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A Review of Relational Machine Learning
for Knowledge Graphs

Maximilian Nickel, Kevin Murphy, Volker Tresp, Evgeniy Gabrilovich

Abstract—Relational machine learning studies methods for the
statistical analysis of relational, or graph-structured, data. In this
paper, we provide a review of how such statistical models can be
“trained” on large knowledge graphs, and then used to predict
new facts about the world (which is equivalent to predicting new
edges in the graph). In particular, we discuss two fundamentally
different kinds of statistical relational models, both of which can
scale to massive datasets. The first is based on latent feature mod-
els such as tensor factorization and multiway neural networks.
The second is based on mining observable patterns in the graph.
We also show how to combine these latent and observable models
to get improved modeling power at decreased computational cost.
Finally, we discuss how such statistical models of graphs can be
combined with text-based information extraction methods for
automatically constructing knowledge graphs from the Web. To
this end, we also discuss Google’s Knowledge Vault project as an
example of such combination.

Index Terms—Statistical Relational Learning, Knowledge
Graphs, Knowledge Extraction, Latent Feature Models, Graph-
based Models

I. INTRODUCTION

I am convinced that the crux of the problem of learning
is recognizing relationships and being able to use them.

Christopher Strachey in a letter to Alan Turing, 1954

TRADITIONAL machine learning algorithms take as input
a feature vector, which represents an object in terms of

numeric or categorical attributes. The main learning task is to
learn a mapping from this feature vector to an output prediction
of some form. This could be class labels, a regression score,
or an unsupervised cluster id or latent vector (embedding). In
Statistical Relational Learning (SRL), the representation of an
object can contain its relationships to other objects. Thus the
data is in the form of a graph, consisting of nodes (entities)
and labelled edges (relationships between entities). The main
goals of SRL include prediction of missing edges, prediction
of properties of nodes, and clustering nodes based on their
connectivity patterns. These tasks arise in many settings such
as analysis of social networks and biological pathways. For
further information on SRL see [1, 2, 3].

In this article, we review a variety of techniques from the
SRL community and explain how they can be applied to
large-scale knowledge graphs (KGs), i.e., graph structured
knowledge bases (KBs) that store factual information in
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form of relationships between entities. Recently, a large
number of knowledge graphs have been created, including
YAGO [4], DBpedia [5], NELL [6], Freebase [7], and the
Google Knowledge Graph [8]. As we discuss in Section II,
these graphs contain millions of nodes and billions of edges.
This causes us to focus on scalable SRL techniques, which
take time that is (at most) linear in the size of the graph.

We can apply SRL methods to existing KGs to learn a
model that can predict new facts (edges) given existing facts.
We can then combine this approach with information extraction
methods that extract “noisy” facts from the Web (see e.g., [9,
10]). For example, suppose an information extraction method
returns a fact claiming that Barack Obama was born in Kenya,
and suppose (for illustration purposes) that the true place of
birth of Obama was not already stored in the knowledge graph.
An SRL model can use related facts about Obama (such as his
profession being US President) to infer that this new fact is
unlikely to be true and should be discarded. This provides us
a way to “grow” a KG automatically, as we explain in more
detail in Section IX.

The remainder of this paper is structured as follows. In
Section II we introduce knowledge graphs and some of their
properties. Section III discusses SRL and how it can be applied
to knowledge graphs. There are two main classes of SRL
techniques: those that capture the correlation between the
nodes/edges using latent variables, and those that capture
the correlation directly using statistical models based on the
observable properties of the graph. We discuss these two
families in Section IV and Section V, respectively. Section VI
describes methods for combining these two approaches, in
order to get the best of both worlds. Section VII discusses
how such models can be trained on KGs. In Section VIII we
discuss relational learning using Markov Random Fields. In
Section IX we describe how SRL can be used in automated
knowledge base construction projects. In Section X we discuss
extensions of the presented methods, and Section XI presents
our conclusions.

II. KNOWLEDGE GRAPHS

In this section, we introduce knowledge graphs, and discuss
how they are represented, constructed, and used.

A. Knowledge representation

Knowledge graphs model information in the form of entities
and relationships between them. This kind of relational knowl-
edge representation has a long history in logic and artificial
intelligence [11], for example, in semantic networks [12] and
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Leonard Nimoy

Spock

Star Trek

Science Fiction

Star Wars Alec Guinness

Obi-Wan Kenobi

starredIn

played characterIn genre

starredIn

playedcharacterIngenre

Fig. 1. Sample knowledge graph. Nodes represent entities, edge labels represent
types of relations, edges represent existing relationships.

frames [13]. More recently, it has been used in the Semantic
Web community with the purpose of creating a “web of data”
that is readable by machines [14]. While this vision of the
Semantic Web remains to be fully realized, parts of it have
been achieved. In particular, the concept of linked data [15, 16]
has gained traction, as it facilitates publishing and interlinking
data on the Web in relational form using the W3C Resource
Description Framework (RDF) [17, 18]. (For an introduction
to knowledge representation, see e.g. [11, 19, 20]).

In this article, we will loosely follow the RDF standard and
represent facts in the form of binary relationships, in particular
(subject, predicate, object) (SPO) triples, where subject and
object are entities and predicate is the relation between
them. (We discuss how to represent higher-arity relations
in Section X-A.) The existence of a particular SPO triple
indicates an existing fact, i.e., that the respective entities are in
a relationship of the given type. For instance, the information

Leonard Nimoy was an actor who played the char-
acter Spock in the science-fiction movie Star Trek

can be expressed via the following set of SPO triples:

subject predicate object

(LeonardNimoy, profession, Actor)
(LeonardNimoy, starredIn, StarTrek)
(LeonardNimoy, played, Spock)
(Spock, characterIn, StarTrek)
(StarTrek, genre, ScienceFiction)

We can combine all the SPO triples together to form a multi-
graph, where nodes represent entities (all subjects and objects),
and directed edges represent relationships. The direction of an
edge indicates whether entities occur as subjects or objects, i.e.,
an edge points from the subject to the object. Different relations
are represented via different types of edges (also called edge
labels). This construction is called a knowledge graph (KG),
or sometimes a heterogeneous information network [21].) See
Figure 1 for an example.

In addition to being a collection of facts, knowledge graphs
often provide type hierarchies (Leonard Nimoy is an actor,
which is a person, which is a living thing) and type constraints
(e.g., a person can only marry another person, not a thing).

B. Open vs. closed world assumption

While existing triples always encode known true relationships
(facts), there are different paradigms for the interpretation of

TABLE I
KNOWLEDGE BASE CONSTRUCTION PROJECTS

Method Schema Examples

Curated Yes Cyc/OpenCyc [23], WordNet [24],
UMLS [25]

Collaborative Yes Wikidata [26], Freebase [7]

Auto. Semi-Structured Yes YAGO [4, 27], DBPedia [5],
Freebase [7]

Auto. Unstructured Yes Knowledge Vault [28], NELL [6],
PATTY [29], PROSPERA [30],
DeepDive/Elementary [31]

Auto. Unstructured No ReVerb [32], OLLIE [33],
PRISMATIC [34]

non-existing triples:
‚ Under the closed world assumption (CWA), non-existing

triples indicate false relationships. For example, the fact
that in Figure 1 there is no starredIn edge from Leonard
Nimoy to Star Wars is interpreted to mean that Nimoy
definitely did not star in this movie.

‚ Under the open world assumption (OWA), a non-existing
triple is interpreted as unknown, i.e., the corresponding
relationship can be either true or false. Continuing with the
above example, the missing edge is not interpreted to mean
that Nimoy did not star in Star Wars. This more cautious
approach is justified, since KGs are known to be very
incomplete. For example, sometimes just the main actors
in a movie are listed, not the complete cast. As another
example, note that even the place of birth attribute, which
you might think would be typically known, is missing for
71% of all people included in Freebase [22].

RDF and the Semantic Web make the open-world assumption.
In Section VII-B we also discuss the local closed world
assumption (LCWA), which is often used for training relational
models.

C. Knowledge base construction

Completeness, accuracy, and data quality are important
parameters that determine the usefulness of knowledge bases
and are influenced by the way knowledge bases are constructed.
We can classify KB construction methods into four main
groups:
‚ In curated approaches, triples are created manually by a

closed group of experts.
‚ In collaborative approaches, triples are created manually

by an open group of volunteers.
‚ In automated semi-structured approaches, triples are

extracted automatically from semi-structured text (e.g.,
infoboxes in Wikipedia) via hand-crafted rules, learned
rules, or regular expressions.

‚ In automated unstructured approaches, triples are ex-
tracted automatically from unstructured text via machine
learning and natural language processing techniques (see,
e.g., [9] for a review).

Construction of curated knowledge bases typically leads to
highly accurate results, but this technique does not scale well
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due to its dependence on human experts. Collaborative knowl-
edge base construction, which was used to build Wikipedia
and Freebase, scales better but still has some limitations. For
instance, as mentioned previously, the place of birth attribute
is missing for 71% of all people included in Freebase, even
though this is a mandatory property of the schema [22]. Also,
a recent study [35] found that the growth of Wikipedia has
been slowing down. Consequently, automatic knowledge base
construction methods have been gaining more attention.

Such methods can be grouped into two main approaches. The
first approach exploits semi-structured data, such as Wikipedia
infoboxes, which has led to large, highly accurate knowledge
graphs such as YAGO [4, 27] and DBpedia [5]. The accuracy
(trustworthiness) of facts in such automatically created KGs is
often still very high. For instance, the accuracy of YAGO2 has
been estimated1 to be over 95% through manual inspection
of sample facts [36], and the accuracy of Freebase [7] was
estimated to be 99%2. However, semi-structured text still covers
only a small fraction of the information stored on the Web, and
completeness (or coverage) is another important aspect of KGs.
Hence the second approach tries to “read the Web”, extracting
facts from the natural language text of Web pages. Example
projects in this category include NELL [6] and the Knowledge
Vault [28]. In Section IX, we show how we can reduce the
level of “noise” in such automatically extracted facts by using
the knowledge from existing, high-quality repositories.

KGs, and more generally KBs, can also be classified based
on whether they employ a fixed or open lexicon of entities and
relations. In particular, we distinguish two main types of KBs:

‚ In schema-based approaches, entities and relations are
represented via globally unique identifiers and all pos-
sible relations are predefined in a fixed vocabulary. For
example, Freebase might represent the fact that Barack
Obama was born in Hawaii using the triple (/m/02mjmr,
/people/person/born-in, /m/03gh4), where /m/02mjmr is
the unique machine ID for Barack Obama.

‚ In schema-free approaches, entities and relations are
identified using open information extraction (OpenIE)
techniques [37], and represented via normalized but not
disambiguated strings (also referred to as surface names).
For example, an OpenIE system may contain triples such
as (“Obama”, “born in”, “Hawaii”), (“Barack Obama”,
“place of birth”, “Honolulu”), etc. Note that it is not clear
from this representation whether the first triple refers to
the same person as the second triple, nor whether “born
in” means the same thing as “place of birth”. This is the
main disadvantage of OpenIE systems.

1For detailed statistics see http://www.mpi-inf.mpg.de/departments/
databases-and-information-systems/research/yago-naga/yago/statistics/

2http://thenoisychannel.com/2011/11/15/cikm-2011-industry-event-john-
giannandrea-on-freebase-a-rosetta-stone-for-entities

3Non-redundant triples, see [28, Table 1]
4Last published numbers: https://tools.wmflabs.org/wikidata-todo/stats.php

and https://www.wikidata.org/wiki/Category:All_Properties
5English content, Version 2014 from http://wiki.dbpedia.org/data-set-2014
6See [27, Table 5]
7Last published numbers: http://insidesearch.blogspot.de/2012/12/get-

smarter-answers-from-knowledge_4.html

TABLE II
SIZE OF SOME SCHEMA-BASED KNOWLEDGE BASES

Number of

Knowledge Graph Entities Relation Types Facts

Freebase3 40 M 35,000 637 M
Wikidata4 18 M 1,632 66 M
DBpedia (en)5 4.6 M 1,367 538 M
YAGO2 6 9.8 M 114 447 M
Google Knowledge Graph7 570 M 35,000 18,000 M

Table I lists current knowledge base construction projects
classified by their creation method and data schema. In this
paper, we will only focus on schema-based KBs. Table II shows
a selection of such KBs and their sizes.

D. Uses of knowledge graphs

Knowledge graphs provide semantically structured informa-
tion that is interpretable by computers — a property that is
regarded as an important ingredient to build more intelligent
machines [38]. Consequently, knowledge graphs are already
powering multiple “Big Data” applications in a variety of
commercial and scientific domains. A prime example is the
integration of Google’s Knowledge Graph, which currently
stores 18 billion facts about 570 million entities, into the
results of Google’s search engine [8]. The Google Knowledge
Graph is used to identify and disambiguate entities in text, to
enrich search results with semantically structured summaries,
and to provide links to related entities in exploratory search.
(Microsoft has a similar KB, called Satori, integrated with its
Bing search engine [39].)

Enhancing search results with semantic information from
knowledge graphs can be seen as an important step to transform
text-based search engines into semantically aware question
answering services. Another prominent example demonstrating
the value of knowledge graphs is IBM’s question answering
system Watson, which was able to beat human experts in the
game of Jeopardy!. Among others, this system used YAGO,
DBpedia, and Freebase as its sources of information [40].
Repositories of structured knowledge are also an indispensable
component of digital assistants such as Siri, Cortana, or Google
Now.

Knowledge graphs are also used in several specialized
domains. For instance, Bio2RDF [41], Neurocommons [42],
and LinkedLifeData [43] are knowledge graphs that integrate
multiple sources of biomedical information. These have been
used for question answering and decision support in the life
sciences.

E. Main tasks in knowledge graph construction and curation

In this section, we review a number of typical KG tasks.

Link prediction is concerned with predicting the existence (or
probability of correctness) of (typed) edges in the graph (i.e.,
triples). This is important since existing knowledge graphs are
often missing many facts, and some of the edges they contain
are incorrect [44]. In the context of knowledge graphs, link

http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/statistics/
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/statistics/
http://thenoisychannel.com/2011/11/15/cikm-2011-industry-event-john-giannandrea-on-freebase-a-rosetta-stone-for-entities
http://thenoisychannel.com/2011/11/15/cikm-2011-industry-event-john-giannandrea-on-freebase-a-rosetta-stone-for-entities
https://tools.wmflabs.org/wikidata-todo/stats.php
https://www.wikidata.org/wiki/Category:All_Properties
http://wiki.dbpedia.org/data-set-2014
http://insidesearch.blogspot.de/2012/12/get-smarter-answers-from-knowledge_4.html
http://insidesearch.blogspot.de/2012/12/get-smarter-answers-from-knowledge_4.html
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prediction is also referred to as knowledge graph completion.
For example, in Figure 1, suppose the characterIn edge from
Obi-Wan Kenobi to Star Wars were missing; we might be able
to predict this missing edge, based on the structural similarity
between this part of the graph and the part involving Spock
and Star Trek. It has been shown that relational models that
take the relationships of entities into account can significantly
outperform non-relational machine learning methods for this
task (e.g., see [45, 46]).

Entity resolution (also known as record linkage [47],
object identification [48], instance matching [49], and de-
duplication [50]) is the problem of identifying which objects
in relational data refer to the same underlying entities. See
Figure 2 for a small example. In a relational setting, the
decisions about which objects are assumed to be identical
can propagate through the graph, so that matching decisions
are made collectively for all objects in a domain rather
than independently for each object pair (see, for example,
[51, 52, 53]). In schema-based automated knowledge base
construction, entity resolution can be used to match the
extracted surface names to entities stored in the knowledge
graph.

Link-based clustering extends feature-based clustering to a
relational learning setting and groups entities in relational data
based on their similarity. However, in link-based clustering,
entities are not only grouped by the similarity of their features
but also by the similarity of their links. As in entity resolution,
the similarity of entities can propagate through the knowledge
graph, such that relational modeling can add important infor-
mation for this task. In social network analysis, link-based
clustering is also known as community detection [54].

III. STATISTICAL RELATIONAL LEARNING FOR
KNOWLEDGE GRAPHS

Statistical Relational Learning is concerned with the creation
of statistical models for relational data. In the following sections
we discuss how statistical relational learning can be applied
to knowledge graphs. We will assume that all the entities
and (types of) relations in a knowledge graph are known. (We
discuss extensions of this assumption in Section X-C). However,
triples are assumed to be incomplete and noisy; entities and
relation types may contain duplicates.

Notation: Before proceeding, let us define our mathematical
notation. (Variable names will be introduced later in the
appropriate sections.) We denote scalars by lower case letters,
such as a; column vectors (of size N ) by bold lower case letters,
such as a; matrices (of size N1ˆN2) by bold upper case letters,
such as A; and tensors (of size N1ˆN2ˆN3) by bold upper
case letters with an underscore, such as A. We denote the
k’th “frontal slice” of a tensor A by Ak (which is a matrix of
size N1ˆN2), and the pi, j, kq’th element by aijk (which is a
scalar). We use ra;bs to denote the vertical stacking of vectors

a and b, i.e., ra;bs “

ˆ

a
b

˙

. We can convert a matrix A of size

N1ˆN2 into a vector a of size N1N2 by stacking all columns
of A, denoted a “ vec pAq. The inner (scalar) product of two
vectors (both of size N ) is defined by aJb “

řN
i“1 aibi. The

tensor (Kronecker) product of two vectors (of size N1 and N2)

i-th entity

j-th entity

k-th relation

Y

yijk

Fig. 3. Tensor representation of binary relational data.

is a vector of size N1N2 with entries abb “

¨

˚

˝

a1b
...

aN1b

˛

‹

‚

. Matrix

multiplication is denoted by AB as usual. We denote the L2

norm of a vector by ||a||2 “
a

ř

i a
2
i , and the Frobenius norm

of a matrix by ||A||F “
b

ř

i

ř

j a
2
ij . We denote the vector

of all ones by 1, and the identity matrix by I.

A. Probabilistic knowledge graphs

We now introduce some mathematical background so we can
more formally define statistical models for knowledge graphs.

Let E “ te1, . . . , eNe
u be the set of all entities and

R “ tr1, . . . , rNr
u be the set of all relation types in a knowl-

edge graph. We model each possible triple xijk “ pei, rk, ejq
over this set of entities and relations as a binary random variable
yijk P t0, 1u that indicates its existence. All possible triples in
E ˆR ˆ E can be grouped naturally in a third-order tensor
(three-way array) Y P t0, 1u

NeˆNeˆNr , whose entries are set
such that

yijk “

#

1, if the triple pei, rk, ejq exists
0, otherwise.

We will refer to this construction as an adjacency tensor (cf.
Figure 3). Each possible realization of Y can be interpreted as
a possible world. To derive a model for the entire knowledge
graph, we are then interested in estimating the joint distribution
PpYq, from a subset D Ď E ˆ R ˆ E ˆ t0, 1u of observed
triples. In doing so, we are estimating a probability distribution
over possible worlds, which allows us to predict the probability
of triples based on the state of the entire knowledge graph.
While yijk “ 1 in adjacency tensors indicates the existence of
a triple, the interpretation of yijk “ 0 depends on whether the
open world, closed world, or local-closed world assumption is
made. For details, see Section VII-B.

Note that the size of Y can be enormous for large knowledge
graphs. For instance, in the case of Freebase, which currently
consists of over 40 million entities and 35, 000 relations, the
number of possible triples |E ˆRˆ E | exceeds 1019 elements.
Of course, type constraints reduce this number considerably.

Even amongst the syntactically valid triples, only a tiny
fraction are likely to be true. For example, there are over
450,000 thousands actors and over 250,000 movies stored in
Freebase. But each actor stars only in a small number of movies.
Therefore, an important issue for SRL on knowledge graphs is
how to deal with the large number of possible relationships
while efficiently exploiting the sparsity of relationships. Ideally,
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The Bridge on the River Kwai

Star Wars Doctor ZhivagoGuinness

MovieBeer
1

A. Guinness
2

Arthur Guinness

3

Alec GuinnessknownFor

knownFor knownForknownFor

type

type typetype

Fig. 2. Example of entity resolution in a toy knowledge graph. In this example, nodes 1 and 3 refer to the identical entity, the actor Alec Guinness. Node 2 on
the other hand refers to Arthur Guinness, the founder of the Guinness brewery. The surface name of node 2 (“A. Guinness”) alone would not be sufficient to
perform a correct matching as it could refer to both Alec Guinness and Arthur Guinness. However, since links in the graph reveal the occupations of the
persons, a relational approach can perform the correct matching.

a relational model for large-scale knowledge graphs should
scale at most linearly with the data size, i.e., linearly in the
number of entities Ne, linearly in the number of relations Nr,
and linearly in the number of observed triples |D| “ Nd.

B. Statistical properties of knowledge graphs

Knowledge graphs typically adhere to some deterministic
rules, such as type constraints and transitivity (e.g., if Leonard
Nimoy was born in Boston, and Boston is located in the USA,
then we can infer that Leonard Nimoy was born in the USA).
However, KGs have typically also various “softer” statistical
patterns or regularities, which are not universally true but
nevertheless have useful predictive power.

One example of such statistical pattern is known as ho-
mophily, that is, the tendency of entities to be related to
other entities with similar characteristics. This has been widely
observed in various social networks [55, 56]. For example,
US-born actors are more likely to star in US-made movies. For
multi-relational data (graphs with more than one kind of link),
homophily has also been referred to as autocorrelation [57].

Another statistical pattern is known as block structure. This
refers to the property where entities can be divided into distinct
groups (blocks), such that all the members of a group have
similar relationships to members of other groups [58, 59, 60].
For example, we can group some actors, such as Leonard
Nimoy and Alec Guinness, into a science fiction actor block,
and some movies, such as Star Trek and Star Wars, into a
science fiction movie block, since there is a high density of
links from the scifi actor block to the scifi movie block.

Graphs can also exhibit global and long-range statistical
dependencies, i.e., dependencies that can span over chains of
triples and involve different types of relations. For example,
the citizenship of Leonard Nimoy (USA) depends statistically
on the city where he was born (Boston), and this dependency
involves a path over multiple entities (Leonard Nimoy, Boston,
USA) and relations (bornIn, locatedIn, citizenOf ). A distinctive
feature of relational learning is that it is able to exploit such
patterns to create richer and more accurate models of relational
domains.

When applying statistical models to incomplete knowledge
graphs, it should be noted that the distribution of facts in such
KGs can be skewed. For instance, KGs that are derived from
Wikipedia will inherit the skew that exists in distribution of

facts in Wikipedia itself.8 Statistical models as discussed in
the following sections can be affected by such biases in the
input data and need to be interpreted accordingly.

C. Types of SRL models

As we discussed, the presence or absence of certain triples
in relational data is correlated with (i.e., predictive of) the
presence or absence of certain other triples. In other words,
the random variables yijk are correlated with each other. We
will discuss three main ways to model these correlations:

M1) Assume all yijk are conditionally independent given
latent features associated with subject, object and
relation type and additional parameters (latent feature
models)

M2) Assume all yijk are conditionally independent given
observed graph features and additional parameters
(graph feature models)

M3) Assume all yijk have local interactions (Markov
Random Fields)

In what follows we will mainly focus on M1 and M2 and their
combination; M3 will be the topic of Section VIII.

The model classes M1 and M2 predict the existence of a
triple xijk via a score function fpxijk; Θq which represents
the model’s confidence that a triple exists given the parameters
Θ. The conditional independence assumptions of M1 and M2
allow the probability model to be written as follows:

PpY|D,Θq “
Ne
ź

i“1

Ne
ź

j“1

Nr
ź

k“1

Berpyijk |σpfpxijk; Θqqq (1)

where σpuq “ 1{p1` e´uq is the sigmoid (logistic) function,
and

Berpy|pq “

"

p if y “ 1
1´ p if y “ 0

(2)

is the Bernoulli distribution.
We will refer to models of the form Equation (1) as

probabilistic models. In addition to probabilistic models, we
will also discuss models which optimize fp¨q under other
criteria, for instance models which maximize the margin

8As an example, there are currently 10,306 male and 7,586 female American
actors listed in Wikipedia, while there are only 1,268 male and 1,354 female
Indian, and 77 male and no female Nigerian actors. India and Nigeria, however,
are the largest and second largest film industries in the world.
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between existing and non-existing triples. We will refer to
such models as score-based models. If desired, we can derive
probabilities for score-based models via Platt scaling [61].

There are many different methods for defining fp¨q. In the
following Sections IV to VI and VIII we will discuss different
options for all model classes. In Section VII we will furthermore
discuss aspects of how to train these models on knowledge
graphs.

IV. LATENT FEATURE MODELS

In this section, we assume that the variables yijk are
conditionally independent given a set of global latent features
and parameters, as in Equation 1. We discuss various possible
forms for the score function fpx; Θq below. What all models
have in common is that they explain triples via latent features
of entities (This is justified via various theoretical arguments
[62]). For instance, a possible explanation for the fact that Alec
Guinness received the Academy Award is that he is a good
actor. This explanation uses latent features of entities (being a
good actor) to explain observable facts (Guinness receiving the
Academy Award). We call these features “latent” because they
are not directly observed in the data. One task of all latent
feature models is therefore to infer these features automatically
from the data.

In the following, we will denote the latent feature represen-
tation of an entity ei by the vector ei P RHe where He denotes
the number of latent features in the model. For instance, we
could model that Alec Guinness is a good actor and that the
Academy Award is a prestigious award via the vectors

eGuinness “

„

0.9
0.2



, eAcademyAward “

„

0.2
0.8



where the component ei1 corresponds to the latent feature
Good Actor and ei2 correspond to Prestigious Award. (Note
that, unlike this example, the latent features that are inferred
by the following models are typically hard to interpret.)

The key intuition behind relational latent feature models
is that the relationships between entities can be derived from
interactions of their latent features. However, there are many
possible ways to model these interactions, and many ways to
derive the existence of a relationship from them. We discuss
several possibilities below. See Table III for a summary of the
notation.

A. RESCAL: A bilinear model

RESCAL [63, 64, 65] is a relational latent feature model
which explains triples via pairwise interactions of latent features.
In particular, we model the score of a triple xijk as

fRESCAL
ijk :“ eJi Wkej “

He
ÿ

a“1

He
ÿ

b“1

wabkeiaejb (3)

where Wk P RHeˆHe is a weight matrix whose entries wabk

specify how much the latent features a and b interact in the
k-th relation. We call this a bilinear model, since it captures the
interactions between the two entity vectors using multiplicative
terms. For instance, we could model the pattern that good

TABLE III
SUMMARY OF THE NOTATION.

Relational data
Symbol Meaning

Ne Number of entities
Nr Number of relations
Nd Number of training examples
ei i-th entity in the dataset (e.g., LeonardNimoy)
rk k-th relation in the dataset (e.g., bornIn)
D` Set of observed positive triples
D´ Set of observed negative triples

Probabilistic Knowledge Graphs
Symbol Meaning Size

Y (Partially observed) labels for all triples Ne ˆNe ˆNr

F Score for all possible triples Ne ˆNe ˆNr

Yk Slice of Y for relation rk Ne ˆNe

Fk Slice of F for relation rk Ne ˆNe

Graph and Latent Feature Models
Symbol Meaning

φijk Feature vector representation of triple pei, rk, ejq
wk Weight vector to derive scores for relation k
Θ Set of all parameters of the model
σp¨q Sigmoid (logistic) function

Latent Feature Models
Symbol Meaning Size

He Number of latent features for entities
Hr Number of latent features for relations
ei Latent feature repr. of entity ei He

rk Latent feature repr. of relation rk Hr

Ha Size of ha layer
Hb Size of hb layer
Hc Size of hc layer
E Entity embedding matrix Ne ˆHe

Wk Bilinear weight matrix for relation k He ˆHe

Ak Linear feature map for pairs of entities p2Heq ˆHa

for relation rk
C Linear feature map for triples p2He `Hrq ˆHc

actors are likely to receive prestigious awards via a weight
matrix such as

WreceivedAward “

„

0.1 0.9
0.1 0.1



.

In general, we can model block structure patterns via the
magnitude of entries in Wk, while we can model homophily
patterns via the magnitude of its diagonal entries. Anti-
correlations in these patterns can be modeled via negative
entries in Wk.

Hence, in Equation (3) we compute the score of a triple
xijk via the weighted sum of all pairwise interactions between
the latent features of the entities ei and ej . The parameters of
the model are Θ “ tteiu

Ne
i“1, tWku

Nr

k“1u. During training we
jointly learn the latent representations of entities and how the
latent features interact for particular relation types.

In the following, we will discuss further important properties
of the model for learning from knowledge graphs.

Relational learning via shared representations: In equa-
tion (3), entities have the same latent representation regardless
of whether they occur as subjects or objects in a relationship.
Furthermore, they have the same representation over all
different relation types. For instance, the i-th entity occurs
in the triple xijk as the subject of a relationship of type k,
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Fig. 4. RESCAL as a tensor factorization of the adjacency tensor Y.

while it occurs in the triple xpiq as the object of a relationship
of type q. However, the predictions fijk “ eJi Wkej and
fpiq “ eJp Wqei both use the same latent representation ei
of the i-th entity. Since all parameters are learned jointly,
these shared representations permit to propagate information
between triples via the latent representations of entities and the
weights of relations. This allows the model to capture global
dependencies in the data.

Semantic embeddings: The shared entity representations
in RESCAL capture also the similarity of entities in the
relational domain, i.e., that entities are similar if they are
connected to similar entities via similar relations [65]. For
instance, if the representations of ei and ep are similar, the
predictions fijk and fpjk will have similar values. In return,
entities with many similar observed relationships will have
similar latent representations. This property can be exploited for
entity resolution and has also enabled large-scale hierarchical
clustering on relational data [63, 64]. Moreover, since relational
similarity is expressed via the similarity of vectors, the latent
representations ei can act as proxies to give non-relational
machine learning algorithms such as k-means or kernel methods
access to the relational similarity of entities.

Connection to tensor factorization: RESCAL is similar
to methods used in recommendation systems [66], and to
traditional tensor factorization methods [67]. In matrix notation,
Equation (3) can be written compactly as as Fk “ EWkE

J,
where Fk P RNeˆNe is the matrix holding all scores for the
k-th relation and the i-th row of E P RNeˆHe holds the latent
representation of ei. See Figure 4 for an illustration. In the
following, we will use this tensor representation to derive a
very efficient algorithm for parameter estimation.

Fitting the model: If we want to compute a probabilistic
model, the parameters of RESCAL can be estimated by
minimizing the log-loss using gradient-based methods such as
stochastic gradient descent [68]. RESCAL can also be com-
puted as a score-based model, which has the main advantage
that we can estimate the parameters Θ very efficiently: Due
to its tensor structure and due to the sparsity of the data, it
has been shown that the RESCAL model can be computed
via a sequence of efficient closed-form updates when using
the squared-loss [63, 64]. In this setting, it has been shown
analytically that a single update of E and Wk scales linearly
with the number of entities Ne, linearly with the number of
relations Nr, and linearly with the number of observed triples,
i.e., the number of non-zero entries in Y [64]. We call this

algorithm RESCAL-ALS.9 In practice, a small number (say 30
to 50) of iterated updates are often sufficient for RESCAL-ALS
to arrive at stable estimates of the parameters. Given a current
estimate of E, the updates for each Wk can be computed in
parallel to improve the scalability on knowledge graphs with
a large number of relations. Furthermore, by exploiting the
special tensor structure of RESCAL, we can derive improved
updates for RESCAL-ALS that compute the estimates for the
parameters with a runtime complexity of OpH3

e q for a single
update (as opposed to a runtime complexity of OpH5

e q for
naive updates) [65, 69]. In summary, for relational domains
that can be explained via a moderate number of latent features,
RESCAL-ALS is highly scalable and very fast to compute.
For more detail on RESCAL-ALS see also Equation (26) in
Section VII.

Decoupled Prediction: In Equation (3), the probability
of single relationship is computed via simple matrix-vector
products in OpH2

e q time. Hence, once the parameters have been
estimated, the computational complexity to predict the score of
a triple depends only on the number of latent features and is
independent of the size of the graph. However, during parameter
estimation, the model can capture global dependencies due to
the shared latent representations.

Relational learning results: RESCAL has been shown
to achieve state-of-the-art results on a number of relational
learning tasks. For instance, [63] showed that RESCAL
provides comparable or better relationship prediction results
on a number of small benchmark datasets compared to
Markov Logic Networks (with structure learning) [70], the
Infinite (Hidden) Relational model [71, 72], and Bayesian
Clustered Tensor Factorization [73]. Moreover, RESCAL has
been used for link prediction on entire knowledge graphs such
as YAGO and DBpedia [64, 74]. Aside from link prediction,
RESCAL has also successfully been applied to SRL tasks such
as entity resolution and link-based clustering. For instance,
RESCAL has shown state-of-the-art results in predicting which
authors, publications, or publication venues are likely to be
identical in publication databases [63, 65]. Furthermore, the
semantic embedding of entities computed by RESCAL has
been exploited to create taxonomies for uncategorized data via
hierarchical clusterings of entities in the embedding space [75].

B. Other tensor factorization models

Various other tensor factorization methods have been ex-
plored for learning from knowledge graphs and multi-relational
data. [76, 77] factorized adjacency tensors using the CP
tensor decomposition to analyze the link structure of Web
pages and Semantic Web data respectively. [78] applied
pairwise interaction tensor factorization [79] to predict triples
in knowledge graphs. [80] applied factorization machines to
large uni-relational datasets in recommendation settings. [81]
proposed a tensor factorization model for knowledge graphs
with a very large number of different relations.

It is also possible to use discrete latent factors. [82] proposed
Boolean tensor factorization to disambiguate facts extracted
with OpenIE methods and applied it to large datasets [83]. In

9ALS stands for Alternating Least-Squares
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contrast to previously discussed factorizations, Boolean tensor
factorizations are discrete models, where adjacency tensors are
decomposed into binary factors based on Boolean algebra.

C. Matrix factorization methods

Another approach for learning from knowledge graphs is
based on matrix factorization, where, prior to the factorization,
the adjacency tensor Y P RNeˆNeˆNr is reshaped into a matrix
Y P RN2

eˆNr by associating rows with subject-object pairs
pei, ejq and columns with relations rk (cf. [84, 85]), or into
a matrix Y P RNeˆNeNr by associating rows with subjects
ei and columns with relation/objects prk, ejq (cf. [86, 87]).
Unfortunately, both of these formulations lose information
compared to tensor factorization. For instance, if each subject-
object pair is modeled via a different latent representation, the
information that the relationships yijk and ypjq share the same
object is lost. It also leads to an increased memory complexity,
since a separate latent representation is computed for each pair
of entities, requiring OpN2

eHe`NrHeq parameters (compared
to OpNeHe `NrH

2
e q parameters for RESCAL).

D. Multi-layer perceptrons

We can interpret RESCAL as creating composite repre-
sentations of triples and predicting their existence from this
representation. In particular, we can rewrite RESCAL as

fRESCAL
ijk :“ wJk φ

RESCAL
ij (4)

φRESCAL
ij :“ ej b ei, (5)

where wk “ vec pWkq. Equation (4) follows from Equation (3)
via the equality vec pAXBq “ pBJ bAq vec pXq. Hence,
RESCAL represents pairs of entities pei, ejq via the tensor
product of their latent feature representations (Equation (5))
and predicts the existence of the triple xijk from φij via wk

(Equation (4)). See also Figure 5a. For a further discussion of
the tensor product to create composite latent representations
please see [88, 89, 90].

Since the tensor product explicitly models all pairwise
interactions, RESCAL can require a lot of parameters when
the number of latent features are large (each matrix Wk has
H2

e entries). This can, for instance, lead to scalability problems
on knowledge graphs with a large number of relations.

In the following we will discuss models based on multi-
layer perceptrons (MLPs), also known as feedforward neural
networks. In the context of multidimensional data they can
be referred to a muliway neural networks. This approach
allows us to consider alternative ways to create composite
triple representations and to use nonlinear functions to predict
their existence.

In particular, let us define the following E-MLP model (E
for entity):

fE-MLP
ijk :“ wJk gph

a
ijkq (6)

ha
ijk :“ AJkφ

E-MLP
ij (7)

φE-MLP
ij :“ rei; ejs (8)

TABLE IV
SEMANTIC EMBEDDINGS OF KV-MLP ON FREEBASE

Relation Nearest Neighbors

children parents (0.4) spouse (0.5) birth-place (0.8)
birth-date children (1.24) gender (1.25) parents (1.29)
edu-end10 job-start (1.41) edu-start (1.61) job-end (1.74)

where gpuq “ rgpu1q, gpu2q, . . .s is the function g applied
element-wise to vector u; one often uses the nonlinear function
gpuq “ tanhpuq.

Here ha is an additive hidden layer, which is deriving
by adding together different weighed components of the
entity representations. In particular, we create a composite
representation φE-MLP

ij “ rei; ejs P R2Ha via the concatenation
of ei and ej . However, concatenation alone does not consider
any interactions between the latent features of ei and ej .
For this reason, we add a (vector-valued) hidden layer ha

of size Ha, from which the final prediction is derived via
wJk gphaq. The important difference to tensor-product models
like RESCAL is that we learn the interactions of latent
features via the matrix Ak (Equation (7)), while the tensor
product considers always all possible interactions between
latent features. This adaptive approach can reduce the number
of required parameters significantly, especially on datasets with
a large number of relations.

One disadvantage of the E-MLP is that it has to define
a vector wk and a matrix Ak for every possible relation,
which requires Ha ` pHa ˆ 2Heq parameters per relation.
An alternative is to embed the relation itself, using a Hr-
dimensional vector rk. We can then define

fER-MLP
ijk :“ wJgphc

ijkq (9)

hc
ijk :“ CJφER-MLP

ijk (10)

φER-MLP
ijk :“ rei; ej ; rks. (11)

We call this model the ER-MLP, since it applies an MLP to
an embedding of the entities and relations. Please note that
ER-MLP uses a global weight vector for all relations. This
model was used in the KV project (see Section IX), since it
has many fewer parameters than the E-MLP (see Table V); the
reason is that C is independent of the relation k.

It has been shown in [91] that MLPs can learn to put
“semantically similar” words close by in the embedding space,
even if they are not explicitly trained to do so. In [28], they show
a similar result for the semantic embedding of relations using
ER-MLP. For example, Table IV shows the nearest neighbors
of latent representations of selected relations that have been
computed with a 60 dimensional model on Freebase. Numbers
in parentheses represent squared Euclidean distances. It can
be seen that ER-MLP puts semantically related relations near
each other. For instance, the closest relations to the children
relation are parents, spouse, and birthplace.

10The relations edu-start, edu-end, job-start, job-end represent the start and
end dates of attending an educational institution and holding a particular job,
respectively
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Fig. 5. Visualization of RESCAL and the ER-MLP model as Neural Networks. Here, He “ Hr “ 3 and Ha “ 3. Note, that the inputs are latent features.
The symbol g denotes the application of the function gp¨q.

TABLE V
SUMMARY OF THE LATENT FEATURE MODELS. ha , hb AND hc ARE HIDDEN LAYERS OF THE NEURAL NETWORK; SEE TEXT FOR DETAILS.

Method fijk Ak C Bk Num. Parameters

RESCAL [64] wJk hb
ijk - - rδ1,1, . . . , δHe,He s NrH2

e `NeHe

E-MLP [92] wJk gpha
ijkq rAs

k; Ao
ks - - NrpHa `Ha ˆ 2Heq `NeHe

ER-MLP [28] wJgphc
ijkq - C - Hc `Hc ˆ p2He `Hrq `NrHr `NeHe

NTN [92] wJk gprha
ijk;hb

ijksq rAs
k;Ao

ks - rB1
k, . . . ,B

Hb
k s N2

eHb `NrpHb `Haq ` 2NrHeHa `NeHe

Structured Embeddings [93] ´}ha
ijk}1 rAs

k;´Ao
ks - - 2NrHeHa `NeHe

TransE [94] ´p2haijk ´ 2hbijk ` }rk}
2
2q rrk;´rks - I NrHe `NeHe

E. Neural tensor networks

We can combine traditional MLPs with bilinear models,
resulting in what [92] calls a “neural tensor network” (NTN).
More precisely, we can define the NTN model as follows:

fNTN
ijk :“ wJk gprh

a
ijk;hb

ijksq (12)

ha
ijk :“ AJk rei; ejs (13)

hb
ijk :“

”

eJi B
1
kej , . . . , e

J
i B

Hb

k ej

ı

(14)

Here Bk is a tensor, where the `-th slice B`
k has size He ˆ

He, and there are Hb slices. We call hb
ijk a bilinear hidden

layer, since it is derived from a weighted combination of
multiplicative terms.

NTN is a generalization of the RESCAL approach, as we
explain in Section XII-A. Also, it uses the additive layer from
the E-MLP model. However, it has many more parameters
than the E-MLP or RESCAL models. Indeed, the results in
[95] and [28] both show that it tends to overfit, at least on the
(relatively small) datasets uses in those papers.

F. Latent distance models

Another class of models are latent distance models (also
known as latent space models in social network analysis),
which derive the probability of relationships from the distance
between latent representations of entities: entities are likely
to be in a relationship if their latent representations are close
according to some distance measure. For uni-relational data,
[96] proposed this approach first in the context of social
networks by modeling the probability of a relationship xij
via the score function fpei, ejq “ ´dpei, ejq where dp¨, ¨q
refers to an arbitrary distance measure such as the Euclidean
distance.

The structured embedding (SE) model [93] extends this idea
to multi-relational data by modeling the score of a triple xijk
as:

fSE
ijk :“ ´}As

kei ´Ao
kej}1 “ ´}h

a
ijk}1 (15)

where Ak “ rA
s
k;´Ao

ks. In Equation (15) the matrices As
k,

Ao
k transform the global latent feature representations of entities

to model relationships specifically for the k-th relation. The
transformations are learned using the ranking loss in a way
such that pairs of entities in existing relationships are closer
to each other than entities in non-existing relationships.

To reduce the number of parameters over the SE model, the
TransE model [94] translates the latent feature representations
via a relation-specific offset instead of transforming them via
matrix multiplications. In particular, the score of a triple xijk
is defined as:

fTransE
ijk :“ ´dpei ` rk, ejq. (16)

This model is inspired by the results in [91], who showed that
some relationships between words could be computed by their
vector difference in the embedding space. As noted in [95],
under unit-norm constraints on ei, ej and using the squared
Euclidean distance, we can rewrite Equation (16) as follows:

fTransE
ijk “ ´p2rJk pei ´ ejq ´ 2eJi ej ` }rk}

2
2q (17)

Furthermore, if we assume Ak “ rrk;´rks, so that
haijk “ rrk;´rks

T rei; ejs “ rTk pei ´ ejq, and Bk “ I, so that
hbijk “ eTi ej , then we can rewrite this model as follows:

fTransE
ijk “ ´p2haijk ´ 2hbijk ` }rk}

2
2q. (18)

G. Comparison of models

Table V summarizes the different models we have discussed.
A natural question is: which model is best? [28] showed that
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the ER-MLP model outperformed the NTN model on their
particular dataset. [95] performed more extensive experimental
comparison of these models, and found that RESCAL (called
the bilinear model) worked best on two link prediction tasks.
However, clearly the best model will be dataset dependent.

V. GRAPH FEATURE MODELS

In this section, we assume that the existence of an edge
can be predicted by extracting features from the observed
edges in the graph. For example, due to social conventions,
parents of a person are often married, so we could predict
the triple (John, marriedTo, Mary) from the existence of the
path John

parentOf
ÝÝÝÝÑ Anne

parentOf
ÐÝÝÝÝ Mary, representing a com-

mon child. In contrast to latent feature models, this kind of
reasoning explains triples directly from the observed triples in
the knowledge graph. We will now discuss some models of
this kind.

A. Similarity measures for uni-relational data

Observable graph feature models are widely used for link
prediction in graphs that consist only of a single relation,
e.g., social network analysis (friendships between people),
biology (interactions of proteins), and Web mining (hyperlinks
between Web sites). The intuition behind these methods is that
similar entities are likely to be related (homophily) and that
the similarity of entities can be derived from the neighborhood
of nodes or from the existence of paths between nodes. For
this purpose, various indices have been proposed to measure
the similarity of entities, which can be classified into local,
global, and quasi-local approaches [97].

Local similarity indices such as Common Neighbors, the
Adamic-Adar index [98] or Preferential Attachment [99] derive
the similarity of entities from their number of common neigh-
bors or their absolute number of neighbors. Local similarity
indices are fast to compute for single relationships and scale
well to large knowledge graphs as their computation depends
only on the direct neighborhood of the involved entities.
However, they can be too localized to capture important
patterns in relational data and cannot model long-range or
global dependencies.

Global similarity indices such as the Katz index [100] and
the Leicht-Holme-Newman index [101] derive the similarity of
entities from the ensemble of all paths between entities, while
indices like Hitting Time, Commute Time, and PageRank [102]
derive the similarity of entities from random walks on the graph.
Global similarity indices often provide significantly better
predictions than local indices, but are also computationally
more expensive [97, 56].

Quasi-local similarity indices like the Local Katz index [56]
or Local Random Walks [103] try to balance predictive accuracy
and computational complexity by deriving the similarity of
entities from paths and random walks of bounded length.

In Section V-C, we will discuss an approach that extends this
idea of quasi-local similarity indices for uni-relational networks
to learn from large multi-relational knowledge graphs.

B. Rule Mining and Inductive Logic Programming

Another class of models that works on the observed variables
of a knowledge graph extracts rules via mining methods and
uses these extracted rules to infer new links. The extracted
rules can also be used as a basis for Markov Logic as
discussed in Section VIII. For instance, ALEPH is an Inductive
Logic Programming (ILP) system that attempts to learn rules
from relational data via inverse entailment [104] (For more
information on ILP see e.g., [105, 3, 106]). AMIE is a rule
mining system that extracts logical rules (in particular Horn
clauses) based on their support in a knowledge graph [107, 108].
In contrast to ALEPH, AMIE can handle the open-world
assumption of knowledge graphs and has shown to be up
to three orders of magnitude faster on large knowledge
graphs [108]. The basis for the Semantic Web is Description
Logic and [109, 110, 111] describe approaches for logic-
oriented machine learning approaches in this context. Also
to mention are data mining approaches for knowledge graphs
as described in [112, 113, 114]. An advantage of rule-based
systems is that they are easily interpretable as the model is given
as a set of logial rules. However, rules over observed variables
cover usually only a subset of patterns in knowledge graphs (or
relational data) and useful rules can be challenging to learn.

C. Path Ranking Algorithm

The Path Ranking Algorithm (PRA) [115, 116] extends the
idea of using random walks of bounded lengths for predicting
links in multi-relational knowledge graphs. In particular, let
πLpi, j, k, tq denote a path of length L of the form ei

r1
Ñ e2

r2
Ñ

e3 ¨ ¨ ¨
rL
Ñ ej , where t represents the sequence of edge types

t “ pr1, r2, . . . , rLq. We also require there to be a direct arc
ei

rk
Ñ ej , representing the existence of a relationship of type k

from ei to ej . Let ΠLpi, j, kq represent the set of all such paths
of length L, ranging over path types t. (We can discover such
paths by enumerating all (type-consistent) paths from entities
of type ei to entities of type ej . If there are too many relations
to make this feasible, we can perform random sampling.)

We can compute the probability of following such a path
by assuming that at each step, we follow an outgoing link
uniformly at random. Let PpπLpi, j, k, tqq be the probability
of this particular path; this can be computed recursively by
a sampling procedure, similar to PageRank (see [116] for
details). The key idea in PRA is to use these path probabilities
as features for predicting the probability of missing edges.
More precisely, define the feature vector

φPRA
ijk “ rPpπq : π P ΠLpi, j, kqs (19)

We can then predict the edge probabilities using logistic
regression:

fPRA
ijk :“ wJk φ

PRA
ijk (20)

Interpretability: A useful property of PRA is that its model is
easily interpretable. In particular, relation paths can be regarded
as bodies of weighted rules — more precisely Horn clauses —
where the weight specifies how predictive the body of the rule
is for the head. For instance, Table VI shows some relation
paths along with their weights that have been learned by PRA
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TABLE VI
EXAMPLES OF PATHS LEARNED BY PRA ON FREEBASE TO PREDICT WHICH

COLLEGE A PERSON ATTENDED

Relation Path F1 Prec Rec Weight

(draftedBy, school) 0.03 1.0 0.01 2.62
(sibling(s), sibling, education, institution) 0.05 0.55 0.02 1.88
(spouse(s), spouse, education, institution) 0.06 0.41 0.02 1.87
(parents, education, institution) 0.04 0.29 0.02 1.37
(children, education, institution) 0.05 0.21 0.02 1.85
(placeOfBirth, peopleBornHere, education) 0.13 0.1 0.38 6.4
(type, instance, education, institution) 0.05 0.04 0.34 1.74
(profession, peopleWithProf., edu., inst.) 0.04 0.03 0.33 2.19

in the KV project (see Section IX) to predict which college a
person attended, i.e., to predict triples of the form (p, college,
c). The first relation path in Table VI can be interpreted as
follows: it is likely that a person attended a college if the
sports team that drafted the person is from the same college.
This can be written in the form of a Horn clause as follows:

(p, college, c) Ð (p, draftedBy, t) ^ (t, school, c) .

By using a sparsity promoting prior on wk, we can perform
feature selection, which is equivalent to rule learning.

Relational learning results: PRA has been shown to out-
perform the ILP method FOIL [106] for link prediction in
NELL [116]. It has also been shown to have comparable
performance to ER-MLP on link prediction in KV: PRA
obtained a result of 0.884 for the area under the ROC curve,
as compared to 0.882 for ER-MLP [28].

VI. COMBINING LATENT AND GRAPH FEATURE MODELS

It has been observed experimentally (see, e.g., [28]) that
neither state-of-the-art relational latent feature models (RLFMs)
nor state-of-the-art graph feature models are superior for
learning from knowledge graphs. Instead, the strengths of latent
and graph-based models are often complementary (see e.g.,
[117]), as both families focus on different aspects of relational
data:
‚ Latent feature models are well-suited for modeling global

relational patterns via newly introduced latent variables.
They are computationally efficient if triples can be
explained with a small number of latent variables.

‚ Graph feature models are well-suited for modeling local
and quasi-local graphs patterns. They are computationally
efficient if triples can be explained from the neighborhood
of entities or from short paths in the graph.

There has also been some theoretical work comparing these
two approaches [118]. In particular, it has been shown that
tensor factorization can be inefficient when relational data
consists of a large number of strongly connected components.
Fortunately, such “problematic” relations can often be handled
efficiently via graph-based models. A good example is the
marriedTo relation: One marriage corresponds to a single
strongly connected component, so data with a large number of
marriages would be difficult to model with RLFMs. However,
predicting marriedTo links via graph-based models is easy: the
existence of the triple (John, marriedTo, Mary) can be simply
predicted from the existence of (Mary, marriedTo, John), by

exploiting the symmetry of the relation. If the (Mary, marriedTo,
John) edge is unknown, we can use statistical patterns, such
as the existence of shared children.

Combining the strengths of latent and graph-based models
is therefore a promising approach to increase the predictive
performance of graph models. It typically also speeds up the
training. We now discuss some ways of combining these two
kinds of models.

A. Additive relational effects model

[118] proposed the additive relational effects (ARE), which
is a way to combine RLFMs with observable graph models.
In particular, if we combine RESCAL with PRA, we get

fRESCAL+PRA
ijk “ w

p1qJ
k φRESCAL

ij `w
p2qJ
k φPRA

ijk . (21)

ARE models can be trained by alternately optimizing the
RESCAL parameters with the PRA parameters. The key benefit
is now RESCAL only has to model the “residual errors” that
cannot be modelled by the observable graph patterns. This
allows the method to use much lower latent dimensionality,
which significantly speeds up training time. The resulting
combined model also has increased accuracy [118].

B. Other combined models

In addition to ARE, further models have been explored to
learn jointly from latent and observable patterns on relational
data. [84, 85] combined a latent feature model with an additive
term to learn from latent and neighborhood-based information
on multi-relational data, as follows:11

fADD
ijk :“ w

p1qJ
k,j φ

SUB
i `w

p2qJ
k,i φ

OBJ
j `w

p3qJ
k φN

ijk (22)

φN
ijk :“ ryijk1 : k1 ‰ ks (23)

Here, φSUB
i is the latent representation of entity ei as a subject

and φOBJ
j is the latent representation of entity ej as an object.

The term φN
ijk captures patterns efficiently where the existence

of a triple yijk1 is predictive of another triple yijk between
the same pair of entities (but of a different relation type). For
instance, if Leonard Nimoy was born in Boston, it is also likely
that he lived in Boston. This dependency between the relation
types bornIn and livedIn can be modeled in Equation (23) by
assigning a large weight to wbornIn,livedIn.

ARE and the models of [84] and [85] are similar in
spirit to the model of [119], which augments SVD (i.e.,
matrix factorization) of a rating matrix with additive terms to
include local neighborhood information. Similarly, factorization
machines [120] allow to combine latent and observable patterns,
by modeling higher-order interactions between input variables
via low-rank factorizations [78].

An alternative way to combine different prediction systems
is to fit them separately, and use their outputs as inputs to
another “fusion” system. This is called stacking [121]. For
instance, [28] used the output of PRA and ER-MLP as scalar
features, and learned a final “fusion” layer by training a binary

11 [85] considered an additional term fUNI
ijk

:“ fADD
ijk ` wJk φSUB+OBJ

ij ,
where φSUB+OBJ

ij is a (non-composite) latent feature representation of subject-
object pairs.
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classifier. Stacking has the advantage that it is very flexible
in the kinds of models that can be combined. However, it has
the disadvantage that the individual models cannot cooperate,
and thus any individual model needs to be more complex than
in a combined model which is trained jointly. For example, if
we fit RESCAL separately from PRA, we will need a larger
number of latent features than if we fit them jointly.

VII. TRAINING SRL MODELS ON KNOWLEDGE GRAPHS

In this section we discuss aspects of training the previously
discussed models that are specific to knowledge graphs, such
as how to handle the open-world assumption of knowledge
graphs, how to exploit sparsity, and how to perform model
selection.

A. Penalized maximum likelihood training

Let us assume we have a set of Nd observed triples and
let the n-th triple be denoted by xn. Each observed triple is
either true (denoted yn “ 1) or false (denoted yn “ 0). Let this
labeled dataset be denoted by D “ tpxn, ynq |n “ 1, . . . , Ndu.
Given this, a natural way to estimate the parameters Θ is to
compute the maximum a posteriori (MAP) estimate:

max
Θ

Nd
ÿ

n“1

log Berpyn |σpfpxn; Θqqq ` log ppΘ |λq (24)

where λ controls the strength of the prior. (If the prior is
uniform, this is equivalent to maximum likelihood training.)
We can equivalently state this as a regularized loss minimization
problem:

min
Θ

N
ÿ

n“1

Lpσpfpxn; Θqq, ynq ` λ regpΘq (25)

where Lpp, yq “ ´ log Berpy|pq is the log loss function.
Another possible loss function is the squared loss, Lpp, yq “
pp ´ yq2. Using the squared loss can be especially efficient
in combination with a closed-world assumption (CWA). For
instance, using the squared loss and the CWA, the minimization
problem for RESCAL becomes

min
E,tWku

ÿ

k

}Yk ´EWkE
J}2F ` λ1}E}

2
F ` λ2

ÿ

k

}Wk}
2
F .

(26)
where λ1, λ2 ě 0 control the degree of regularization. The
main advantage of Equation (26) is that it can be optimized via
RESCAL-ALS, which consists of a sequence of very efficient,
closed-form updates whose computational complexity depends
only on the non-zero entries in Y [63, 64]. We discuss some
other loss functions below.

B. Where do the negative examples come from?

One important question is where the labels yn come from.
The problem is that most knowledge graphs only contain
positive training examples, since, usually, they do not encode
false facts. Hence yn “ 1 for all pxn, ynq P D. To emphasize
this, we shall use the notation D` to represent the observed
positive (true) triples: D` “ txn P D | yn “ 1u. Training on

all-positive data is tricky, because the model might easily over
generalize.

One way around this is as to make a closed world as-
sumption and assume that all (type consistent) triples that
are not in D` are false. We will denote this negative set as
D´ “ txn P D | yn “ 0u. However, for incomplete knowledge
graphs this assumption will be violated. Moreover, D´ might
be very large, since the number of false facts is much larger
than the number of true facts. This can lead to scalability issues
in training methods that have to consider all negative examples.

An alternative approach to generate negative examples is to
exploit known constraints on the structure of a knowledge graph:
Type constraints for predicates (persons are only married to
persons), valid value ranges for attributes (the height of humans
is below 3 meters), or functional constraints such as mutual
exclusion (a person is born exactly in one city) can all be used
for this purpose. Since such examples are based on the violation
of hard constraints, it is certain that they are indeed negative
examples. Unfortunately, functional constraints are scarce and
negative examples based on type constraints and valid value
ranges are usually not sufficient to train useful models: While it
is relatively easy to predict that a person is married to another
person, it is difficult to predict to which person in particular.
For the latter, examples based on type constraints alone are not
very informative. A better way to generate negative examples
is to “perturb” true triples. In particular, let us define

D´ “ tpe`, rk, ejq | ei ‰ e` ^ pei, rk, ejq P D`u
Y tpei, rk, e`q | ej ‰ e` ^ pei, rk, ejq P D`u

To understand the difference between this approach and the
CWA (where we assumed all valid unknown triples were
false), let us consider the example in Figure 1. The CWA
would generate “good” negative triples such as (LeonardNimoy,
starredIn, StarWars), (AlecGuinness, starredIn, StarTrek), etc.,
but also type-consistent but “irrelevant” negative triples such
as (BarackObama, starredIn, StarTrek), etc. (We are assuming
(for the sake of this example) there is a type Person but not
a type Actor.) The second approach (based on perturbation)
would not generate negative triples such as (BarackObama,
starredIn, StarTrek), since BarackObama does not participate
in any starredIn events. This reduces the size of D´, and
encourages it to focus on “plausible” negatives. (An even
better method, used in Section IX, is to generate the candidate
triples from text extraction methods run on the Web. Many of
these triples will be false, due to extraction errors, but they
define a good set of “plausible” negatives.)

Another option to generate negative examples for training is
to make a local-closed world assumption (LCWA) [107, 28],
in which we assume that a KG is only locally complete. More
precisely, if we have observed any triple for a particular subject-
predicate pair ei, rk, then we will assume that any non-existing
triple pei, rk, ¨q is indeed false and include them in D´. (The
assumption is valid for functional relations, such as bornIn,
but not for set-valued relations, such as starredIn.) However,
if we have not observed any triple at all for the pair ei, rk,
we will assume that all triples pei, rk, ¨q are unknown and not
include them in D´.
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C. Pairwise loss training

Given that the negative training examples are not always
really negative, an alternative approach to likelihood training
is to try to make the probability (or in general, some scoring
function) to be larger for true triples than for assumed-to-be-
false triples. That is, we can define the following objective
function:

min
Θ

ÿ

x`PD`

ÿ

x´PD´
Lpfpx`; Θq, fpx´; Θqq ` λ regpΘq (27)

where Lpf, f 1q is a margin-based ranking loss function such
as

Lpf, f 1q “ maxp1` f 1 ´ f, 0q. (28)

This approach has several advantages. First, it does not assume
that negative examples are necessarily negative, just that they
are “more negative” than the positive ones. Second, it allows
the fp¨q function to be any function, not just a probability (but
we do assume that larger f values mean the triple is more
likely to be correct).

This kind of objective function is easily optimized by
stochastic gradient descent (SGD) [122]: at each iteration,
we just sample one positive and one negative example. SGD
also scales well to large datasets. However, it can take a long
time to converge. On the other hand, as discussed previously,
some models, when combined with the squared loss objective,
can be optimized using alternating least squares (ALS), which
is typically much faster.

D. Model selection

Almost all models discussed in previous sections include
one or more user-given parameters that are influential for the
model’s performance (e.g., dimensionality of latent feature mod-
els, length of relation paths for PRA, regularization parameter
for penalized maximum likelihood training). Typically, cross-
validation over random splits of D into training-, validation-,
and test-sets is used to find good values for such parameters
without overfitting (for more information on model selection
in machine learning see e.g., [123]). For link prediction and
entity resolution, the area under the ROC curve (AUC-ROC) or
the area under the precision-recall curve (AUC-PR) are good
evaluation criteria. For data with a large number of negative
examples (as it is typically the case for knowledge graphs),
it has been shown that AUC-PR can give a clearer picture of
an algorithm’s performance than AUC-ROC [124]. For entity
resolution, the mean reciprocal rank (MRR) of the correct
entity is an alternative evaluation measure.

VIII. MARKOV RANDOM FIELDS

In this section we drop the assumption that the random
variables yijk in Y are conditionally independent. However,
in the case of relational data and without the conditional
independence assumption, each yijk can depend on any of
the other Ne ˆNe ˆNr ´ 1 random variables in Y. Due to
this enormous number of possible dependencies, it becomes
quickly intractable to estimate the joint distribution PpYq
without further constraints, even for very small knowledge

graphs. To reduce the number of potential dependencies and
arrive at tractable models, in this section we develop template-
based graphical models that only consider a small fraction of
all possible dependencies.

(See [125] for an introduction to graphical models.)

A. Representation

Graphical models use graphs to encode dependencies be-
tween random variables. Each random variable (in our case, a
possible fact yijk) is represented as a node in the graph, while
each dependency between random variables is represented as an
edge. To distinguish such graphs from knowledge graphs, we
will refer to them as dependency graphs. It is important to be
aware of their key difference: while knowledge graphs encode
the existence of facts, dependency graphs encode statistical
dependencies between random variables.

To avoid problems with cyclical dependencies, it is common
to use undirected graphical models, also called Markov Random
Fields (MRFs).12 A MRF has the following form:

PpY|θq “
1

Z

ź

c

ψpyc|θq (29)

where ψpyc|θq ě 0 is a potential function on the c-th subset
of variables, in particular the c-th clique in the dependency
graph, and Z “

ř

y

ś

c ψpyc|θq is the partition function,
which ensures that the distribution sums to one. The potential
functions capture local correlations between variables in each
clique c in the dependency graph. (Note that in undirected
graphical models, the local potentials do not have any proba-
bilistic interpretation, unlike in directed graphical models.) This
equation again defines a probability distribution over “possible
worlds”, i.e., over joint distribution assigned to the random
variables Y.

The structure of the dependency graph (which defines the
cliques in Equation (29)) is derived from a template mechanism
that can be defined in a number of ways. A common approach
is to use Markov logic [126], which is a template language
based on logical formulae:

Given a set of formulae F “ tFiu
L
i“1, we create an edge

between nodes in the dependency graph if the corresponding
facts occur in at least one grounded formula. A grounding of
a formula Fi is given by the (type consistent) assignment of
entities to the variables in Fi. Furthermore, we define ψpyc|θq
such that

PpY|θq “
1

Z

ź

c

exppθcxcq (30)

where xc denotes the number of true groundings of Fc in Y,
and θc denotes the weight for formula Fc. If θc ą 0, we prefer
worlds where formula Fc is satisfied; if θc ă 0, we prefer
worlds where formula Fc is violated. If θc “ 0, then formula
Fc is ignored.

To explain this further, consider a KG involving two types
of entities, adults and children, and two types of relations,
parentOf and marriedTo. Figure 6a depicts a sample KG with
three adults and one child. Obviously, these relations (edges)

12Technically, since we are conditioning on some observed features x, this
is a Conditional Random Field (CRF), but we will ignore this distinction.
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are correlated, since people who share a common child are
often married, while people rarely marry their own children. In
Markov logic, we represent these dependencies using formulae
such as:

F1 : px, parentOf, zq ^ py, parentOf, zq ñ px,marriedTo, yq

F2 : px,marriedTo, yq ñ  py, parentOf, xq

Rather than encoding the rule that adults cannot marry their
own children using a formula, we will encode this as a hard
constraint into the type system. Similarly, we only allow adults
to be parents of children. Thus, there are 6 possible facts
in the knowledge graph. To create a dependency graph for
this KG and for this set of logical formulae F , we assign a
binary random variable to each possible fact, represented by a
diamond in Figure 6b, and create edges between these nodes if
the corresponding facts occur in grounded formulae F1 or F2.
For instance, grounding F1 with x “ a1, y “ a3, and z “ c,
creates the edges m13 Ñ p1c, m13 Ñ p3c, and p1c Ñ p3c.
The full dependency graph is shown in Figure 6c.

The process of generating the MRF graph by applying
templated rules to a set of entities is known as grounding
or instantiation. We note that the topology of the resulting
graph is quite different from the original KG. In particular,
we have one node per possible KG edge, and these nodes are
densely connected. This can cause computational difficulties,
as we discuss below.

B. Inference

The inference problem consists of estimating the most
probable configuration, y˚ “ arg maxy ppy|θq, or the posterior
marginals ppyi|θq. In general, both of these problems are
computationally intractable [125], so heuristic approximations
must be used.

One approach for computing posterior marginals is to use
Gibbs sampling (see, or example, [31, 127]) or MC-SAT [128].
One approach for computing the MAP estimate is to use the
MPLP (max product linear programming) method [129]. See
[125] for more details.

If one restricts the class of potential functions to be just
disjunctions (using OR and NOT, but no AND), then one
obtains a (special case of) hinge loss MRF (HL-MRFs) [130],
for which efficient convex algorithms can be applied, based
on a continuous relaxation of the binary random variables.
Probabilistic Soft Logic (PSL) [131] provides a convenient
form of “syntactic sugar” for defining HL-MRFs, just as MLNs
provide a form of syntactic sugar for regular (boolean) MRFs.
HL-MRFs have been shown to scale to fairly large knowledge
bases [132].

C. Learning

The “learning” problem for MRFs deals with specifying the
form of the potential functions (sometimes called “structure
learning”) as well as the values for the numerical parameters
θ. In the case of MRFs for KGs, the potential functions are
often specified in the form of logical rules, as illustrated above.
In this case, structure learning is equivalent to rule learning,

Web Freebase

Latent Model Observable Model

Combined ModelInformation Extraction

Fusion Layer

Knowledge Vault

Fig. 7. Architecture of the Knowledge Vault.

which has been studied in a number of published works (see
Section V-C and [107, 95]).

The parameter estimation problem (which is usually cast as
maximum likelihood or MAP estimation), although convex, is
in general quite expensive, since it needs to call inference as
a subroutine. Therefore, various faster approximations, such
as pseudo likelihood, have been developed (cf. relational
dependency networks [133]).

D. Discussion

Although approaches based on MRFs are very flexible, it
is in general harder to make scalable inference and devise
learning algorithms for this model class, compared to methods
based on observable or even latent feature models. In this
article, we have chosen to focus primarily on latent and graph
feature models because we have more experience with such
methods in the context of KGs. However, all three kinds of
approaches to KG modeling are useful.

IX. KNOWLEDGE VAULT: RELATIONAL LEARNING FOR
KNOWLEDGE BASE CONSTRUCTION

The Knowledge Vault (KV) [28] is a very large-scale
automatically constructed knowledge base, which follows the
Freebase schema (KV uses the 4469 most common predicates).
It is constructed in three steps. In the first step, facts are
extracted from a host of Web sources such as natural language
text, tabular data, page structure, and human annotations (the
extractors are described in detail in [28]). Second, an SRL
model is trained on Freebase to serve as a “prior” for computing
the probability of (new) edges. Finally, the confidence in
the automatically extracted facts is evaluated using both the
extraction scores and the prior SRL model.

The Knowledge Vault uses a combination of latent and
observable models to predict links in a knowledge graph. In
particular, it employs the ER-MLP model (Section IV-D) as a
latent feature model and PRA (Section V-C) as a graph feature
model. In order to combine the two models, KV uses stacking
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a1 a2

a3 c

(a)

a1 a2

a3 c

m13

m12

m23

p3c

p2c

p1c

(b)

m13

m12

m23

p3c

p2c

p1c

(c)

Fig. 6. (a) A small KG. There are 4 entities (circles): 3 adults (a1, a2, a3) and 1 child c There are 2 types of edges: adults may or may not be married to
each other, as indicated by the red dashed edges, and the adults may or may not be parents of the child, as indicated by the blue dotted edges. (b) We add
binary random variables (represented by diamonds) to each KG edge. (c) We drop the entity nodes, and add edges between the random variables that belong to
the same clique potential, resulting in a standard MRF.

(Section VI-B). To evaluate the link prediction performance,
these models were applied to a subset of Freebase. The ER-
MLP system achieved an area under the ROC curve (AUC-
ROC) of 0.882, and the PRA approach achieved an almost
identical AUC-ROC of 0.884. The combination of both methods
further increased the AUC-ROC to 0.911. To predict the final
score of a triple, the scores from the combined link-prediction
model are further combined with various features derived from
the extracted triples. These include, for instance, the confidence
of the extractors and the number of (de-duplicated) Web pages
from which the triples were extracted. Figure 7 provides a high
level overview of the Knowledge Vault architecture.

Let us give a qualitative example of the benefits of combining
the prior with the extractors (i.e., the Fusion Layer in Figure 7).
Consider an extracted triple corresponding to the following
relation:13

(Barry Richter, attended, University of Wisconsin-Madison).

The extraction confidence for this triple (obtained by fusing
multiple extraction techniques) is just 0.14, since it was based
on the following two rather indirect statements:14

In the fall of 1989, Richter accepted a scholarship to
the University of Wisconsin, where he played for four
years and earned numerous individual accolades . . .

and15

The Polar Caps’ cause has been helped by the impact
of knowledgable coaches such as Andringa, Byce
and former UW teammates Chris Tancill and Barry
Richter.

However, we know from Freebase that Barry Richter was born
and raised in Madison, Wisconsin. According to the prior

13For clarity of presentation we show a simplified triple. Please see [28]
for the actually extracted triples including compound value types (CVT).

14Source: http://www.legendsofhockey.net/LegendsOfHockey/jsp/
SearchPlayer.jsp?player=11377

15Source: http://host.madison.com/sports/high-school/hockey/numbers-
dwindling-for-once-mighty-madison-high-school-hockey-programs/article_
95843e00-ec34-11df-9da9-001cc4c002e0.html

model, people who were born and raised in a particular city
often tend to study in the same city. This increases our prior
belief that Richter went to school there, resulting in a final
fused belief of 0.61.

Combining the prior model (learned using SRL methods)
with the information extraction model improved performance
significantly, increasing the number of high confidence triples16

from 100M (based on extractors alone) to 271M (based on
extractors plus prior). The Knowledge Vault is one of the
largest applications of SRL to knowledge base construction to
date. See [28] for further details.

X. EXTENSIONS AND FUTURE WORK

A. Non-binary relations

So far we completely focussed on binary relations; here we
discuss how relations of other cardinalities can be handled.

Unary relations: Unary relations refer to statements on
properties of entities, e.g., the height of a person. Such
data can naturally be represented by a matrix, in which
rows represent entities, and columns represent attributes. [64]
proposed a joint tensor-matrix factorization approach to learn
simultaneously from binary and unary relations via a shared
latent representation of entities. In this case, we may also need
to modify the likelihood function, so it is Bernoulli for binary
edge variables, and Gaussian (say) for numeric features and
Poisson for count data (see [134]).

Higher-arity relations: In knowledge graphs, higher-arity
relations are typically expressed via multiple binary rela-
tions. In Section II, we expressed the ternary relationship
playedCharacterIn(LeonardNimoy, Spock, StarTrek-1) via two
binary relationships (LeonardNimoy, played, Spock) and (Spock,
characterIn, StarTrek-1). However, there are multiple actors
who played Spock in different Star Trek movies, so we
have lost the correspondence between Leonard Nimoy and
StarTrek-1. To model this using binary relations without loss

16Triples with the calibrated probability of correctness above 90%.

http://www.legendsofhockey.net/LegendsOfHockey/jsp/SearchPlayer.jsp?player=11377
http://www.legendsofhockey.net/LegendsOfHockey/jsp/SearchPlayer.jsp?player=11377
http://host.madison.com/sports/high-school/hockey/numbers-dwindling-for-once- mighty-madison-high-school-hockey-programs/article_95843e00-ec34-11df-9da9-001cc4c002e0.html
http://host.madison.com/sports/high-school/hockey/numbers-dwindling-for-once- mighty-madison-high-school-hockey-programs/article_95843e00-ec34-11df-9da9-001cc4c002e0.html
http://host.madison.com/sports/high-school/hockey/numbers-dwindling-for-once- mighty-madison-high-school-hockey-programs/article_95843e00-ec34-11df-9da9-001cc4c002e0.html
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of information, we can use auxiliary nodes to identify the
respective relationship. For instance, to model the relationship
playedCharacterIn(LeonardNimoy, Spock, StarTrek-1), we can
write

subject predicate object

(LeonardNimoy, actor, MovieRole-1)
(MovieRole-1, movie, StarTreck-1)
(MovieRole-1, character, Spock)

where we used the auxiliary entity MovieRole-1 to uniquely
identify this particular relationship. In most applications
auxiliary entities get an identifier; if not they are referred to as
blank nodes. In Freebase auxiliary nodes are called Compound
Value Types (CVT).

Since higher-arity relations involving time and location
are relatively common, the YAGO2 project extended the
SPO triple format to the (subject, predicate, object, time,
location) (SPOTL) format to model temporal and spatial
information about relationships explicitly, without transforming
them to binary relations [27]. Furthermore, there has also been
work on extracting higher-arity relations directly from natural
language [135].

A related issue is that the truth-value of a fact can change
over time. For example, Google’s current CEO is Larry Page,
but from 2001 to 2011 it was Eric Schmidt. Both facts are
correct, but only during the specified time interval. For this
reason, Freebase allows some facts to be annotated with
beginning and end dates, using CVT (compound value type)
constructs, which represent n-ary relations via auxiliary nodes.
In the future, it is planned to extend the KV system to model
such temporal facts. However, this is non-trivial, since it is not
always easy to infer the duration of a fact from text, since it is
not necessarily related to the timestamp of the corresponding
source (cf. [136]).

As an alternative to the usage of auxiliary nodes, a set of
n´th-arity relations can be represented by a single n` 1´th-
order tensor. RESCAL can easily be generalized to higher-arity
relations and can be solved by higher-order tensor factorization
or by neural network models with the corresponding number
of entity representations as inputs [134].

B. Hard constraints: types, functional constraints, and others

Imposing hard constraints on the allowed triples in knowl-
edge graphs can be useful. Powerful ontology languages such as
the Web Ontology Language (OWL) [137] have been developed,
in which complex constraints can be formulated. However,
reasoning with ontologies is computationally demanding, and
hard constraints are often violated in real-world data [138, 139].
Fortunately, machine learning methods can be robust in the
face of contradictory evidence.

Deterministic dependencies: Triples in relations such as
subClassOf and isLocatedIn follow clear deterministic depen-
dencies such as transitivity. For example, if Leonard Nimoy
was born in Boston, we can conclude that he was born
in Massachusetts, that he was born in the USA, that he
was born in North America, etc. One way to consider such
ontological constraints is to precompute all true triples that

can be derived from the constraints and to add them to
the knowledge graph prior to learning. The precomputation
of triples according to ontological constraints is also called
materialization. However, on large knowledge graphs, full
materialization can be computationally demanding.

Type constraints: Often relations only make sense when
applied to entities of the right type. For example, the domain
and the range of marriedTo is limited to entities which are
persons. Modelling type constraints explicitly requires complex
manual work. An alternative is to learn approximate type
constraints by simply considering the observed types of subjects
and objects in a relation. The standard RESCAL model has
been extended by [74] and [69] to handle type constraints of
relations efficiently. As a result, the rank required for a good
RESCAL model can be greatly reduced. Furthermore, [85]
considered learning latent representations for the argument
slots in a relation to learn the correct types from data.

Functional constraints and mutual exclusiveness: Although
the methods discussed in Sections IV and V can model long-
range and global dependencies between triples, they do not
explicitly enforce functional constraints that induce mutual
exclusivity between possible values. For instance, a person
is born in exactly one city, etc. If one of the these values
is observed, then observable graph models can prevent other
values from being asserted, but if all the values are unknown,
the resulting mutual exclusion constraint can be hard to deal
with computationally.

C. Generalizing to new entities and relations

In addition to missing facts, there are many entities that are
mentioned on the Web but are currently missing in knowledge
graphs like Freebase and YAGO. If new entities or predicates
are added to a KG, one might want to avoid retraining the
model due to runtime considerations. Given the current model
and a set of newly observed relationships, latent representations
of new entities can be calculated approximately in both
tensor factorization models and in neural networks, by finding
representations that explain the newly observed relationships
relative to the current model. Similarly, it has been shown that
the relation-specific weights Wk in the RESCAL model can
be calculated efficiently for new relation types given already
derived latent representations of entities [140].

D. Querying probabilistic knowledge graphs

RESCAL and KV can be viewed as probabilistic databases
(see, e.g., [141, 142]). In the Knowledge Vault, only the
probabilities of triples are queried. Some applications might
require more complex queries such as: Who is born in Rome
and likes someone who is a child of Albert Einstein. It is known
that queries involving joins (existentially quantified variables)
are expensive to calculate in probabilistic databases ([141]).
In [140], it was shown how some queries involving joins can
be efficiently handled within the RESCAL framework.

E. Trustworthiness of knowledge graphs

Automatically constructed knowledge bases are only as good
as the sources from which the facts are extracted. Prior studies
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in the field of data fusion have developed numerous approaches
for modelling the correctness of information supplied by
multiple sources in the presence of possible data conflicts (see
[143, 144] for recent surveys). However, the key assumption in
data fusion—namely, that the facts provided by the sources are
indeed stated by them—is often violated when the information
is extracted automatically. If a given source contains a mistake,
it could be because the source actually contains a false fact, or
because the fact has been extracted incorrectly. A recent study
[145] has formulated the problem of knowledge fusion, where
the above assumption is no longer made, and the correctness
of information extractors is modeled explicitly. A follow-up
study by the authors [146] developed several approaches for
solving the knowledge fusion problem, and applied them to
estimate the trustworthiness of facts in the Knowledge Vault
(cf. Section IX).

XI. CONCLUDING REMARKS

Knowledge graphs have found important applications in
question answering, structured search, exploratory search, and
digital assistants. We provided a review of state-of-the-art
statistical relational learning (SRL) methods applied to very
large knowledge graphs. We also demonstrated how statistical
relational learning can be used in conjunction with machine
reading and information extraction methods to automatically
build such knowledge repositories. As a result, we showed
how to create a truly massive, machine-interpretable “semantic
memory” of facts, which is already empowering numerous
practical applications. However, although these KGs are
impressive in their size, they still fall short of representing
many kinds of knowledge that humans possess. Notably missing
are representations of “common sense” facts (such as the fact
that water is wet, and wet things can be slippery), as well
as “procedural” or how-to knowledge (such as how to drive
a car or how to send an email). Representing, learning, and
reasoning with these kinds of knowledge remains the next
frontier for AI and machine learning.

XII. APPENDIX

A. RESCAL is a special case of NTN

Here we show how the RESCAL model of Section IV-A is a
special case of the neural tensor model (NTN) of Section IV-E.
To see this, note that RESCAL has the form

fRESCAL
ijk “ eJi Wkej “ wJk rej b eis (31)

Next, note that

v b u “ vec
`

uvJ
˘

“ ruJB1v, . . . ,uJBnvs

where n “ |u||v|, and Bk is a matrix of all 0s except for a
single 1 element in the k’th position, which “plucks out” the
corresponding entries from the u and v matrices. For example,

ˆ
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u2

˙

`

v1 v2

˘

“

«

ˆ

u1
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˙Jˆ

1 0
0 0
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˙

,

. . . ,

ˆ

u1

u2

˙Jˆ

0 0
0 1

˙ˆ

v1

v2

˙

ff

.(32)

In general, define δij as a matrix of all 0s except for entry
pi, jq which is 1. Then if we define Bk “ rδ1,1, . . . , δHe,Hes

we have

hb
ijk “

”

eJi B
1
kej , . . . , e

J
i B

Hb

k ej

ı

“ ej b ei

Finally, if we define Ak as the empty matrix (so haijk is
undefined), and gpuq “ u as the identity function, then the
NTN equation

fNTN
ijk “ wJk gprh

a
ijk;hb

ijksq

matches Equation 31.
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