 IEEE/WIC/ACM International Joint Conference on Web Intelligence and In-
telligent Agent Technology (WI-IAT’20). IEEE, 2020.

Samuel Broscheit, Daniel Ruffinelli, Adrian Kochsiek, Patrick Betz, and Rainer Gemulla.
Libkge - A knowledge graph embedding library for reproducible research. In EMNLP
(Demos), pages 165–174. Association for Computational Linguistics, 2020.

Luca Costabello, Sumit Pai, Chan Le Van, Rory McGrath, Nicholas McCarthy, and Pedro
Tabacof. AmpliGraph: a Library for Representation Learning on Knowledge Graphs,
March 2019. URL https://doi.org/10.5281/zenodo.2595043.

Xu Han, Shulin Cao, Lv Xin, Yankai Lin, Zhiyuan Liu, Maosong Sun, and Juanzi Li.
Openke: An open toolkit for knowledge embedding. In Proceedings of EMNLP, 2018.

Seyed Mehran Kazemi and David Poole. Simple embedding for link prediction in knowledge
graphs. In Advances in Neural Information Processing Systems, pages 4284–4295, 2018.

Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter
Forsyth, and Pascal Poupart. Representation learning for dynamic graphs: A survey.
Journal of Machine Learning Research, 21(70):1–73, 2020.

Timothée Lacroix, Nicolas Usunier, and Guillaume Obozinski. Canonical tensor decompo-
sition for knowledge base completion. arXiv preprint arXiv:1806.07297, 2018.

Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt, Abhijit Bose,
and Alex Peysakhovich. PyTorch-BigGraph: A Large-scale Graph Embedding System.
In Proceedings of the 2nd SysML Conference, Palo Alto, CA, USA, 2019.

Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A review of
relational machine learning for knowledge graphs. Proceedings of the IEEE, 104(1):11–
33, 2015.

5

https://doi.org/10.5281/zenodo.2595043


Ali, Berrendorf, Hoyt, Vermue, Sharifzadeh, Tresp, and Lehmann

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

Daniel Ruffinelli, Samuel Broscheit, and Rainer Gemulla. You {can} teach an old dog
new tricks! on training knowledge graph embeddings. In International Conference on
Learning Representations, 2020.

Zhiqing Sun, Shikhar Vashishth, Soumya Sanyal, Partha Talukdar, and Yiming Yang. A
re-evaluation of knowledge graph completion methods. arXiv preprint arXiv:1911.03903,
2019.

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph embedding: A survey
of approaches and applications. IEEE Transactions on Knowledge and Data Engineering,
29(12):2724–2743, 2017.

Shih Yuan Yu, Sujit Rokka Chhetri, Arquimedes Canedo, Palash Goyal, and Mohammad
Abdullah Al Faruque. Pykg2vec: A python library for knowledge graph embedding. arXiv
preprint arXiv:1906.04239, 2019.

Da Zheng, Xiang Song, Chao Ma, Zeyuan Tan, Zihao Ye, Jin Dong, Hao Xiong, Zheng
Zhang, and George Karypis. Dgl-ke: Training knowledge graph embeddings at scale.
arXiv preprint arXiv:2004.08532, 2020.

Zhaocheng Zhu, Shizhen Xu, Jian Tang, and Meng Qu. Graphvite: A high-performance
cpu-gpu hybrid system for node embedding. In The World Wide Web Conference, pages
2494–2504, 2019.

6


	Introduction
	System Description
	Comparison to Related Software
	Availability and Maintenance

